Extracting Spot Rates from Yield Curve

- Start with the short rate S(1).
- Available since short-term Treasuries are zero-coupon bonds.
- Compute S(2) from the two-period coupon bond price P by solving

$$P = \frac{C}{1 + S(1)} + \frac{C + 100}{(1 + S(2))^2}.$$

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 104

Extracting Spot Rates from Yield Curve (concluded)

• In general, S(n) can be computed from Eq. (24), repeated below,

$$P = \sum_{i=1}^{n} \frac{C}{(1 + S(i))^{i}} + \frac{F}{(1 + S(n))^{n}},$$

given the market price P of the n-period coupon bond and $S(1), S(2), \ldots, S(n-1)$.

- The running time is O(n).
- The procedure is called bootstrapping.

Some Problems

- Treasuries of the same maturity might be selling at different yields (the multiple cash flow problem).
- Some maturities might be missing from the data points (the incompleteness problem).
- Treasuries might not be of the same quality
- Interpolation and fitting techniques are needed in practice to create a smooth spot rate curve.
- Lack economic justifications.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 106

Yield Spread

- Consider a *risky* bond with the cash flow C_1, C_2, \ldots, C_n and selling for P.
- Were this bond riskless, it would fetch

$$P^* = \sum_{t=1}^{n} \frac{C_t}{(1 + S(t))^t}.$$

- Since riskiness must be compensated, $P < P^*$
- Yield spread is the difference between the IRR of the risky bond and that of a riskless bond with comparable maturity.

Static Spread

• The static spread is the amount s by which the spot rate curve has to shift in parallel in order to price the risky bond correctly,

$$P = \sum_{t=1}^{n} \frac{C_t}{(1+s+S(t))^t}$$

- Unlike the yield spread, the static spread incorporates information from the term structure.
- Can be computed by the Newton-Raphson method

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 108

Of Spot Rate Curve and Yield Curve

- y_k : yield to maturity for the k-period coupon bond.
- $S(k) \ge y_k$ if $y_1 < y_2 < \cdots$ (yield curve is normal).
- $S(k) \le y_k$ if $y_1 > y_2 > \cdots$ (yield curve is inverted).
- $S(k) \ge y_k$ if $S(1) < S(2) < \cdots$ (spot rate curve is normal).
- $S(k) \le y_k$ if $S(1) > S(2) > \cdots$ (spot rate curve is inverted).
- If the yield curve is flat, the spot rate curve coincides with the yield curve.

Coupon Effect on the Yield to Maturity

- Under a normal spot rate curve, a coupon bond has a lower yield than a zero-coupon bond of equal maturity.
- Picking a zero-coupon bond over a coupon bond based purely on the zero's higher yield to maturity is flawed

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 110

Shapes

- The spot rate curve often has the same shape as the yield curve.
- If the spot rate curve is inverted (normal, resp.), then the yield curve is inverted (normal, resp.).
- But only a trend not a mathematical truth.
- Consider a 3-period coupon bond that pays \$1 per period and repays the principal of \$100 at maturity
- Assume spot rates S(1) = 0.1, S(2) = 0.9, and S(3) = 0.901.

Shapes (concluded)

- Yields to maturity are $y_1 = 0.1$, $y_2 = 0.8873$, and $y_3 = 0.8851$, not strictly increasing!
- When the final principal payment is relatively insignificant, the spot rate curve and the yield curve do share the same shape.
- Bonds of high coupon rates and long maturities.
- By the agreement in shape, remember the above proviso.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 112

Forward Rates

- The yield curve contains information regarding future interest rates currently "expected" by the market.
- Invest \$1 for j periods to end up with $[1+S(j)]^j$ dollars at time j.
- The maturity strategy.
- Invest \$1 in bonds for i periods and at time i invest the proceeds in bonds for another j-i periods where j>i.
- Will have $[1 + S(i)]^{i}[1 + S(i,j)]^{j-i}$ dollars at time j.
- -S(i,j): (j-i)-period spot rate i periods from now.
- The rollover strategy.

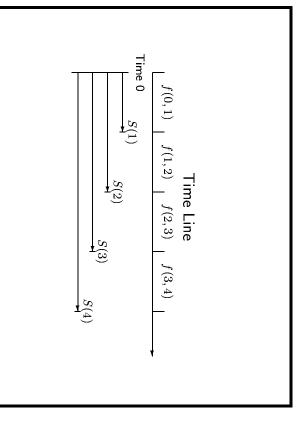
Forward Rates (concluded)

• When S(i,j) equals

$$f(i,j) \equiv \left[\frac{(1+S(j))^j}{(1+S(i))^i} \right]^{1/(j-i)} - 1, \tag{25}$$

we will end up with $[1 + S(j)]^j$ dollars again.

- By definition, f(0, j) = S(j).
- f(i,j) is called the (implied) forward rates.
- More precisely, the (j-i)-period forward rate i periods from now.



Forward Rates and Future Spot Rates

- We did not assume any a priori relation between f(i,j) and future spot rate S(i,j).
- This is the subject of the term structure theories.
- We merely looked for the future spot rate that, *if* realized, will equate two investment strategies.
- f(i, i+1) are instantaneous forward rates or one-period forward rates.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 116

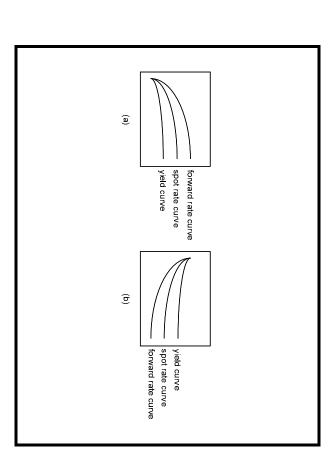
Spot Rates and Forward Rates

• When the spot rate curve is normal, the forward rate dominates the spot rates,

$$f(i,j) > S(j) > \dots > S(i)$$
. (26)

• When the spot rate curve is inverted, the forward rate is dominated by the spot rates,

$$f(i,j) < S(j) < \dots < S(i)$$
. (27)



Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 118

Forward Rates=Spot Rates=Yield Curve

- The future value of \$1 at time n can be derived in two ways.
- Buy n-period zero-coupon bonds and receive $[1+S(n)]^n$.
- Buy one-period zero-coupon bonds today and a series of such bonds at the forward rates as they mature.
- The future value is $[1+S(1)][1+f(1,2)]\cdots[1+f(n-1,n)].$

Forward Rates=Spot Rates=Yield Curve (concluded)

• Since they are identical,

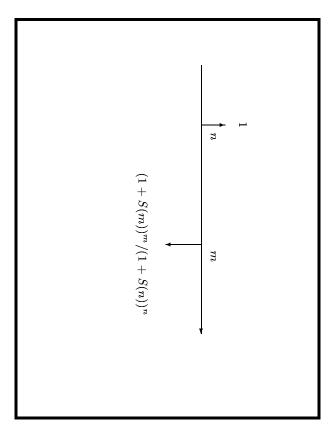
$$S(n) = ((1+S(1))(1+f(1,2))\cdots(1+f(n-1,n)))^{1/n} - 1.$$
(28)

- Hence, the forward rates, specifically the one-period forward rates, determine the spot rate curve.
- Other equivalency can be derived similarly.
- Show that f(T, T+1) = d(T)/d(T+1) 1.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 120

Locking in the Forward Rate f(n,m)

- Buy one *n*-period zero-coupon bond for $1/(1+S(n))^n$ and sell $(1+S(m))^m/(1+S(n))^n$ m-year zero-coupon bonds.
- No net initial investment because the cash inflow equals the cash outflow $1/(1+S(n))^n$.
- At time n there will be a cash inflow of \$1.
- At time m there will be a cash outflow of $(1+S(m))^m/(1+S(n))^n$ dollars.
- This implies the rate f(n,m) between times n and m.



Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 122

Forward Contracts

- We generated the cash flow of a financial instrument called forward contract.
- Agreed upon today, it enables one to borrow money at time n in the future and repay the loan at time m > n with an interest rate equal to the forward rate f(n, m).
- Can the spot rate curve be an arbitrary curve?

Spot and Forward Rates under Continuous Compounding

• The pricing formula:

$$P = \sum_{i=1} Ce^{-iS(i)} + Fe^{-nS(n)}.$$

• The market discount function:

$$d(n) = e^{-nS(n)}. (29)$$

• The spot rate is an arithmetic average of forward rates,

$$S(n) = \frac{f(0,1) + f(1,2) + \dots + f(n-1,n)}{n}.$$
 (30)

rinciples of Financial Computing © 2003 Yuh-Dauh Lyuu, National Taiwan University Page 124

Spot and Forward Rates under Continuous Compounding (concluded)

• The formula for the forward rate:

$$f(i,j) = \frac{jS(j) - iS(i)}{j - i}.$$
 (31)

• The one-period forward rate:

$$f(j, j+1) = -\ln \frac{d(j+1)}{d(j)}.$$
 (32)

• f(T) > S(T) if and only if $\partial S/\partial T > 0$.

 $f(T) \equiv \lim_{\Delta T \to 0} f(T, T + \Delta T) = S(T) + T \frac{\partial S}{\partial T}$

(33)

• Forward rate equals the average future spot rate.

Unbiased Expectations Theory

$$f(a,b) = E[S(a,b)].$$
 (34)

- Does not imply that the forward rate is an accurate predictor for the future spot rate.
- Implies that the maturity strategy and the rollover strategy produce the same result at the horizon on the

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 126

Unbiased Expectations Theory and Spot Rate Curve

- Implies that a normal spot rate curve is due to the fact that the market expects the future spot rate to rise.
- f(j, j+1) > S(j+1) if and only if S(j+1) > S(j)from Eq. (25) on p. 114.
- So $E[S(j, j+1)] > S(j+1) > \cdots > S(1)$ if and only if $S(j+1) > \cdots > S(1)$.
- Conversely, the spot rate is expected to fall if and only if the spot rate curve is inverted.

More Implications

- The theory has been rejected by most empirical studies with the possible exception of the period prior to 1915.
- Since the term structure has been upward sloping about 80% of the time, the theory would imply that investors have expected interest rates to rise 80% of the time.
- Riskless bonds, regardless of their different maturities, are expected to earn the same return on the average.
- That would mean investors are indifferent to risk.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 128

A "Bad" Expectations Theory

- The expected returns on all possible riskless bond strategies are equal for *all* holding periods.
- S •

$$(1+S(2))^2 = (1+S(1)) E[1+S(1,2)]$$
 (35)

because of the equivalency between buying a two-period bond and rolling over one-period bonds.

After rearrangement,

$$E[1+S(1,2)] = (1+S(2))^2/(1+S(1)).$$

A "Bad" Expectations Theory (continued)

- Now consider two one-period strategies.
- Strategy one buys a two-period bond and sells it after one period.
- The expected return is

$$E[(1+S(1,2))^{-1}](1+S(2))^{2}$$

- Strategy two buys a one-period bond with a return of 1+S(1).
- The theory says the returns are equal:

$$\frac{(1+S(2))^2}{1+S(1)} = \frac{1}{E[(1+S(1,2))^{-1}]}$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 130

A "Bad" Expectations Theory (concluded)

 \bullet Combining this with Eq. (35) to obtain

$$E\left[rac{1}{1+S(1,2)}
ight] = rac{1}{E[1+S(1,2)]}.$$

- But this is impossible save for a certain economy.
- Jensen's inequality states that E[g(X)] > g(E[X]) for any nondegenerate random variable X and strictly convex function g (i.e., g''(x) > 0).
- Use $g(x) \equiv (1+x)^{-1}$ to prove our point.

Local Expectations Theory

• The expected rate of return of any bond over a single period equals the prevailing one-period spot rate:

$$\frac{E\left[(1+S(1,n))^{-(n-1)}\right]}{(1+S(n))^{-n}} = 1 + S(1) \text{ for all } n > 1.$$
(36)

- This theory is the basis of many interest rate models.
- Holding premium:

$$\frac{E\left[\left(1+S(1,n)\right)^{-(n-1)}\right]}{(1+S(n))^{-n}}-(1+S(1)).$$

Zero under the local expectations theory.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 132

Duration Revisited

- Let $P(y) \equiv \sum_i C_i/(1+S(i)+y)^i$ be the price associated with the cash flow C_1, C_2, \ldots
- Define duration as

$$-\frac{\partial P(y)/P(0)}{\partial y}\bigg|_{y=0} = \frac{\sum_{i} \frac{iC_{i}}{(1+S(i))^{i+1}}}{\sum_{i} \frac{C_{i}}{(1+S(i))^{i}}}.$$

The curve is shifted in parallel to

$$S(1) + \Delta y, S(2) + \Delta y, \dots$$
 before letting Δy go to zero.

- The percentage price change roughly equals duration
- times the size of the parallel shift in the spot rate curve.

Duration Revisited (continued)

- The simple linear relation between duration and MD in Eq. (17) on p. 76 breaks down.
- One way to regain it is to resort to a different kind of shift, the proportional shift:

$$\frac{\Delta(1+S(i))}{1+S(i)} = \frac{\Delta(1+S(1))}{1+S(1)}$$

for all i.

 $-\Delta(x)$ denotes the change in x when the short-term rate is shifted by Δy .

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 134

Duration Revisited (concluded)

• Duration now becomes

$$\frac{1}{1+S(1)} \left[\frac{\sum_{i} \frac{iC_{i}}{(1+S(i))^{i}}}{\sum_{i} \frac{C_{i}}{(1+S(i))^{i}}} \right]. \tag{37}$$

- Define Macaulay's second duration to be the number within the brackets in Eq. (37).
- Then

$$\mathsf{duration} = \frac{\mathsf{Macaulay's \ second \ duration}}{(1+S(1))}$$

Immunization Revisited

- Recall that a future liability can be immunized by matching PV and MD under flat spot rate curves.
- If only parallel shifts are allowed, this conclusion continues to hold under general spot rate curves.
- \bullet Assume liability L is T periods from now.
- Assume L = 1 for simplicity.
- Assume the matching portfolio consists only of zero-coupon bonds maturing at t_1 and t_2 with $t_1 < T < t_2$.

2rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 136

Immunization Revisited (continued)

- Let there be n_i bonds maturing at time t_i , i = 1, 2.
- The portfolio's PV is

$$V \equiv n_1 e^{-S(t_1)t_1} + n_2 e^{-S(t_2)t_2} = e^{-S(T)T}.$$

• Its MD is

$$\frac{n_1t_1e^{-S(t_1)\,t_1} + n_2t_2e^{-S(t_2)\,t_2}}{V} = T.$$

• These two equations imply

$$n_1 e^{-S(t_1) t_1} = rac{V(t_2 - T)}{t_2 - t_1} \ \ ext{and} \ \ n_2 e^{-S(t_2) t_2} = rac{V(t_1 - T)}{t_1 - t_2}.$$

Immunization Revisited (concluded)

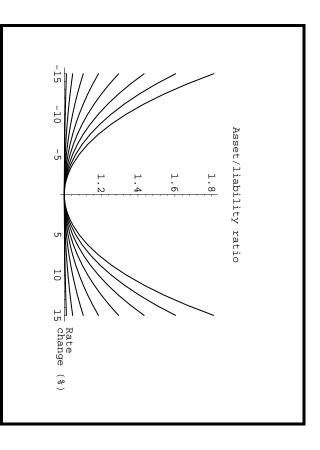
- Now shift the spot rate curve uniformly by $\delta \neq 0$.
- The portfolio's PV becomes

$$n_1 e^{-(S(t_1)+\delta) t_1} + n_2 e^{-(S(t_2)+\delta) t_2}$$

$$= e^{-\delta t_1} \frac{V(t_2 - T)}{t_2 - t_1} + e^{-\delta t_2} \frac{V(t_1 - T)}{t_1 - t_2}$$

$$= \frac{V}{t_2 - t_1} \left(e^{-\delta t_1} (t_2 - T) + e^{-\delta t_2} (T - t_1) \right).$$

- The liability's PV after shift is $e^{-(S(T)+\delta)T} = e^{-\delta T}V$.
- $\bullet \ \, \text{And} \ \, \frac{V}{t_2-t_1} \, \left(e^{-\delta t_1}(t_2-T)+e^{-\delta t_2}(T-t_1)\right) > e^{-\delta T}V.$



Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 139

Two Intriguing Implications

- A duration-matched position under parallel shifts implies free lunch as any interest rate change generates profits.
- No investors would hold the T-period bond because a portfolio of t_1 and t_2 -period bonds has a higher return for any interest rate shock.
- They would own only bonds of the shortest and longest maturities.
- The logic seems impeccable.
- What gives?