Bond Price Volatility

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 63

Purposes

- How interest rates affect bond prices.
- Key to the risk management of interest-rate-sensitive securities.
- Assume level-coupon throughout.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 64

The Key Question: Price Volatility

- What is the sensitivity of the percentage price change to changes in interest rates?
- Define price volatility by

$$-(\partial P/P)/\partial y$$
.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 65

Price Volatility of Bonds

• The price volatility of a coupon bond is

$$\frac{(C/y) n - (C/y^2) ((1+y)^{n+1} - (1+y)) - nF}{(C/y) ((1+y)^{n+1} - (1+y)) + F(1+y)}, (14)$$

where F is the par value, and C is the coupon payment per period.

• For bonds without embedded options,

$$-(\partial P/P)/\partial y > 0.$$

Behavior of Price Volatility (1)

- Price volatility increases as the coupon rate decreases.
- Zero-coupon bonds are the most volatile.
- Bonds selling at a deep discount are more volatile than those selling near or above par.
- Price volatility increases as the required yield decreases.
- So bonds traded with higher yields are less volatile.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 67

Behavior of Price Volatility (2)

- For bonds selling above par or at par, price volatility increases as the term to maturity lengthens (see figure on next page).
- Bonds with a longer maturity are more volatile.
- (But the *yields* of long-term bonds are less volatile than those of short-term bonds.)
- For bonds selling below par, price volatility first increases then decreases (see the figure on p. 70).
- Longer maturity here cannot be equated with higher price volatility.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 70

Macaulay Duration

- The Macaulay duration (MD) is a weighted average of the times to an asset's cash flows.
- The weights are the cash flows' present values divided by the asset's price.
- Formally,

$$\mathrm{MD} \equiv \frac{1}{P} \sum_{i=1}^{n} \frac{iC_i}{(1+y)^i}$$

• The Macaulay duration, in periods, is equal to

$$MD = -(1+y)\frac{\partial P/P}{\partial y}.$$
 (15)

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 71

MD of Bonds

• The MD of a coupon bond is

$$MD = \frac{1}{P} \left[\sum_{i=1}^{n} \frac{iC}{(1+y)^i} + \frac{nF}{(1+y)^n} \right].$$
 (16)

• Can be simplified to

$$\mathrm{MD} = \frac{c(1+y)\left[\,(1+y)^n - 1\,\right] + ny(y-c)}{cy\left[\,(1+y)^n - 1\,\right] + y^2},$$

where c is the period coupon rate.

- ullet The MD of a zero-coupon bond is term to maturity n.
- The MD of a coupon bond is less than its maturity.

Finesse

- Equations (15) and (16) hold only if the coupon C, the par value F, and the maturity n are all independent of the yield y—if the cash flow is independent of yields.
- To see this point, suppose the market yield declines.
- The MD will be lengthened.
- For securities whose maturity actually decreases as a result, the MD may decrease.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 73

How Not To Think of MD

- The MD has its origin in measuring the length of time a bond investment is outstanding.
- But you use it that way at your peril.
- The MD should be seen mainly as measuring price volatility.
- Many, if not most, duration-related terminology cannot be comprehended otherwise.

Conversion

To convert the MD to be year-based, modify Eq. (16) to

$$\frac{1}{P} \left[\sum_{i=1}^{n} \frac{i}{k} \frac{C}{\left(1 + \frac{y}{k}\right)^i} + \frac{n}{k} \frac{F}{\left(1 + \frac{y}{k}\right)^n} \right],$$

frequency per annum. where y is the annual yield and k is the compounding

• Equation (15) also becomes

$$ext{MD} = -\left(1 + rac{y}{k}
ight)rac{\partial P/P}{\partial y}.$$

By definition,

MD (in years) =
$$\frac{\text{MD (in periods)}}{k}$$
.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 75

Modified Duration

• Modified duration is defined as

modified duration
$$\equiv -\frac{\partial P/P}{\partial y} = \frac{\mathrm{MD}}{(1+y)}$$
. (17)

• By Taylor expansion,

percentage price change $\approx -\text{modified duration} \times \text{yield change}$

• The modified duration of a portfolio equals $\sum_i \omega_i D_i$, ω_i is the market value of that asset expressed as a where D_i is the modified duration of the *i*th asset and percentage of the market value of the portfolio.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 76

Example

- Consider a bond whose modified duration is 11.54 with a yield of 10%.
- \bullet If the yield increases in stantaneously from 10% to 10.1%, the approximate percentage price change will be

$$-11.54 \times 0.001 = -0.01154 = -1.154\%.$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 77

Effective Duration

• The effective duration is defined as

$$\frac{P_{-} - P_{+}}{P_{0}(y_{+} - y_{-})}. (18)$$

- initial price, y is the initial yield, and Δy is small. is the price if the yield is increased by Δy , P_0 is the P_{-} is the price if the yield is decreased by Δy , P_{+}
- A general numerical formula for volatility
- One can compute the effective duration of just about any financial instrument.

Effective Duration (concluded)

- Most useful where yield changes alter the cash flow or securities whose cash flow is so complex that simple formulae are unavailable.
- Duration of a security can be longer than its maturity or negative!
- Neither makes sense under the maturity interpretation.
- An alternative is to use

$$\frac{P_0 - P_+}{P_0 \, \Delta y}.\tag{19}$$

More economical but less accurate.

2rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 79

The Practices

- Duration is usually expressed in percentage terms for quick mental calculation.
- Given duration $D_{\%}$, the percentage price change expressed in percentage terms is approximated by $-D_{\%} \times \Delta r$ when the yield increases instantaneously by
- Price will drop by 20% if $D_\%=10$ and $\Delta r=2$ because $10\times 2=20$.
- In fact, $D_{\%}$ equals modified duration as originally defined.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 80

Meeting Liabilities

- Buy coupon bonds to meet a future liability
- What happens at the horizon date when the liability is due?
- Say interest rates rise subsequent to the purchase:
- The interest on interest from the reinvestment of the coupon payments will increase.
- But a capital loss will occur for the sale of the bonds.
- The reverse is true if interest rates fall.
- Uncertainties in meeting the liability.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 81

Immunization

- A portfolio immunizes a liability if its value at horizon covers the liability for small rate changes now.
- A bond portfolio whose MD equals the horizon and whose PV equals the PV of the single future liability.
- At horizon, losses from the interest on interest will be compensated by gains in the sale price when interest rates fall.
- Losses from the sale price will be compensated by the gains in the interest on interest when interest rates rise (see figure on p. 84).

Immunization (concluded)

• A \$100,000 liability 12 years from now should be matched by a portfolio with a MD of 12 years and a future value of \$100,000.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 83

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 84

The Proof

- Assume the liability is L at time m and the current interest rate is y.
- Want a portfolio such that
- (1) its FV is L at the horizon m;
- (2) $\partial FV/\partial y = 0$;
- (3) FV is convex around y.
- Condition (1) says the obligation is met.
- Conditions (2) and (3) mean L is the portfolio's minimum FV at horizon for small rate changes.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 85

The Proof (continued)

- Let $FV \equiv (1+y)^m P$, where P is the PV of the portfolio.
- Now,

$$\frac{\partial FV}{\partial y} = m(1+y)^{m-1}P + (1+y)^m \frac{\partial P}{\partial y}.$$
 (20)

 \bullet Imposing Condition (2) leads to

$$m = -(1+y)\frac{\partial P/P}{\partial y}. (21)$$

• The MD is equal to the horizon m.

The Proof (concluded)

- Employ a coupon bond for immunization.
- Since

$$FV = \sum_{i=1}^{n} \frac{C}{(1+y)^{i-m}} + \frac{F}{(1+y)^{n-m}},$$

it follows that

$$\frac{\partial^2 FV}{\partial y^2} > 0$$

(22)

for y > -1.

• Since FV is convex for y > -1, the minimum value of FV is indeed L.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 87

Rebalancing

- Immunization has to be rebalanced constantly to ensure that the MD remains matched to the horizon.
- The MD decreases as time passes.
- But, except for zero-coupon bonds, the decrement is not identical to that in the time to maturity.
- Consider a coupon bond whose MD matches horizon.
- Since the bond's maturity date lies beyond the horizon date, its MD will remain positive at horizon.
- So immunization needs to be reestablished even if interest rates never change.

Hedging

- Hedging offsets the price fluctuations of the position to be hedged by the hedging instrument in the opposite direction, leaving the total wealth unchanged.
- Define dollar duration as

modified duration
$$\times$$
 price $(\% ext{ of par}) = -\frac{\partial P}{\partial y}$.

 $\bullet\,$ The approximate dollar price change per \$100 of par value is

price change pprox —dollar duration imes yield change.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 89

Convexity

Convexity is defined as

convexity (in periods)
$$\equiv \frac{\partial^2 P}{\partial y^2} \frac{1}{P}$$
. (23)

- The convexity of a coupon bond is positive.
- For a bond with positive convexity, the price rises more for a rate decline than it falls for a rate increase of equal magnitude.
- Hence, between two bonds with the same duration, the one with a higher convexity is more valuable.

Convexity (concluded)

• Convexity measured in periods and convexity measured in years are related by

convexity (in years) =
$$\frac{\text{convexity (in periods)}}{k^2}$$

when there are k periods per annum.

- The convexity of a coupon bond increases as its coupon rate decreases.
- For a given yield and duration, the convexity decreases as the coupon decreases.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 91

Use of Convexity

- The approximation $\Delta P/P \approx -$ duration \times yield change works for small yield changes.
- To improve upon it for larger yield changes, use

$$\begin{array}{lcl} \frac{\Delta P}{P} & \approx & \frac{\partial P}{\partial y} \frac{1}{P} \Delta y + \frac{1}{2} \frac{\partial^2 P}{\partial y^2} \frac{1}{P} (\Delta y)^2 \\ & = & -\mathsf{duration} \times \Delta y + \frac{1}{2} \times \mathsf{convexity} \times (\Delta y)^2. \end{array}$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 93

The Practices

- Convexity is usually expressed in percentage terms for quick mental calculation.
- Given convexity $C_{\%}$, the percentage price change expressed in percentage terms is approximated by $-D_{\%} \times \Delta r + C_{\%} \times (\Delta r)^2/2$ when the yield increases instantaneously by $\Delta r_{\%}$.
- Price will drop by 17% if $D_{\%}=10,\,C_{\%}=1.5,$ and $\Delta r=2$ because

$$-10 \times 2 + \frac{1}{2} \times 1.5 \times 2^2 = -17.$$

• In fact, $C_{\%}$ equals convexity divided by 100.

Term Structure of Interest Rates

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 95

Term Structure of Interest Rates

- Concerned with how interest rates change with maturity.
- The set of yields to maturity for bonds of equal quality and differing solely in their terms to maturity forms the term structure.
- Fundamental to the valuation of fixed-income securities.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 97

Term Structure of Interest Rates (concluded)

- Often refers exclusively to the yields of zero-coupon bonds.
- A yield curve plots yields to maturity against maturity.
- A par yield curve is constructed from bonds trading near par.

Four Shapes

- A normal yield curve is upward sloping.
- An inverted yield curve is downward sloping.
- A flat yield curve is flat.
- A humped yield curve is upward sloping at first but then turns downward sloping.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 99

Spot Rates

- The *i*-period spot rate S(i) is the yield to maturity of an *i*-period zero-coupon bond.
- The PV of one dollar i periods from now is $(1+S(i))^{-i}$
- The one-period spot rate is called the short rate.
- A spot rate curve is a plot of spot rates against maturity.

Problems with the PV Formula

In the bond price formula,

$$\sum_{i=1}^{n} \frac{C}{(1+y)^i} + \frac{F}{(1+y)^n},$$

every cash flow is discounted at the same yield y.

- Consider two riskless bonds with different yields to maturity because of their different cash flow streams
- The yield-to-maturity methodology discounts their contemporaneous cash flows with different rates.
- But shouldn't they be discounted at the same rate?
- Enter the spot rate methodology.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 101

Spot Rate Discount Methodology

- A cash flow C_1, C_2, \ldots, C_n is equivalent to a package of zero-coupon bonds with the *i*th bond paying C_i dollars at time *i*.
- So a level-coupon bond has the price

$$P = \sum_{i=1}^{n} \frac{C}{[1 + S(i)]^i} + \frac{F}{[1 + S(n)]^n}.$$
 (24)

- This pricing method incorporates information from the term structure.
- Discount each cash flow at the corresponding spot rate.

Discount Factors

• Any riskless security having a cash flow C_1, C_2, \dots, C_n should have a market price of

$$P = \sum_{i=1}^{n} C_i d(i),$$

where $d(i) \equiv [1+S(i)]^{-i}, i=1,2,\ldots,n,$ are called discount factors.

- d(i) is the PV of one dollar i periods from now.
- The discount factors are often interpolated to form a continuous function called the discount function.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 103

Fundamental Statistical Concepts

Moments

ullet The variance of a random variable X is defined as

$$\operatorname{Var}[X] \equiv E[(X - E[X])^{2}].$$

ullet The covariance between random variables X and Y is

$$\operatorname{Cov}[X,Y] \equiv E[(X - \mu_X)(Y - \mu_Y)],$$

where μ_X and μ_Y are the means of X and Y, respectively.

• Random variables X and Y are uncorrelated if $\operatorname{Cov}[X,Y]=0$.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 105

Variance of Sum

Variance of a weighted sum of random variables equals

$$\operatorname{Var}\left[\sum_{i=1}^{n} a_{i} X_{i}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \operatorname{Cov}[X_{i}, X_{j}]. \tag{25}$$

• It becomes $\sum_{i=1}^n \sum_{j=1}^n a_i^2 \text{Var}[X_i]$ when X_i are uncorrelated.

Conditional Expectation

- " $X \mid I$ " denotes X conditional on the information set I.
- The information set can be another random variable's value or the past values of X, say.
- The conditional expectation E[X | I] is the expected value of X conditional on I; it is a random variable.
- The law of iterated conditional expectations:

$$E[X] = E[E[X | I]].$$

ullet If I_2 contains at least as much information as I_1 , then

$$E[X | I_1] = E[E[X | I_2] | I_1].$$
 (26)

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 107

The Normal Distribution

- A random variable X has the normal distribution with mean μ and variance σ^2 if its probability density function is $e^{-(x-\mu)^2/(2\sigma^2)}/(\sigma\sqrt{2\pi})$.
- Expressed by $X \sim N(\mu, \sigma^2)$.
- The standard normal distribution has zero mean, unit variance, and the distribution function

$$N(z) \equiv rac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-x^2/2} dx.$$

Moment Generating Function

• The moment generating function of random variable X is

$$\theta_X(t) \equiv E[e^{tX}].$$

• The moment generating function of $X \sim N(\mu, \sigma^2)$ is

$$\theta_X(t) = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]. \tag{27}$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 109

Distribution of Sum

- If $X_i \sim N(\mu_i, \sigma_i^2)$ are independent, then $\sum_i X_i \sim N(\sum_i \mu_i, \sum_i \sigma_i^2)$.
- Let $X_i \sim N(\mu_i, \sigma_i^2)$ which may not be independent.
- Then $\sum_{i=1}^{n} t_i X_i \sim N(\sum_{i=1}^{n} t_i \mu_i, \sum_{i=1}^{n} \sum_{j=1}^{n} t_i t_j \operatorname{Cov}[X_i, X_j]).$
- These X_i are said to have a multivariate normal distribution.

Generation of Univariate Normal Distributions

- \bullet Let X be uniformly distributed over (0,1] so that $\operatorname{Prob}[\, X \leq x \,] = x \ \text{for} \ 0 < x \leq 1.$
- Repeatedly draw two samples x_1 and x_2 from X until $\omega \equiv (2x_1 - 1)^2 + (2x_2 - 1)^2 < 1.$
- Then $c(2x_1-1)$ and $c(2x_2-1)$ are independent standard normal variables where $c \equiv \sqrt{-2(\ln \omega)/\omega}$

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 111

Generation of Bivariate Normal Distributions

- Pairs of normally distributed variables with correlation ρ can be generated.
- Let X_1 and X_2 be independent standard normal variables.
- Then

$$\begin{array}{rcl} U & \equiv & aX_1 \\ \\ V & \equiv & \rho U + \sqrt{1-\rho^2} \ aX_2 \end{array}$$

are the desired random variables with

 $\operatorname{Var}[U] = \operatorname{Var}[V] = a^2$ and $\operatorname{Cov}[U, V] = \rho a^2$.

Dirty Trick

- Let ξ_i are independent and uniformly distributed over (0, 1).
- A simple method to generate the standard normal variable is to calculate

$$\sum_{i=1}^{12} \xi_i - 6,$$

 Always blame your random number generator last; instead, check your programs first.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 113

The Lognormal Distribution

- ullet A random variable Y is said to have a lognormal distribution if $\ln Y$ has a normal distribution.
- Let $X \sim N(\mu, \sigma^2)$ and $Y \equiv e^X$.
- \bullet The mean and variance of Y are

$$\mu_Y = e^{\mu + \sigma^2/2} \text{ and } \sigma_Y^2 = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right),$$
 (28)

respectively.

• They follow from $E[Y^n] = e^{n\mu + n^2\sigma^2/2}$.

Option Basics

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 115

Calls and Puts

- A call gives its holder the right to buy a number of the underlying asset by paying a strike price.
- A put gives its holder the right to sell a number of the underlying asset by paying a strike price.
- An embedded option has to be traded along with the underlying asset.
- How to price options?

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 116

Exercise

- When a call is exercised, the holder pays the strike price in exchange for the stock.
- When a put is exercised, the holder receives from the writer the strike price in exchange for the stock.
- An option can be exercised prior to the expiration date: early exercise.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 117

American and European

- American options can be exercised at any time up to the expiration date.
- European options can only be exercised at expiration.
- The terms "American" and "European" have nothing to do with geography.
- An American option is worth at least as much as an otherwise identical European option because of the early exercise feature.

Convenient Conventions

- C: call value.
- P: put value.
- X: strike price.
- S: stock price.
- \bullet D: dividend.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 119

Payoff

- A call will be exercised only if the stock price is higher than the strike price.
- A put will be exercised only if the stock price is less than the strike price.
- The payoff of a call at expiration is $C = \max(0, S X)$, and that of a put is $P = \max(0, X S)$.
- At any time t before the expiration date, we call $\max(0, S_t X)$ the intrinsic value of a call and $\max(0, X S_t)$ the intrinsic value of a put.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 120

Payoff (concluded)

- A call is in the money if S > X, at the money if S = X, and out of the money if S < X.
- A put is in the money if S < X, at the money if S = X, and out of the money if S > X.
- Options that are in the money at expiration should be exercised.
- 11% of option holders let in-the-money options expire worthless.
- Finding an option's value at any time before expiration is a major intellectual breakthrough.