Conversion between Compounding Methods

- Suppose r_1 is the annual rate with continuous compounding.
- Suppose r_2 is the equivalent rate compounded m times per annum.
- Then $(1 + \frac{r_2}{m})^m = e^{r_1}$.
- Therefore,

$$r_1 = m \ln \left(1 + \frac{r_2}{m}\right), \qquad (2)$$

$$r_2 = m \left(e^{r_1/m} - 1\right). \qquad (3)$$

$$r_2 = m \left(e^{r_1/m} - 1 \right). \tag{3}$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 27

But Are They Really "Equivalent"?

- Recall r_1 and r_2 on the previous page.
- They are based on different cash flows
- In what sense are they equivalent?

ullet An annuity pays out the same C dollars at the end of each year for n years.

Annuities

• With a rate of r, the FV at the end of the nth year is

$$\sum_{i=0}^{n-1} C(1+r)^i = C \, \frac{(1+r)^n - 1}{r}. \tag{4}$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 29

General Annuities

ullet If m payments of C dollars each are received per year (the general annuity), then Eq. (4) becomes

$$C \frac{\left(1 + \frac{r}{m}\right)^{nm} - 1}{\frac{r}{m}}.$$

• The PV of a general annuity is

$$\sum_{i=1}^{nm} C \left(1 + \frac{r}{m} \right)^{-i} = C \frac{1 - \left(1 + \frac{r}{m} \right)^{-nm}}{\frac{r}{m}}.$$
 (5)

Amortization

- It is a method of repaying a loan through regular payments of interest and principal.
- The size of the loan (the original balance) is reduced by the principal part of each payment.
- The interest part of each payment pays the interest incurred on the remaining principal balance.
- As the principal gets paid down over the term of the loan, the interest part of the payment diminishes.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 31

Example: Home Mortgage

- By paying down the principal consistently, the risk to the lender is lowered.
- When the borrower sells the house, the remaining principal is due the lender.
- Consider the equal-payment case, i.e., fixed-rate, level-payment, fully amortized mortgages (traditional mortgages).

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 32

A Numerical Example

- Consider a 15-year, \$250,000 loan at 8.0% interest rate.
- Solving Eq. (5) on p. 30 with PV = 250000, n = 15, m = 12, and r = 0.08 gives a monthly payment of C = 2389.13.
- The amortization schedule is shown on p. 34
- In every month (1) the principal and interest parts add up to \$2,389.13, (2) the remaining principal is reduced by the amount indicated under the Principal heading, and (3) the interest is computed by multiplying the remaining balance of the previous month by 0.08/12.

	250,000.000	180.043.438	430,043.438	Total
0.000	2,373.308	15.822	2,389.13	180
2,373.308	2,357.591	31.539	2,389.13	179
4,730.899	2,341.980	47.153	2,389.13	178
		•		
247,818.128	732.129	1,657.002	2,389.13	ယ
$248,\!550.256$	727.280	1,661.850	2,389.13	2
249,277.536	722.464	1,666.667	2,389.13	1
250,000.000				
Remaining principal	Principal	Interest	Payment	Month

Two Methods of Calculating the Remaining Principal

- Go down the amortization schedule.
- Right after the kth payment, the remaining principal is the PV of the future nm-k cash flows,

$$\sum_{i=1}^{nm-k} C\left(1 + \frac{r}{m}\right)^{-i} = C\frac{1 - \left(1 + \frac{r}{m}\right)^{-nm+k}}{\frac{r}{m}}.$$
 (6)

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 35

Yields

- The term yield denotes the return of investment.
- Two widely used yields are the bond equivalent yield (BEY) and the mortgage equivalent yield (MEY).
- BEY corresponds to the r in Eq. (1) that equates PV with FV when m=2.
- MEY corresponds to the r in Eq. (1) that equates PV with FV when m=12.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 36

Internal Rate of Return

• It is the interest rate which equates an investment's PV with its price P,

$$P = \frac{C_1}{(1+y)} + \frac{C_2}{(1+y)^2} + \frac{C_3}{(1+y)^3} + \dots + \frac{C_n}{(1+y)^n}.$$
(7)

- It assumes all cash flows are reinvested at the *same* rate as the internal rate of return,
- The foundation upon which pricing methodologies are built.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 37

Holding Period Return (HPR)

- Calculate the FV by whatever means and then find the yield y that satisfies $PV = FV \times e^{-yn}$.
- Explicit assumptions about the reinvestment rates must be made.
- If the reinvestment assumptions turn out to be wrong, the yield will not be realized.
- This is the reinvestment risk
- Financial instruments without intermediate cash flows do not have reinvestment risks.

Numerical Methods for Yields

• Solve f(y) = 0 for $y \ge -1$, where

$$f(y) \equiv \sum_{t=1}^{n} \frac{C_t}{(1+y)^t} - P.$$
 (8)

- P is the market price.
- The function f(y) is monotonic in y if $C_t > 0$.
- A unique solution exists.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 39

The Bisection Method

- Start with a and b where a < b and f(a) f(b) < 0.
- Then $f(\xi)$ must be zero for some $\xi \in [a, b]$.
- If we evaluate f at the midpoint $c \equiv (a+b)/2$, either
- (1) f(c) = 0, (2) f(a) f(c) < 0, or (3) f(c) f(b) < 0.
- In the first case we are done, in the second case we the third case we continue with [c, b]. continue the process with the new bracket [a, c], and in
- The bracket is halved in the latter two cases.
- After n steps, we will have confined ξ within a bracket of length $(b-a)/2^n$.

The Newton-Raphson Method

- Converges faster than the bisection method
- Start with a first approximation x_0 to a root of f(x) = 0.
- Then

$$x_{k+1} \equiv x_k - \frac{f(x_k)}{f'(x_k)}. (9)$$

• When computing yields,

$$f'(x) = -\sum_{t=1}^{n} \frac{tC_t}{(1+x)^{t+1}}.$$

The Secant Method

- A variant of the Newton-Raphson method.
- Replace differentiation with difference.
- Start with two approximations x_0 and x_1
- ullet Then compute the (k+1)st approximation with

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$

• Its convergence rate, 1.618, is slightly worse than the Newton-Raphson method's 2 but better than the bisection method's 1.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 43

Solving Systems of Nonlinear Equations

- It is not easy to extend the bisection method to higher dimensions.
- The Newton-Raphson method can be extended to higher dimensions.
- Let (x_k, y_k) be the kth approximation to the solution of the two simultaneous equations,

$$f(x,y) = 0,$$

$$g(x,y) = 0.$$

Principles of Financial Computing © 2003 Yuh-Dauh Lyuu, National Taiwan University Page 44

Solving Systems of Nonlinear Equations (concluded)

• The (k+1)st approximation (x_{k+1}, y_{k+1}) satisfies the following linear equations,

$$\begin{bmatrix} \partial f(x_k, y_k)/\partial x & \partial f(x_k, y_k)/\partial y \\ \partial g(x_k, y_k)/\partial x & \partial g(x_k, y_k)/\partial y \end{bmatrix} \begin{bmatrix} \Delta x_{k+1} \\ \Delta y_{k+1} \end{bmatrix} = - \begin{bmatrix} f(x_k, y_k) \\ g(x_k, y_k) \end{bmatrix}$$
(10)

where $\Delta x_{k+1} \equiv x_{k+1} - x_k$ and $\Delta y_{k+1} \equiv y_{k+1} - y_k$.

- The above has a unique solution for $(\Delta x_{k+1}, \Delta y_{k+1})$ when the 2 × 2 matrix is invertible.
- The (k+1)st approximation is

$$(x_k + \Delta x_{k+1}, y_k + \Delta y_{k+1}).$$

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 45

Zero-Coupon Bonds (Pure Discount Bonds)

• The price of a zero-coupon bond that pays F dollars in n periods is

$$F/(1+r)^n,$$

where r is the interest rate per period.

- Can meet future obligations without reinvestment risk.
- Coupon bonds can be thought of as a matching package of zero-coupon bonds, at least theoretically.

Example

- $\bullet\,$ The interest rate is 8% compounded semiannually.
- A zero-coupon bond that pays the par value 20 years from now will be priced at $1/(1.04)^{40}$, or 20.83%, of its par value.
- It will be quoted as 20.83.
- If the bond matures in 10 years instead of 20, its price would be 45.64.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 47

Level-Coupon Bonds

- Coupon rate
- Par value, paid at maturity.
- \bullet F denotes the par value and C denotes the coupon.
- Cash flow:

Pricing Formula

$$P = \sum_{i=1}^{n} \frac{C}{\left(1 + \frac{r}{m}\right)^{i}} + \frac{F}{\left(1 + \frac{r}{m}\right)^{n}} = C \frac{1 - \left(1 + \frac{r}{m}\right)^{-n}}{\frac{r}{m}} + \frac{F}{\left(1 + \frac{r}{m}\right)^{n}}$$
(11)

- -n: number of cash flows.
- m: number of payments per year.
- r: annual interest rate compounded m times per annum.
- C = Fc/m when c is the annual coupon rate.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 49

Yields to Maturity

- The r that satisfies Eq. (11) with P being the bond price.
- For a 15% BEY, a 10-year bond with a coupon rate of 10% paid semiannually sells for

$$5 \times \frac{1 - [1 + (0.15/2)]^{-2 \times 10}}{0.15/2} + \frac{100}{[1 + (0.15/2)]^{2 \times 10}} = 74.5138$$

percent of par.

Price Behavior (1)

- Bond prices fall when interest rates rise, and vice versa.
- "Only 24 percent answered the question correctly."

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 51

Price Behavior (2)

• A level-coupon bond sells

- at a premium (above its par value) when its coupon rate is above the market interest rate;
- at par (at its par value) when its coupon rate is equal to the market interest rate;
- at a discount (below its par value) when its coupon

	- 1
rat	ď۲
e i	ā
S	Į.
Эel	C
rate is below the market interest rate.	at a discount (below its par value) when its coupor
th	7
e r	Ē
na	×
rke	I
ŧ	<u> </u>
int	Į.
er	ζ.
st	n I
re	9
te	
•	IEI
	10%
	0
	n
	j
	- =

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 53

Terminology

- Bonds selling at par are called par bonds.
- Bonds selling at a premium are called premium bonds.
- Bonds selling at a discount are called discount bonds.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 55

Day Count Conventions: Actual/Actual

- The first "actual" refers to the actual number of days in a month.
- The second refers to the actual number of days in a coupon period.
- The number of days between June 17, 1992, and October 1, 1992, is 106.
- 13 days in June, 31 days in July, 31 days in August, 30 days in September, and 1 day in October.

$\left(1+\frac{r}{m}\right)^{\omega+n-1}$.

Day Count Conventions: 30/360

- Each month has 30 days and each year 360 days.
- The number of days between June 17, 1992, and October 1, 1992, is 104.
- 13 days in June, 30 days in July, 30 days in August, 30 days in September, and 1 day in October.
- In general, the number of days from date $D_1 \equiv (y_1, m_1, d_1)$ to date $D_2 \equiv (y_2, m_2, d_2)$ is $360 \times (y_2 - y_1) + 30 \times (m_2 - m_1) + (d_2 - d_1).$
- Complications: 31, Feb 28, and Feb 29.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 57

Full Price (Dirty Price, Invoice Price)

- In reality, the settlement date may fall on any day between two coupon payment dates.
- Let

number of days between the

3 settlement and the next coupon payment date

number of days in the coupon period (12)

The price is now calculated by

$$PV = \sum_{i=0}^{n-1} \frac{C}{\left(1 + \frac{r}{m}\right)^{\omega + i}} + \frac{F}{\left(1 + \frac{r}{m}\right)^{\omega + n - 1}}.$$
 (13)

Accrued Interest

• The buyer pays the quoted price plus the accrued interest

number of days from the

Q X last coupon payment to the settlement date $-- = C \times (1 - \omega)$

number of days in the coupon period

- The yield to maturity is the r satisfying (13) when P is accrued interest the invoice price, the sum of the quoted price and the
- The quoted price in the U.S./U.K. does not include the accrued interest; it is called the clean price or flat price.

rinciples of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 59

Example ("30/360")

- A bond with a 10% coupon rate and paying interest semiannually, with clean price 111.2891.
- The maturity date is March 1, 1995, and the settlement date is July 1, 1993.
- There are 60 days between July 1, 1993, and the next coupon date, September 1, 1993.

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 60

Example ("30/360") (concluded)

- \bullet The accrued interest is $(10/2)\times\frac{180-60}{180}=3.3333$ per \$100 of par value.
- The yield to maturity is 3%
- This can be verified by Eq. (13) with $\omega = 60/180$, m = 2, C = 5, PV= 111.2891 + 3.3333, and r = 0.03

Principles of Financial Computing ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 61

Price Behavior (2) Revisited

- Before: A bond selling at par if the yield to maturity equals the coupon rate.
- But it assumed that the settlement date is on a coupon payment date.
- Now suppose the settlement date for a bond selling at par (i.e., the quoted price is equal to the par value) falls between two coupon payment dates
- Then its yield to maturity is less than the coupon rate.
- The short reason is that exponential growth is replaced by linear growth, hence "overpaying" the