Onto (Surjective) Functions

- A function $f : A \to B$ is **onto** or **surjective** if $f(A) = B$.
 - Necessarily, $|A| \geq |B|$.
 - $f : \mathbb{R} \to \mathbb{R}$, where $f(x) = x^3$, is onto.

- If $|A| = m$ and $|B| = n$, then there are

 $$\sum_{k=0}^{n}(-1)^k\binom{n}{n-k}(n-k)^m$$

 onto functions from A to B.\(^a\)

- Equation (33) equals 0 for $m < n$, as desired.

\(^a\)Proofs appear on p. 294 and p. 421.
Distinct Objects into Distinct Containers with None Empty

- Distribute m distinct objects into $n \leq m$ distinct containers with no containers left empty.

- There are

$$\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$

ways.

- Identify a distribution with an onto function.
- Think of the objects a_1, a_2, \ldots in the container labeled b as signifying

$$f(a_1) = f(a_2) = \cdots = b.$$
Application: A Combinatorial Identity

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^n = n!.
\] (35)

- By Eq. (33) on p. 269, there are

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^n
\]

onto functions from \(X\) to \(X\), where \(|X| = n\).

- But the number of such onto functions is \(n!\).
An Example

- Suppose there are \(m = 6 \) distinct objects and \(n = 3 \) distinct containers.

- There are 540 ways to distribute these objects into the containers with none empty by Eq. (34) on p. 270.

- Let us verify this number with the alternative method from p. 79 (copied on the next page).
An Example (continued)

\[(x_1 + x_2 + x_3)^6 = (x_1^6 + \cdots + x_3^6) + 6 (x_1^5 x_2 + \cdots + x_2 x_3^5) + 15 (x_1^4 x_2^2 + \cdots + x_2^2 x_3^4) + 20 (x_1^3 x_2^3 + \cdots + x_2^3 x_3^3) + 30 (x_1^4 x_2 x_3 + \cdots + x_1 x_2 x_3^4) + 60 (x_1^3 x_2^2 x_3 + \cdots + x_1 x_2^2 x_3^3) + 90 x_1^2 x_2^2 x_3^2.\]
An Example (concluded)

- Only the last three groups are relevant:

\[
30 \left(x_1^4 x_2 x_3 + \cdots + x_1 x_2 x_3^4 \right) \\
+ 60 \left(x_1^3 x_2^2 x_3 + \cdots + x_1 x_2^2 x_3^3 \right) \\
+ 90 x_1^2 x_2^2 x_3^2.
\]

- The desired count is thus

\[
30 \times 3 + 60 \times 6 + 90 = 540,
\]

a match.
Distinct Objects into Identical Containers with None Empty

- Distribute m distinct objects into n identical containers with no containers left empty with $n \leq m$.
- Alternatively, partition m objects into n sets or groups.
- The number of ways is denoted by $S(m,n)$.
 - It is called the **Stirling number of the second kind**.
A Formula for the Stirling Number

• The formula is

\[
S(m, n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m
\]

(36)

\[
= \frac{1}{n!} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^m.
\]

(37)

– Copy formula (34) on p. 270.
– Then remove the container labels with division by \(n! \) (why?).
Some Boundary Conditions

• Note that

\[
S(m, 0) = 0, \quad \text{if } m > 0, \\
S(0, 0) = 1, \quad \text{if we assume } 0^0 = 1, \\
S(m, n) = 0, \quad \text{if } m < n,
\]

as they should be.

• As the left-hand side of (35) on p. 272 equals \(n! S(n, n) \),

\[
S(n, n) = 1.
\]
$S(20, n)$

Stirling number of the 2nd kind

It is unimodal in general.
A Special Case: $S(m, 2) = 2^{m-1} - 1$ for $m > 0$

- First proof: From Eq. (36) on p. 277,

$$S(m, 2) = \frac{1}{2} \left[\binom{2}{2} 2^m - \binom{2}{1} 1^m + \binom{2}{0} 0^m \right] = 2^{m-1} - 1.$$

- Second proof:
 - Divide m objects into 2 nonempty parts.
 - One of the parts contains the last object and some subset of the first $m - 1$ objects.
 - There are 2^{m-1} ways to choose the subset.
 - Subtract 1 from 2^{m-1} to rule out selecting all the $m - 1$ objects.
An Example

- Suppose there are $m = 6$ distinct objects and $n = 3$ identical containers.

- There are $S(6, 3) = 90$ ways to distribute these objects into the containers with none empty.

- Let us again verify this number with the method on p. 273.
An Example (continued)

• Recall

\[(x_1 + x_2 + x_3)^6 = (x_1^6 + \cdots + x_3^6)\]
\[+ 6 (x_1^5 x_2 + \cdots + x_2 x_3^5)\]
\[+ 15 (x_1^4 x_2^2 + \cdots + x_2^2 x_3^4)\]
\[+ 20 (x_1^3 x_2^3 + \cdots + x_2^3 x_3^3)\]
\[+ 30 (x_1^4 x_2 x_3 + \cdots + x_1 x_2 x_3^4)\]
\[+ 60 (x_1^3 x_2^2 x_3 + \cdots + x_1 x_2^2 x_3^3)\]
\[+ 90 x_1^2 x_2^2 x_3.\]
An Example (continued)

• As before, only the last three groups are relevant:

\[
30 \left(x_1^4 x_2 x_3 + \cdots + x_1 x_2 x_3^4 \right) \\
+60 \left(x_1^3 x_2^2 x_3 + \cdots + x_1 x_2 x_3^3 \right) \\
+90 x_1^2 x_2^2 x_3^2.
\]

• In each group, how many distributions will look the same after labels are removed?
An Example (continued)

- Consider the case where the containers contain 4 objects, 1 object, and 1 object.

- We look at the coefficient of
 \[x_1^4 x_2 x_3 + \cdots + x_1 x_2 x_3^4. \]

- It is 30.

- So there are 30 distributions if, say, container \(x_1 \) holds 4 objects, container \(x_2 \) 1 object, and container \(x_3 \) 1.

- Concentrate on \(x_1^4 x_2 x_3 \) as the other terms look the same after the labels are removed.
An Example (continued)

- Containers x_2 and x_3 can have their objects swapped to yield a new distribution.
- But this pair of distributions become identical after the labels are removed.
- So the desired count is $30/2 = 15$.
An Example (continued)

- Consider the case where the containers contain 3 objects, 2 objects, and 1 object.
- We look at the coefficient of
 \[x_1^3x_2^2x_3 + \cdots + x_1x_2^2x_3^3. \]
- It is 60.
- So there are 60 distributions if, say, container \(x_1 \) holds 3 objects, container \(x_2 \) 2 objects, and container \(x_3 \) 1.
- Concentrate on \(x_1^3x_2^2x_3 \) as the other terms look the same after the labels are removed.
An Example (continued)

- Because 3, 2, and 1 are distinct, label removal will not change the count.

- So the desired count is 60.
An Example (continued)

• Consider the case where the containers contain 2 objects, 2 objects, and 2 objects.

• We look at the coefficient of

\[
x_1^2x_2^2x_3^2.
\]

• It is 90.

• So there are 90 distributions if, say, container \(x_1 \) holds 2 objects, container \(x_2 \) 2 objects, and container \(x_3 \) 2.
An Example (concluded)

- Because 2, 2, and 2 are identical, label removal will reduce the count by a factor of 3!.
- So the desired count is \(90/3! = 15 \).
- In conclusion, the total count is

\[
15 + 60 + 15 = 90,
\]

a match with \(S(6, 3) = 90 \).
Functions with a Given Range Size

- There are $n!S(m, n)$ onto functions from a domain of size m to a codomain of size n.

- In general, there are $P(n, r) S(m, r)$ functions from a domain of size m to a codomain of size n with a range of size r.\(^{a}\)
 - There are $\binom{n}{r}$ to choose the range.
 - Given a range as the codomain, there are $r!S(m, r)$ onto functions.
 - Hence the desired count is
 \[\binom{n}{r} r!S(m, r) = P(n, r) S(m, r). \] (39)

\(^{a}\)Recall from Eq. (1) on p. 13 that $P(n, r) = n(n - 1) \cdots (n - r + 1)$.
Functions with a Given Range Size (concluded)

- In the special case of \(r = n \), Eq. (39) reduces to

\[
P(n, n) S(m, n) = n! S(m, n),
\]

as it should be
An Identity for Stirling Numbers

\[\sum_{k=1}^{m} S(m, k) x(x - 1) \cdots (x - k + 1) = x^m. \quad (40) \]

- The number of functions from \(A \) to \(B \) is \(x^m \), where \(|A| = m \) and \(|B| = x \) (p. 244).
- Equation (39) on p. 290 says

\[S(m, k) x(x - 1) \cdots (x - k + 1) \]

is the number of functions whose range has size \(k \).
- This proves the identity for \(x \in \mathbb{Z}^+ \).
An Identity for Stirling Numbers (concluded)

- Hence the polynomial

\[\sum_{k=1}^{m} S(m, k) x(x - 1) \cdots (x - k + 1) - x^m \]

has more than \(m \) roots, its degree.

- Therefore, it must be identically zero.
Finally, Proof of Eq. (33) on P. 269

It suffices to prove Eq. (37) on p. 277:

\[
\frac{1}{n!} \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^m
\]

\[
= \sum_{j=0}^{n} \frac{(-1)^{n-j}}{(n-j)!} j! \sum_{r=0}^{j} S(m, r) j(j-1) \cdots (j-r+1) \quad \text{by Eq. (40) on p. 292}
\]

\[
= \sum_{j=0}^{n} \sum_{r=0}^{j} (-1)^{n-j} S(m, r) \frac{1}{(n-j)!(j-r)!}
\]

\[
= \sum_{r=0}^{n} \frac{S(m, r)}{(n-r)!} \sum_{j=r}^{n} (-1)^{n-j} \frac{(n-r)!}{(n-j)!(j-r)!}
\]

\[
= S(m, n) + \sum_{r=0}^{n-1} \frac{S(m, r)}{(n-r)!} (1 - 1)^{n-r} = S(m, n) \quad \text{by Eq. (11) on p. 60}
\]
A Recurrence Relation for Stirling Numbers

\[
S(m + 1, n) = \begin{cases}
1, & \text{if } m + 1 = n, \\
1, & \text{if } n = 1, \\
S(m, n - 1) + nS(m, n), & \text{if } 2 \leq n \leq m.
\end{cases}
\] (41)

- \(S(m + 1, n)\) counts the number of ways objects
 \(a_1, a_2, \ldots, a_{m+1}\)
 are distributed among \(n\) identical containers, with no containers left empty.\(^a\)

- Object \(a_{m+1}\) can be in a container all by itself or with other objects.

\(^a\)Recall p. 276.
The Proof (concluded)

- Object a_{m+1} is alone.
 - $S(m, n-1)$ is the number of ways a_1, a_2, \ldots, a_m are distributed among $n - 1$ identical containers, with none left empty.

- Object a_{m+1} is not alone.
 - $S(m, n)$ is the number of ways a_1, a_2, \ldots, a_m are distributed among n identical containers, with none left empty.
 - Now object a_{m+1} has n containers to choose from.
Another Recurrence Relation for Stirling Numbers

\[S(m, n) = \sum_{k=n-1}^{m-1} \binom{m-1}{k} S(k, n-1), \quad n \leq m. \]

(42)

- The left-hand side denotes the number of distributions of \(m \) distinct objects into \(n \) identical containers with none left empty.
- Fix an object \(O \).
- Call a container that has \(O \) the \(O \)-container.
- The \(O \)-container must contain \(r \) other objects, where \(0 \leq r \leq m - n \).\(^a\)

\(^a\)The \(O \)-container thus has \(r + 1 \) objects.
The Proof (concluded)

• These \(r \) objects can be chosen in \(\binom{m-1}{r} \) ways.

• With each choice, the other \(n - 1 \) containers may be filled in \(S(m - r - 1, n - 1) \) ways.

• Hence

\[
S(m, n) = \sum_{r=0}^{m-n} \binom{m-1}{r} S(m-1-r, n-1)
\]

\[
= \sum_{r=0}^{m-n} \binom{m-1}{m-1-r} S(m-1-r, n-1)
\]

\[
= \sum_{k=n-1}^{m-1} \binom{m-1}{k} S(k, n-1).
\]
A Special Case: \(S(m, m - 1) = \binom{m}{2} \) for \(m > 0 \)^a

From Eq. (42) on p. 297,

\[
S(m, m - 1) = \sum_{k=m-2}^{m-1} \binom{m-1}{k} S(k, m - 2)
\]

\[
= \binom{m-1}{m-2} S(m - 2, m - 2) + \binom{m-1}{m-1} S(m - 1, m - 2)
\]

\[
= (m - 1) + S(m - 1, m - 2)
\]

\[
= (m - 1) + (m - 2) + S(m - 2, m - 3)
\]

\[
= (m - 1) + (m - 2) + \cdots + 1 = \binom{m}{2}.
\]

^aCheck that the proof works even when \(m = 1 \). Thanks to a lively discussion on March 29, 2018.
$S(m, m - 1) = \binom{m}{2}$ the Easier Way

- Consider any distribution of m distinct objects into $m - 1$ identical containers with no containers left empty.
- There must be one container with 2 objects and $m - 2$ containers with 1 object (why?).
- The 2-object container can be composed in $\binom{m}{2}$ ways.
Bella Numbers

- The \(m \)th Bell number \(P_m \) is the number of partitions of \(m \) distinct objects.b

- Alternatively, there are \(P_m \) ways for \(m \) distinct objects to form groups.

 - There are 5 ways to partition 3 distinct objects:

 \[
 \{
 \{1, 2, 3\}, \{1\}, \{2\}, \{3\},
 \{1, 2\}, \{3\}, \{1, 3\}, \{2\}, \{1\}, \{2, 3\}\}
 \]

aEric Temple Bell (1883–1960).

bIt differs from the Stirling number of the second kind in that the number of partitions is \textit{not} fixed.
A Formula for Bell Numbers

• By convention $P_0 = 1$.

• For $m > 0$,

$$P_m = \sum_{k=0}^{m} S(m, k) = \sum_{k=0}^{\infty} S(m, k).$$

– The above formula also works for P_0.

• Indeed, $P_3 = 5$.

aRecall that $S(m, 0) = 0$ for $m > 0$ by Eq. (38) on p. 278.

bRecall that $S(0, 0) = 1$ on p. 278.
Dobinski’s Equality

• Now,

\[P_m = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^m \]

\[= \sum_{j=0}^{\infty} \frac{j^m}{j!} \sum_{k=j}^{\infty} \frac{(-1)^{k-j}}{(k-j)!} \]

\[= \frac{1}{e} \sum_{j=0}^{\infty} \frac{j^m}{j!} . \]
A Recurrence Relation for Bell Numbers

\[P_n = \begin{cases}
1, & \text{if } n = 0, \\
\sum_{k=0}^{n-1} \binom{n-1}{k} P_k, & \text{if } n \geq 1.
\end{cases} \] (43)

- The proof is the same as that for Eq. (42) on p. 297.
- Let \(|S| = n\) and fix an \(x \in S\).
- A group with \(k\) elements that contains \(x\) can be chosen in \(\binom{n-1}{k-1}\) ways.
- The remaining \(n - k\) elements can be partitioned in \(P_{n-k}\) ways.
The Proof (concluded)

- So the number of partitions in which the group containing \(x \) has \(k \) elements is \(\binom{n-1}{k-1} P_{n-k} \).

- Finally,

\[
P_n = \sum_{k=1}^{n} \binom{n-1}{k-1} P_{n-k} \\
= \sum_{k=1}^{n} \binom{n-1}{n-k} P_{n-k} \\
= \sum_{k=0}^{n-1} \binom{n-1}{k} P_{k}.
\]
Where five economists are gathered together there will be six conflicting opinions, and two of them will be held by Keynes.

— Thomas Jones (1954)
The Pigeonhole Principlea

- If m pigeons occupy n pigeonholes and $m > n$, at least one pigeonhole has two or more pigeons roosting in it.

- With m pigeons and n single-occupancy pigeonholes with $m > n$, at least one pigeon is “homeless.”

aDirichlet (1834).
The Pigeonhole Principle (continued)

• If m pigeons occupy n pigeonholes and $m > n$, at least one pigeonhole has $\geq \left\lfloor (m - 1)/n \right\rfloor + 1$ pigeons.\(^a\)

 – Otherwise, every pigeonhole has $\leq \left\lfloor (m - 1)/n \right\rfloor$ pigeons.

 – So the number of pigeons is at most $n\left\lfloor (m - 1)/n \right\rfloor \leq m - 1 < m$, a contradiction.

• If $nk + 1$ pigeons occupy n pigeonholes and $k \in \mathbb{Z}^+$, at least one pigeonhole has $\geq k + 1$ pigeons.

 – Otherwise, the number of pigeons is at most nk.

\(^a\)It may be called the averaging principle, similar to the mean-value theorem in calculus.
The Pigeonhole Principle (concluded)

Theorem 42 If there are \(\geq p_1 + p_2 + \cdots + p_n - n + 1 \) pigeons occupying pigeonholes 1, 2, \ldots, n, then some pigeonhole \(j \) contains \(\geq p_j \) pigeons.

- Assume otherwise: Every pigeonhole \(j \) has at most \(p_j - 1 \) pigeons.

- The total number of pigeons is at most

\[
(p_1 - 1) + (p_2 - 1) + \cdots + (p_n - 1)
\]

\[
= p_1 + p_2 + \cdots + p_n - n,
\]

a contradiction.
Johann Peter Gustav Lejeune Dirichlet (1805–1859)
Application: Friendship

- Assumption 1: If A is a friend of B’s, then B is also a friend of A’s.

- Assumption 2: One cannot be a friend of oneself.\(^a\)

Theorem 43 In any group of people, there exist 2 people who have the same number of friends in the group.

- Let \(x_i\) denote the number of friends of person \(i\), where \(0 \leq i \leq n - 1\).

- Note that \(0 \leq x_i \leq n - 1\).

- Suppose \(x_i\) are distinct.

\(^a\)“And so it was you that was your own friend, was it?” — Charles Dickens (1839), *Oliver Twist.*
The Proof (concluded)

- Relabel them so that $x_0 < x_1 < \cdots < x_{n-1}$.
- Then $x_i = i$ for all i by the pigeonhole principle.
- Remove the friendless person 0 from the group.
- The remaining $n - 1$ persons’ friends will be unchanged.
- Hence person $n - 1$ is a friend of $n - 1$ other people.
- This is impossible because there are only $n - 1$ people.
Application: Dividends

Theorem 44 Let $n \in \mathbb{Z}^+$ be odd. Then there exists a positive integer $m \leq n$ such that $n \mid (2^m - 1)$.

- Consider $n+1$ integers: $2^1 - 1, 2^2 - 1, \ldots, 2^{n+1} - 1$.
- There exist $s < t$ such that $2^s - 1 \equiv 2^t - 1 \mod n$ by the pigeonhole principle.
 - Only n remainders are possible.
- So $n \mid (2^t - 2^s)$, or equivalently $n \mid (2^{t-s} - 1) \cdot 2^s$.
- Because n is odd, $n \mid (2^{t-s} - 1)$.
- Pick $m = t - s \leq n$ to finish the proof.
Application: Coding Theory

Theorem 45 Let \(n \in \mathbb{Z}^+ \) and \(q \in \mathbb{Z}^+ \) such that \(\gcd(n, q) = 1 \). Then \(n \mid (q^m - 1) \) for some \(1 \leq m \leq n \).

- Use the division algorithm to yield the following set of \(n + 1 \) equations:

\[
\begin{align*}
q &= Q_1n + r_1, \\
q^2 &= Q_2n + r_2, \\
&\vdots \\
q^{n+1} &= Q_{n+1}n + r_{n+1}.
\end{align*}
\]

- Above, \(0 \leq r_i \leq n - 1 \) for all \(i \).
The Proof (concluded)

• Because there are $n + 1$ equations with n possible remainders, two remainders must be identical, say

$$r_i = r_j, \quad i < j.$$

• Hence

$$q^j - q^i = Q_j n + r_j - Q_i n - r_i.$$

• This implies that

$$q^i(q^{j-i} - 1) = (Q_j - Q_i)n.$$

• Because $\gcd(n, q) = 1$, n divides $q^{j-i} - 1$.

• Finally, set $m = j - i \leq n$ to finish the proof.
Application: Mutual Divisibility

Theorem 46 (Putnam, 1958) Any subset of \(n + 1 \) numbers from \(\{1, 2, \ldots, 2n\} \) must contain \(x, y \) such that \(x \) divides \(y \) or \(y \) divides \(x \).

- Express every positive integer as \(2^k m \), where \(m \) is odd.

- There are at most \(n \) possibilities for \(m \):
 \[1, 3, 5, \ldots, 2n - 1. \]

- Hence any set of \(n + 1 \) integers must contain two \(x, y \) with the same \(m \): \(x = 2^{k_1} m \) and \(y = 2^{k_2} m \).

- Now, \(x \mid y \) if \(k_1 < k_2 \) and \(y \mid x \) otherwise.
Bijective Functions

- A function \(f : A \rightarrow B \) is **bijective** or a **one-to-one correspondence**\(^a\) if it is one-to-one and onto.
 - Necessarily, \(|A| = |B| \).

- For example, \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) is bijective for \(f(x) = x \).

- But \(f(x) = x \) is not bijective if \(f : \mathbb{Z} \rightarrow \mathbb{Q} \) (it is not onto).

- If \(|A| = |B| = m \), then there are \(m! \) bijective functions from \(A \) to \(B \).

\(^a\)Note the definitional difference between a one-to-one (injective) function (p. 260) and a one-to-one correspondence.
Function Composition

• Suppose $f : A \rightarrow B$ and $g : B \rightarrow C$.

• The composite function $g \circ f : A \rightarrow C$ is defined as

\[(g \circ f)(a) = g(f(a))\]

for each $a \in A$.

• Note that f is applied first.

• Also, f’s range must be a subset of g’s domain for $g \circ f$ to work.

Read as “g circle f,” “g composed with f,” “g after f,” “g following f,” or “g of f.”

\[\text{a}\]
Properties of Composite Functions

Theorem 47 Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \). If \(f \) and \(g \) are one-to-one, then \(g \circ f \) is also one-to-one.

- Let \(a_1, a_2 \in A \) with
 \[
 (g \circ f)(a_1) = (g \circ f)(a_2).
 \]
- Then
 \[
 g(f(a_1)) = g(f(a_2)).
 \]
- As \(g \) is one-to-one, this implies
 \[
 f(a_1) = f(a_2).
 \]
- As \(f \) is one-to-one, this implies \(a_1 = a_2 \), as desired.
Function Composition Is Associative

Theorem 48 Let $f : A \rightarrow B$, $g : B \rightarrow C$, and $h : C \rightarrow D$

Then $(h \circ g) \circ f = h \circ (g \circ f)$.

For every $a \in A$,

\[
((h \circ g) \circ f)(a) \\
= (h \circ g)(f(a)) \\
= h(g(f(a))) \\
= h((g \circ f)(a)) \\
= (h \circ (g \circ f))(a).
\]
Powers of Functions

- As function composition is associative (p. 321), we write
 \[h \circ g \circ f \]
 in place of \((h \circ g) \circ f\) or \(h \circ (g \circ f)\).
- Let \(f : A \to A\).
- Define \(f^1 = f\).
- In general,
 \[f^{n+1} = f \circ (f^n) = \cdots = f\left(\underbrace{f(f(\cdots f)}_{n}\right) \]
 for \(n \in \mathbb{Z}^+\).
The Identity Function

• Function $1_A : A \rightarrow A$ is defined by

$$1_A(a) = a$$

for all $a \in A$.

• This function is called the **identity function** for A.
Invertibility of Functions

• Suppose \(f : A \to B \).

• \(f \) is said to be invertible if there is a function \(g : B \to A \) such that
 \[
 g \circ f = 1_A \quad \text{and} \quad f \circ g = 1_B.
 \]

• So
 - \(g(f(a)) = a \) for all \(a \in A \).
 - \(f(g(b)) = b \) for all \(b \in B \).

• Is \(g \) unique?
Uniqueness of the Inverse Function

Theorem 49 Suppose $f : A \to B$ is invertible. Then a function $g : B \to A$ such that

\[
g \circ f = 1_A, \\
f \circ g = 1_B,
\]

must be unique.

- Suppose there is another function $h : B \to A$ with

\[
h \circ f = 1_A, \\
f \circ h = 1_B.
\]
The Proof (concluded)

• Now,

\[
\begin{align*}
 h &= h \circ 1_B \\
 &= h \circ (f \circ g) \\
 &= (h \circ f) \circ g \\
 &= 1_A \circ g \\
 &= g.
\end{align*}
\]
The Inverse Function

• We call the function g in Theorem 49 (p. 325), the **inverse** of f, written as
 $$f^{-1}.$$

• Again by Theorem 49 (p. 325), if f is invertible, so is f^{-1}, whose inverse is $(f^{-1})^{-1}$ by definition.

• In fact, if f is invertible, then
 $$ (f^{-1})^{-1} = f. $$

 – Note that
 $$ (f^{-1})^{-1} \neq f^{-2}. $$
Conditions for Invertibility

Theorem 50 \(f \) is invertible if and only if it is bijective.

- Assume that \(f : A \to B \) is invertible first.
- Then by Theorem 49 (p. 325) there is a unique function \(g : B \to A \) such that \(g \circ f = 1_A \) and \(f \circ g = 1_B \).
- Suppose \(a_1, a_2 \in A \) such that \(f(a_1) = f(a_2) \).
- Then \(g(f(a_1)) = g(f(a_2)) \); i.e.,
 \[
 (g \circ f)(a_1) = (g \circ f)(a_2).
 \]
- This implies \((1_A)(a_1) = (1_A)(a_2) \); i.e., \(a_1 = a_2 \).
- Hence \(f \) is one-to-one.
The Proof (continued)

- Let $b \in B$.
- Then
 \[b = (1_B)(b) = (f \circ g)(b) = f(g(b)). \]
- So f is onto.
- Conversely, suppose f is bijective.
- Define $g : B \to A$ by
 \[g(b) = a \]
 whenever $f(a) = b$.

©2024 Prof. Yuh-Dauh Lyuu, National Taiwan University
The Proof (concluded)

• As f is onto, for each $b \in B$ there is an $a \in A$ such that $f(a) = b$.

• This a is also unique.
 - If $f(a_1) = f(a_2) = b$, then $a_1 = a_2$ because f is one-to-one.

• Hence g is a function.

• By g’s definition, $g \circ f = 1_A$ and $f \circ g = 1_B$.

• Hence $g = f^{-1}$ by Theorem 49 (p. 325).
Inverse of the Composite Function

Theorem 51 If $f : A \to B$ and $g : B \to C$ are invertible, then $g \circ f$ is also invertible and

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$
Preimage of a Function

- Consider $f : A \to B$, an arbitrary function.
- Let $B' \subseteq B$.
- Define
 $$f^{-1}(B') = \{ a \in A : f(a) \in B' \}.$$
- The set $f^{-1}(B')$ is called the **preimage** or **inverse image** of B' under f.
 - Above, f^{-1} is **not** meant to denote the inverse function of f.
 - In fact, f is not required to be invertible.
Relations: The Second Time Around
Whatsoever we imagine is \textit{finite}. Therefore there is no idea, or conception of any thing we call \textit{infinite}.

— Thomas Hobbes (1588–1679), \textit{Leviathan} (1651)
Reflexive Relations

- $R \subseteq A \times A$ is a relation on A.
- R is \textbf{reflexive} if $(x, x) \in R$ (or xRx) for all $x \in A$.
 - “\leq” is reflexive because $x \leq x$.
 - “$=$” is reflexive because $x = x$.
- If $|A| = m$, then there are $2^{m^2} - m$ reflexive relations on A.
 - Except the m required $(x, x) \in R$, membership in R for the other $m^2 - m$ pairs of $A \times A$ is arbitrary.
Irreflexive Relations

- Relation \(R \) on \(A \) is **irreflexive** if \((x, x) \notin R\) for all \(x \in A \).
 - “\(<\)” is irreflexive because \(x \not< x \).

- For \(|A| = m\), there are again
 \[2^{m^2 - m} \]

irreflexive relations on \(A \) (see next page).

- “Being irreflexive” (exact opposite) is not the same thing as “not being reflexive” \(^a\) (complement).

\(^a\)Which means there is an \(x \) such that \((x, x) \notin R\). By Eq. (27) on p. 240, there are \(2^{m^2} - 2^{m^2 - m} \) relations that are *not* reflexive.
Symmetric Relations

- \(R \) is **symmetric** if \((x, y) \in R \Rightarrow (y, x) \in R\) for all \(x, y \in A \).

- For example, “=” and “\(\neq \)” are symmetric.
 - If \(x = y \), then \(y = x \).
 - If \(x \neq y \), then \(y \neq x \).
Number of Symmetric Relations

Lemma 52 If $|A| = m$, then there are

$$2^{(m^2+m)/2}$$

symmetric relations on A.

- There are $m \ (x, x)$s and $\binom{m}{2} = (m^2 - m)/2 \ \{x, y\}$s with $x \neq y$.

- Number of decisions to make for membership in \mathcal{R}:

$$m + (m^2 - m)/2 = (m^2 + m)/2.$$

\[^{a}\text{Or the upper triangular elements on the next page.}\]
Transitive Relations

- \(R \) is \textbf{transitive} if \((x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R \)
 for all \(x, y, z \in A \).

 - “\(\leq \)” is transitive.

 - “\(< \)” is transitive.

 - “\(\subseteq \)” is transitive.

- The number of transitive relations on a finite set seems hard to derive.\(^a\)

\(^a\)It will make a nice research project.
Tournaments

• \(\mathcal{R} \) is a tournament if

 - \(\mathcal{R} \) is irreflexive: \((x, x) \notin \mathcal{R}\).

 - For all \(x \neq y \), either \((x, y) \in \mathcal{R}\) (\(x\) beats \(y\)) or \((y, x) \in \mathcal{R}\) (\(y\) beats \(x\)), but not both.
Number of Tournaments

Lemma 53 There are $2^\binom{m}{2}$ possible tournaments on m players.

• There are $\binom{m}{2}$ games for a tournament on m players.

• Each tournament has 2 outcomes.
Transitive Tournaments Can Be Ranked

- Suppose every player is beaten at least once.
- Start with any node a and follow the “is beaten by” edges, we will eventually obtain a cycle.
- Suppose node a' is on the cycle.
- This implies $(a', a') \in \mathcal{R}$ by transitivity, a contradiction because \mathcal{R} is irreflexive.
- Hence some player x is unbeaten and x is a “champion.”

\[\text{a} \]

\[\text{a} \text{Could there be multiple such } x \text{’s?} \]
Transitive Tournaments Can Be Ranked (concluded)

- Remove x and repeat the above argument.
- Player x must beat the next “champion” because x was unbeaten.
- Continue this process until there are no players left.
- The result is a sequence of players where earlier ones beat the later ones by transitivity.
Antisymmetric Relations

- \(\mathcal{R} \) is antisymmetric if
 \[
 (x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R} \Rightarrow x = y
 \]
 for all \(x, y \in A \).

 - “\(\subseteq \)” is antisymmetric.

 - “\(\leq \)” is antisymmetric.

- Alternatively, \(\mathcal{R} \) is antisymmetric if
 \[
 x \neq y \Rightarrow (x, y) \notin \mathcal{R} \lor (y, x) \notin \mathcal{R} \quad (44)
 \]
 for all \(x, y \in A \).
Antisymmetric Relations (continued)

- With DeMorgan’s law, Eq. (44) can be rewritten as
 \[x \neq y \Rightarrow \neg[(x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R}]. \]

- “<” is antisymmetric because
 \[x \neq y \Rightarrow \neg[(x < y) \land (y < x)]. \]
 - The original version would have asked us to prove
 \[(x < y) \land (x > y) \Rightarrow x = y, \]
 which is perhaps less intuitive.
Antisymmetric Relations (concluded)

- Antisymmetry is clearly different from symmetry.
 - “⊆” is antisymmetric (p. 347) but not symmetric.

- Antisymmetry is not the same as “not being symmetric” either.
 - Take \mathcal{R} as the relation that is the empty set.
 - So $(x, y) \not\in \mathcal{R}$ for any x, y.
 - Then \mathcal{R} is antisymmetric.
 - \mathcal{R} is also symmetric.
Number of Antisymmetric Relations

Lemma 54 If $|A| = m$, then there are

$$2m \cdot 3(m^2 - m)/2$$

antisymmetric relations on A.

• The m decisions on $(x, x) \in \mathcal{R}$ are arbitrary.

• For each of the other $\binom{m}{2} = (m^2 - m)/2$ unordered pairs

{ x, y } ($x \neq y$), there are 3 choices by Eq. (44) on p. 347:

1. $(x, y) \in \mathcal{R}$ but $(y, x) \notin \mathcal{R}$.

2. $(x, y) \notin \mathcal{R}$ but $(y, x) \in \mathcal{R}$.

3. $(x, y) \notin \mathcal{R}$ and $(y, x) \notin \mathcal{R}$.