Distinct Objects into Identical Containers

Corollary 15 There are \(\frac{(rn)!}{(r!)^n n!} \) ways to distribute \(rn \) distinct objects into \(n \) identical containers so that each container contains exactly \(r \) objects.

- Consider \((x_1 + x_2 + \cdots + x_n)^{rn} \).
 - Let \(x_i \) denote the containers (distinct, for now).
 - Each distinct object is associated with one \(x_1 + x_2 + \cdots + x_n \).
 - It means that object can be assigned to one of the \(n \) distinct containers.

- To see that objects are treated as being distinct, just observe how the coefficients are added up.
Distinct Objects into Identical Containers (continued)

• What does the coefficient of

\[x_1^r x_2^r \cdots x_n^r \]

mean?

• It is the number of ways \(rn \) distinct objects can be distributed into \(n \) distinct containers, each of which contains \(r \) objects.

• By Theorem 14 (p. 72), it is

\[
\binom{r n}{r, r, \ldots, r} \equiv \frac{(r n)!}{r! r! \cdots r!}.
\]

• Finally, divide the above count by \(n! \) to remove the identities of the containers.
Distinct Objects into Identical Containers (concluded)

Corollary 16 \(\frac{(rn)!}{(r!)^n n!} \) is an integer.

- Immediate from Corollary 15 (p. 75).
An Alternative Proof of Corollary 16 (p. 77)a

\[
\frac{(rn)!}{(r!)^nn!} = \frac{1}{n!} \frac{(rn)!}{[r(n-1)]!r!} \frac{[r(n-1)]!}{[r(n-2)]!r!} \cdots \frac{[r(1)]!}{[r(n-n)]!r!} = \prod_{k=0}^{n-1} \left(\frac{r(n-k)}{r} \right) \\
= \prod_{k=0}^{n-1} \frac{(r(n-k))}{n-k} = \prod_{k=0}^{n-1} \frac{[r(n-k)]!}{(n-k)r![r(n-k-1)]!} = \prod_{k=0}^{n-1} \frac{r(n-k)[r(n-k)-1]!}{(n-k)r[r-1]![r(n-k-1)]!} = \prod_{k=0}^{n-1} \left(\frac{r(n-k)-1}{r-1} \right).
\]

aContributed by Mr. Ansel Lin (B93902003) on September 20, 2004.
Distinct Objects into Identical Containers (continued)

- Take \(n = 3 \) and \(r = 2 \).
- So we have

\[
(x_1 + x_2 + x_3)^6 = (x_1^6 + \cdots + x_3^6)
+ 6 (x_1^5 x_2 + \cdots + x_2 x_3^5)
+ 15 (x_1^4 x_2^2 + \cdots + x_2^2 x_3^4)
+ 20 (x_1^3 x_2^3 + \cdots + x_2^3 x_3^3)
+ 30 (x_1^4 x_2 x_3 + \cdots + x_1 x_2 x_3^4)
+ 60 (x_1^3 x_2^2 x_3 + \cdots + x_1 x_2^2 x_3^3)
+ 90 x_1^2 x_2^2 x_3^2.
\]
An Example (concluded)

• Indeed, the 7 coefficients are

\[
\binom{6}{6}, \binom{6}{5,1}, \binom{6}{4,2}, \binom{6}{3,3}, \binom{6}{4,1,1}, \binom{6}{3,2,1}, \binom{6}{2,2,2},
\]

consistent with the multinomial theorem (p. 72).

• In particular, the coefficient of \(x_1^2x_2^2x_3^2\) is

\[
90 = \binom{6}{2,2,2}.
\]

• Thus the desired count is

\[
\frac{90}{3!} = 15.
\]

\(^a\)Corrected by Mr. Chun-Kai Hsu (B06702073) on March 27, 2023.
Combinations (Selections) with Repetition

Theorem 17 Suppose there are \(n \) distinct objects and \(r \geq 0 \) is an integer. The number of selections of \(r \) of these objects, with repetition, is

\[
C(n + r - 1, r) = \binom{n + r - 1}{r}.
\]

- Note that the order of selection is not important.
- Imagine there are \(n \) distinct types of objects.
The Proof (continued)

- Permute

\[
\underbrace{xx \cdots x}_{r} \underbrace{\text{ } \cdots \text{ } x}_{n-1}.
\]

- Think of the \(i\)th interval as containing the \(i\)th type of objects.

- So

\[
\underline{xx \mid xxx \mid x \mid \mid \mid}
\]

means, out of 7 distinct objects, we pick 2 type-1 objects, 3 type-2 objects, and 1 type-3 object.
The Proof (concluded)

• Our goal equals the number of permutations of

\[\underbrace{xx \cdots x}_{r} \underbrace{\vdots}_{n-1}. \]

• By formula (2) on p. 16, it is

\[
\frac{(r + n - 1)!}{r! (n - 1)!} = \binom{n + r - 1}{r} = C(n + r - 1, r).
\]
Combinatorial Proof of the Hockeystick Identity (P. 38)a

Corollary 18 For $m, n \geq 0$, $\sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+m+1}{m}$.

- The number of ways to select m objects out of $n + 2$ types is $\binom{n+m+1}{m}$ by Theorem 17 (p. 81).
- Alternatively, let us focus on how the objects of the first $n + 1$ types are chosen.
- There are $\binom{n+m}{m}$ ways to select m objects out of the first $n + 1$ types.
- There are $\binom{n+m-1}{m-1}$ ways to select $m - 1$ objects out of the first $n + 1$ types and 1 object out of the last type.

aContributed by Mr. Jerry Lin (B01902113) on March 13, 2014.
The Proof (concluded)

• There are \(\binom{n+m-2}{m-2} \) ways to select \(m-2 \) objects out of the first \(n+1 \) types and \(2 \) objects of the last type.

•

• So,

\[
\binom{n+m}{m} + \binom{n+m-1}{m-1} + \binom{n+m-2}{m-2} + \cdots + \binom{n+0}{0} = \binom{n+m+1}{m}.
\]
Integer Solutions of a Linear Equation

The following three problems are equivalent:

1. The number of nonnegative integer solutions of

\[x_1 + x_2 + \cdots + x_n = r. \]

2. The number of selections, with repetition, of size \(r \) from a collection of \(n \) distinct objects (Theorem 17 on p. 81).

3. The number of ways \(r \) identical objects can be distributed among \(n \) distinct containers.\(^a\)

They all equal \(\binom{n+r-1}{r} \).\(^b\)

\(^a\)The case of distinct objects and identical containers will be covered on p. 276 (see p. 75 for a special case).

\(^b\)See p. 501 and p. 506 for alternative proofs.
Application: The Multinomial Theorem (P. 72)

• The theorem is about the coefficient of $x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}$ in the expansion of

$$(x_1 + x_2 + \cdots + x_t)^r.$$

• But how many distinct terms\(^a\) are there?

• Each term has the form $x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}$ such that
 - $n_1 + n_2 + \cdots + n_t = r$, and
 - $0 \leq n_1, n_2, \ldots, n_t$.

• For example, consider

$$r = 2.$$

\(^a\)That is, summands.
Application: The Multinomial Theorem (continued)

- Now,

\[(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3.\]

- E.g., the solution \(n_1 = 1, n_2 = 1, n_3 = 0\) to \(n_1 + n_2 + n_3 = 2\) contributes to the term

\[x_1^1x_2^1x_3^0 = x_1x_2.\]

- So there are 6 nonnegative integer solutions to \(n_1 + n_2 + n_3 = 2\) because there are 6 terms.
Application: The Multinomial Theorem (concluded)

• The desired number of terms is, in general,

\[
\binom{r + t - 1}{r}
\]

from the equivalencies on p. 86.

• Indeed, \(\binom{2+3-1}{2} = 6 \).
Positive Integer Solutions of a Linear Equation

- Consider
 \[x_1 + x_2 + \cdots + x_n = r, \]
 where \(x_i > 0 \) for \(1 \leq i \leq n \).

- Define \(x'_i \triangleq x_i - 1 \).

- The original problem becomes
 \[x'_1 + x'_2 + \cdots + x'_n = r - n, \]
 where \(x'_i \geq 0 \) for \(1 \leq i \leq n \).

- The number of solutions is therefore (p. 86)
 \[
 \binom{n + (r - n) - 1}{r - n} = \binom{r - 1}{r - n} = \binom{r - 1}{n - 1}.
 \] (15)
Application: Subsets with Restrictions

How many n-element subsets of $\{1, 2, \ldots, r\}$ contain no consecutive integers?

- Say $r = 4$ and $n = 2$.

- Then the valid 2-element subsets of $\{1, 2, 3, 4\}$ are

 $\{1, 3\}, \{1, 4\}, \{2, 4\}$.
The Proof (continued)

- For each valid subset \(\{ i_1, i_2, \ldots, i_n \} \), where \(1 \leq i_1 < i_2 < \ldots < i_n \leq r \), define
 \[
 d_k = i_{k+1} - i_k.
 \]

- As “placeholders,” introduce
 \[
 i_0 = 1, \\
i_{n+1} = r.
 \]

- Then, by telescoping,
 \[
 d_0 + d_1 + \cdots + d_n = i_{n+1} - i_0 = r - 1.
 \]
The Proof (continued)

• Observe that

\[0 \leq d_0, d_n \]
\[2 \leq d_1, d_2, \ldots, d_{n-1}. \]

• Define

\[d'_0 \triangleq d_0, \]
\[d'_k \triangleq d_k - 2, \quad k = 1, 2, \ldots, n - 1, \]
\[d'_n \triangleq d_n. \]
The Proof (concluded)

• So equivalently,

\[d'_0 + d'_1 + \cdots + d'_n = r - 1 - 2(n - 1) \]

with \(0 \leq d'_0, d'_1, \ldots, d'_n\).

• The answer to the desired number is (p. 86)

\[
\binom{(n + 1) + (r - 1 - 2(n - 1)) - 1}{r - 1 - 2(n - 1)} = \binom{r - n + 1}{n - 2n + 1} = \binom{r - n + 1}{n}. \tag{16}
\]
Application: Political Majoritya

In how many ways can $2n + 1$ seats in a parliament be divided among 3 parties so that the coalition of \textit{any} 2 parties form a majority?

- If $n = 2$, there are 5 seats.
- Clearly, no party should have 3 or more seats.
- The only valid distribution of the 5 seats to 3 parties is: 2, 2, 1.
- The number of ways is therefore 3.

aRecall p. 68.
The Proof (continued)

- This is a problem of distributing identical objects (the seats) among distinct containers (the parties) (p. 86).
- So without the majority condition, the number is
 \[
 \binom{3 + (2n + 1) - 1}{2n + 1} = \binom{2n + 3}{2}.
 \]
- Observe that the majority condition is violated if and only if a party gets \(n + 1 \) or more seats (why?).
The Proof (concluded)

• If a given party gets \(n + 1 \) or more seats, the number of ways of distributing the seats is

\[
\binom{3 + n - 1}{n} = \binom{n + 2}{2}.
\]

 – Allocate \(n + 1 \) seats to that party first.
 – Then allocate the remaining \(2n + 1 - (n + 1) = n \) seats to the 3 parties.
 – Refer to p. 86 for the formula.

• The desired number of no dominating party is

\[
\binom{2n + 3}{2} - 3 \binom{n + 2}{2} = \frac{n}{2} (n + 1) = \binom{n + 1}{2}. \tag{17}
\]
Political Majority: An Alternative Proofa

- Recall that the majority condition holds if and only if no party gets $n + 1$ or more seats.
- So each party can hold up to n seats.
- Give each party n slots to hold real seats.
- As there are $2n + 1$ seats, there will be

$$3n - (2n + 1) = n - 1$$

empty slots in the end.

aContributed by Mr. Weicheng Lee (B01902065) on March 14, 2013.
Political Majority: An Alternative Proof (concluded)

• So the answer to the desired number is the number of ways to distribute the $n - 1$ empty slots to 3 parties.

• The count is (p. 86)

$$\binom{3 + (n - 1) - 1}{n - 1} = \binom{n + 1}{n - 1} = \binom{n + 1}{2}.$$
Integer Solutions of a Linear Inequality

• Consider

\[x_1 + x_2 + \cdots + x_n \leq r, \]

where \(x_i \geq 0 \) for \(1 \leq i \leq n \).

• It is equivalent to

\[x_1 + x_2 + \cdots + x_n + x_{n+1} = r, \]

where \(x_i \geq 0 \) for \(1 \leq i \leq n + 1 \).

• The number of integer solutions of the original inequality is therefore (p. 86)

\[
\binom{(n + 1) + r - 1}{r} = \binom{n + r}{r}.
\]

(18)
The Hockeystick Identity (P. 38) Reproved

• By Eq. (18) on p. 100, there are \(\binom{n+1+m}{m} \) nonnegative integer solutions to

\[
x_1 + x_2 + \cdots + x_{n+1} \leq m, \quad m \geq 0.
\]

• By p. 86, there are \(\binom{n+k}{k} \) nonnegative integer solutions to

\[
x_1 + x_2 + \cdots + x_{n+1} = k.
\]

• Any solution to \(x_1 + x_2 + \cdots + x_{n+1} \leq m \) is a solution to \(x_1 + x_2 + \cdots + x_{n+1} = k \) for some \(0 \leq k \leq m \).
The Proof (concluded)

- The opposite is also true.
- It is also clear the correspondence is one-to-one.
- So

\[\sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+m+1}{m}. \]

- This is exactly the hockeystick identity.
Compositions of Positive Integers

• Let \(m \) be a positive integer.

• A composition for \(m \) is a sum of positive integers whose order is relevant and which sum to \(m \).

• For \(m = 3 \), the number of compositions is 4:
 \[3, 2 + 1, 1 + 2, 1 + 1 + 1. \]

• For \(m = 4 \), the number of compositions is 8:
 \[4, 3 + 1, 2 + 2, 1 + 3, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1. \]

• Is the number of compositions for general \(m \) equal to \(2^{m-1} \)?
The Number of Compositions

Theorem 19 The number of compositions for \(m > 0 \) is \(2^{m-1} \).

- Every composition with \(i \) summands corresponds to a positive integer solution to

\[
x_1 + x_2 + \cdots + x_i = m.
\]

- So the number of solutions is \(\binom{m-1}{m-i} \) by Eq. (15) on p. 90.
- The total number of compositions is therefore

\[
\sum_{i=1}^{m} \binom{m-1}{m-i} = 2^{m-1}
\]

by Eq. (9) on p. 57.
An Alternative Proof for Theorem 19 (p. 104)a

- Let \(f(m) \) denote the number of compositions for \(m > 0 \).
- A composition for \(m \) is either (1) \(m \) or (2) \(i \) plus a composition for \(m - i \) ("\(i + \cdots \)") for \(i = 1, 2, \ldots, m - 1 \).
- Then
 \[
 f(m) = 1 + \sum_{i=1}^{m-1} f(m - i) = 1 + \sum_{i=1}^{m-1} f(i).
 \]
- The above implies that \(f(m + 1) - f(m) = f(m) \) so
 \[
 f(m + 1) = 2f(m).
 \]

aContributed by Mr. Chih-Ning Chou (B01902046) on March 7, 2013.
The Proof (concluded)

- As a result,
 \[f(m) = 2^{m-1} f(1). \]

- Finally, as \(f(1) = 1 = 2^0 \),
 \[f(m) = 2^{m-1}. \]
A Third Proof for Theorem 19 (p. 104)a

- Start with m x’s and $m - 1$ ’s.
- Consider this arrangement:

$$\underbrace{x \mid x \mid x \mid \cdots \mid x}_{2m - 1}$$

- Think of the ’s as dividers.
- Now remove some of the ’s.

aContributed by Mr. Jerry Lin (B01902113) on March 6, 2014.
The Proof (concluded)

- For example,

\[xx | xxx | x | x \]

means the composition

\[2 + 3 + 1 + 1 \]

for 7.

- Each removal of some \(|\)’s leads to a unique composition.

- As there are

\[2^{m-1} \]

ways to remove the \(|\)’s, this is the number of compositions for \(m\).
Palindromes of Positive Integers

• Let m be a positive integer.

• A palindrome for m is a composition for m that reads the same left to right as right to left.
 - For $m = 4$, the number of palindromes is 4:

 $\boxed{4}, 1 + \boxed{2} + 1, 2 + \boxed{2}, 1 + 1 + 1 + 1.$

 - For $m = 5$, the number of palindromes is 4:

 $\boxed{5}, 1 + \boxed{3} + 1, 2 + \boxed{1} + 2, 1 + 1 + \boxed{1} + 1 + 1.$

 - The center elements are boxed above.
Palindromes of Positive Integers (concluded)

- The numbers to the left of the center element mirror those to the right, and with the same sum.
- Palindrome is possibly the hardest form of wordplay.\(^a\)
- For example,\(^b\)

 A man, a plan, a canal, Panama!

- See https://www.youtube.com/watch?v=PcTVk0zrzQs for Bach’s *The Music Offering* as another example.
- It is used in the Entropy Game of the Dutch National Olympiad in Informatics (2023).

\(^a\)Bryson (2001, p. 228).
\(^b\)Ignore the spaces and punctuation marks.
The Number of Palindromes

Theorem 20 *The number of palindromes for* \(m > 0 \) *is* \(2^{\lfloor m/2 \rfloor} \).

- Assume \(m \) is even first.

- The central element of a composition of \(m \) can be \(m, m - 2, \ldots, 2 \) or “+” (think of it as a 0).\(^a\)

- When the central element is \(m \), the number of palindromes is clearly 1.

- Suppose the central element is some other even number \(0 \leq i < m \).

\(^a\)The central element must be even (why)!
The Proof (concluded)

• Then the numbers to its left sum to \((m - i)/2\).\(^a\)

• They form a composition (p. 103).

• Hence the number of palindromes is \(2^{(m-i)/2-1}\) by Theorem 19 (p. 104).

• The total number of palindromes for \(m\) is thus

\[
1 + \left(1 + 2 + 2^2 + \cdots + 2^{(m-2)/2-1} + 2^{m/2-1} \right) = 2^{m/2}.
\]

• Follow the same argument when \(m\) is odd to obtain a count of \(2^{(m-1)/2}\).

\(^a\)By symmetry, the numbers to its right sum to \((m - i)/2\), too.
Runs

- Consider a permutation of 10 Os and 5 Es:

 $$0 0 E 0 0 0 0 E E E 0 0 0 E 0.$$

- It has 7 runs:

 $0 0 E 0 0 0 0 E E E 0 0 0 E 0.$

 run run run run run run run

- In general, a run is a *maximal* consecutive list of identical objects.
The Number of Runs

Theorem 21 There are

\[
\binom{m - 1}{m - \lceil r/2 \rceil} \binom{n - 1}{n - \lfloor r/2 \rfloor} + \binom{n - 1}{n - \lceil r/2 \rceil} \binom{m - 1}{m - \lfloor r/2 \rfloor}
\]

ways that \(m \) identical objects of type 1 and \(n \) identical objects of type 2 can give rise to \(r \) runs.

- Suppose the run starts with a type-1 object.
- Let \(x_i \) denote the number of type-1 objects in run \(i = 1, 3, \ldots, 2 \lceil r/2 \rceil - 1 \).
The Proof (continued)

• The number of runs with the said counts \(x_1, x_3, \ldots \) equals the number of positive-integer solutions to

\[
x_1 + x_3 + \cdots + x_{2\lceil r/2 \rceil - 1} = m.
\]

 - There are \(\lceil r/2 \rceil \) terms.

• There are

\[
\binom{m-1}{\lceil r/2 \rceil - 1} = \binom{m-1}{m - \lceil r/2 \rceil}
\]

solutions by Eq. (15) on p. 90.
The Proof (continued)

• Now let x_i denote the number of type-2 objects in run $i = 2, 4, \ldots, 2\lfloor r/2 \rfloor$.

• The number of runs with the said counts x_2, x_4, \ldots equals that of positive-integer solutions to

$$x_2 + x_4 + \cdots + x_{2\lfloor r/2 \rfloor} = n.$$

 – There are $\lfloor r/2 \rfloor$ terms.

• Similarly, the number of solutions equals

$$\binom{n - 1}{\lfloor r/2 \rfloor - 1} = \binom{n - 1}{n - \lfloor r/2 \rfloor}.$$
The Proof (concluded)

• Therefore the number of runs that start with a type-1 object equals

\[
\binom{m - 1}{m - \lfloor r/2 \rfloor} \binom{n - 1}{n - \lfloor r/2 \rfloor}.
\]

• Repeat the argument for the case where the 1st run starts with a type-2 object.

• The count is

\[
\binom{n - 1}{n - \lfloor r/2 \rfloor} \binom{m - 1}{m - \lfloor r/2 \rfloor}
\]

(by swapping \(m \) and \(n \)).
The Catalana Numbers (1838)

- A binomial random walk starts at the origin (p. 42).
- What is the number of ways it can end at the origin in $2n$ steps \textit{without} being in the negative territory?
- A left move lowers the position, whereas a right move increases the position.
- So it is equivalent to the number of ways

\[
\underbrace{RR \cdots R}_{n} \underbrace{LL \cdots L}_{n}
\]

can be permuted so that no prefix has more Ls than Rs.

aEugène Charles Catalan (1814–1894). It was known to Euler (1707–1783) and, even earlier, Mongolian mathematician Minggatu (1730).
The Catalan Numbers (concluded)

• For example,

\[\begin{array}{c}
0 \\
\quad \downarrow 1 \\
\quad \downarrow 2 \\
\quad \downarrow 1 \\
\quad \downarrow 0 \\
\quad \downarrow 1 \\
\quad \downarrow 1 \\
\quad \downarrow 0 \\
\quad \downarrow 1 \\
\quad \downarrow R \\
\quad \downarrow LRLRRLLL.
\end{array} \]
Formula for the Catalan Number\(^a\)

The number is\(^b\)

\[b_n = \binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}, \quad n \geq 1. \quad (19) \]

with \(b_0 = 1\).

- \(\underbrace{RR \cdots R}_{n} \underbrace{LL \cdots L}_{n}\) can be permuted in \(\binom{2n}{n}\) ways by formula (2) on p. 16.\(^c\)

- Some of the permutations are illegal, such as \(RLLRR\).

\(^a\)Attributed to Jacques Touchard (1885–1968).

\(^b\)The subscript in \(b_n\) is \(n\) not \(2n!\).

\(^c\)Alternatively, recall formula (5) on p. 43.
The Proof (continued)

- We now prove that \(\binom{2n}{n-1} \) of the permutations are illegal.
- For every illegal permutation, we consider the first \(L \) move that makes the particle land at \(-1\).
 - Such as \(RL[L]LRR \).
- Swap \(L \) and \(R \) for this offending \(L \) and all earlier moves.
 - Such as \(L[R][R]LRR \).
- The result is a permutation of

 \[
 \underbrace{RR \cdots R}_{n+1} \underbrace{LL \cdots L}_{n-1}.
 \]
The Proof (concluded)

• There are \(\binom{2n}{n-1} \) ways to permute

\[
\underbrace{RR\cdots R}_{n+1} \underbrace{LL\cdots L}_{n-1}
\]

by Eq. (2) on 16.

• But the correspondence is one-to-one between the permutations of

\[
\underbrace{RR\cdots R}_{n+1} \underbrace{LL\cdots L}_{n-1}
\]

and illegal permutations (see next page).

• So there are \(\binom{2n}{n-1} \) illegal walks.
The Reflection Principle

aAndré (1887).
A Simple Corollary

Corollary 22 *For* $n \geq 1$,

$$b_n = \frac{\sum_{i=0}^{n} \binom{n}{i}^2}{n + 1}.$$

- See Eq. (14) on p. 62.
Application: No Return to Origin until End

What is the number of ways a binomial random walk that is never in the negative territory \textit{and} returns to the origin the \textit{first} time after $2n$ steps?

- Let $n \geq 1$.
- The answer is b_{n-1}.
Application: No Return to Origin until End (concluded)

What is the number of ways a binomial random walk returns to the origin the first time after $2n$ steps?

- Let $n \geq 1$.
- The answer is

$$2b_{n-1} = \frac{1}{2n-1} \binom{2n}{n}.$$ \hspace{1cm} (20)

- It may return to the origin by way of the negative territory.
- It may return to the origin by way of the positive territory.
Application: Nonnegative Partial Sums

What is the number of ways we can arrange n “+1” and n “−1” such that all $2n$ partial sums are nonnegative?

- For example, the six partial sums of $(1, 1, -1, 1, -1, -1)$ are $(1, 2, 1, 2, 1, 0)$.
- Let $n \geq 1$.
- The answer is b_n by definition (p. 118).
- The number remains b_n if we have only $n - 1$ “−1”.
 - In the original problem, the last number must be −1.
 - So it is “redundant.”
Application: Nonpositive Partial Sums

What is the number of ways we can arrange n “+1” and n “−1” such that all $2n$ partial sums are nonpositive?

- For example, the six partial sums of $(-1, -1, 1, -1, 1, 1)$ are $(-1, -2, -1, -2, -1, 0)$.

- Let $n \geq 1$.

- The answer is b_n.

- The number remains b_n if we have only $n - 1$ “+1”.
 - In the original problem, the last number must be 1.
 - So it is “redundant.”
Combinatorics and “Higher” Mathematics
For relaxation,
General Bradley did algebra problems,
and he worked at integral calculus
when he was flying an airplane
— or flying in his airplane.
He said it relaxed him, made him think.
— Chet Hansen, Major,
aide to 5-star General Omar Bradley (1893–1981)
Growth of Factorials

<table>
<thead>
<tr>
<th>n</th>
<th>$n!$</th>
<th>n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>8</td>
<td>40320</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>362880</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>3628800</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
<td>39916800</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>12</td>
<td>479001600</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>13</td>
<td>6227020800</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>14</td>
<td>87178291200</td>
</tr>
<tr>
<td>7</td>
<td>5040</td>
<td>15</td>
<td>1307674368000</td>
</tr>
</tbody>
</table>
A Logplot (Base Two)

Logplot of $n!$
A Useful Lower Bound for $n!$

Lemma 23 $n! > \left(\frac{n}{e} \right)^n$.

Proof:

\[
\ln(n!) = \ln 1 + \ln 2 + \ln 3 + \cdots + \ln n
\]

\[
= \sum_{k=1}^{n} \ln k
\]

\[
> \sum_{k=1}^{n} \int_{k-1}^{k} \ln x \, dx \quad \text{as } \ln x \text{ is increasing}
\]

\[
= \int_{0}^{n} \ln x \, dx
\]

\[
= [x \ln x - x]_{x=0}^{n}
\]

\[
= n \ln n - n.
\]
How Good Is the Bound?

$n!$ over lower bound

Good, but probably not of the same order as $n!$.
Lemma 24 \(n! > e^{(n/e)^n} \).

Proof:

\[
\ln(n!) = \ln 1 + \ln 2 + \ln 3 + \cdots + \ln n \\
= \sum_{k=2}^{n} \ln k \\
> \sum_{k=2}^{n} \int_{k-1}^{k} \ln x \, dx \\
\geq \int_{1}^{n} \ln x \, dx \\
= [x \ln x - x]_{x=1}^{n} \\
= n \ln n - n + 1.
\]
A Useful Upper Bound for $C(n, m)$

Lemma 25 $C(n, m) < (ne/m)^m$ for any $0 < m \leq n$.\(^a\)

Proof:

$$C(n, m) = \frac{n!}{(n-m)!m!} = \frac{n(n-1) \cdots (n-m+1)}{m!} \leq \frac{n^m}{m!} < \frac{n^m}{(m/e)^m} \text{ by Lemma 23 (p. 133)}$$

$$= \left(\frac{ne}{m}\right)^m.$$\(^a\) The tighter bound $(ne/m)^m/e$ follows Lemma 24 (p. 136).
Stirling’s Formulaa (1730)

- The notation $f(x) \sim g(x)$ means
 \[
 \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1,
 \]
 i.e.,
 \[
 f(x) = g(x) + o(g(x))
 \]
as $x \to \infty$.b

- Stirling’s formula says:

Theorem 26 \(n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n\).

Corollary 27 \(e = \lim_{n \to \infty} \frac{n}{(n!)^{1/n}}\).

aJames Stirling (1692–1770); but due to Abraham DeMoivre (1667–1754)!

bIt does not imply $f(x) - g(x) \to 0$.
Goodness of Approximation to $n!$

$n!$ over approximation
Approximation of $C(n, m)$

- Stirling’s formula can be used to approximate $C(n, m)$ better than Lemma 25 (p. 137) under some conditions.

- For that purpose, a more refined Stirling’s formula is stated below without proof:\(^{a}\)

\[
\sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\frac{1}{12n+1}} < n! < \sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\frac{1}{12n}}. \tag{21}
\]

\(^{a}\)Robbins (1955).
The Proof (concluded)

- Now from bounds (21) on p. 140,

\[
C(n, m) = \frac{n!}{(n - m)! \cdot m!} < \frac{\sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\frac{1}{12n}}}{\sqrt{2\pi(n - m)} \left(\frac{n - m}{e} \right)^{n - m} e^{\frac{1}{12(n - m) + 1}} \sqrt{2\pi m} \left(\frac{m}{e} \right)^m e^{\frac{1}{12m + 1}}}
\]

\[
\begin{aligned}
&= \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n - m} \right)^{n - m} \sqrt{\frac{n}{m(n - m)}} \\
&\quad \times e^{\frac{1 - 12n - 144(m - n)^2 - 144mn}{(\cdots)(\cdots)(\cdots)}}
\end{aligned}
\]

\[
< \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n - m} \right)^{n - m} \sqrt{\frac{n}{m(n - m)}}. \quad (22)
\]
Approximation of $C(n, m)$, $1 \leq m \leq n/2$

$$C(n, m)$$

$$> \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n-m} \right)^{n-m} \sqrt{\frac{n}{m(n-m)}} e^{\frac{1}{12(n+1)} - \frac{1}{12(n-m)} - \frac{1}{12m}}$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n-m} \right)^{n-m} \sqrt{\frac{n}{m(n-m)}} e^{\frac{-12m-1}{2(n-m)(2n+1)} - \frac{1}{12m}}$$

$$\geq \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n-m} \right)^{n-m} \sqrt{\frac{n}{m(n-m)}} e^{-\frac{1}{6m} + \frac{1}{(24m+1)}}$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n-m} \right)^{n-m} \sqrt{\frac{n}{m(n-m)}} e^{-\frac{1}{6m}}. \quad (23)$$
The Proof (continued)

• Combine inequalities (22) on p. 141 and (23) on p. 142 under $1 \leq m \leq n/2$ to obtain

\[
\frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n-m} \right)^{n-m} \sqrt{\frac{n}{m(n-m)}} e^{-\frac{1}{6m}}
\]

\[< C(n, m) \]

\[< \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n-m} \right)^{n-m} \sqrt{\frac{n}{m(n-m)}}.\]
The Proof (concluded)

- So

\[C(n, m) \sim \frac{1}{\sqrt{2\pi}} \left(\frac{n}{m} \right)^m \left(\frac{n}{n-m} \right)^{n-m} \sqrt{\frac{n}{m(n-m)}} \]

as \(m \to \infty \) and \(n - m \to \infty \).

- An alternative formulation is

\[C(n, m) \sim \frac{1}{\sqrt{2\pi p q n}} (p^p q^q)^{-n}, \]

where \(p \triangleq m/n \) and \(q \triangleq 1 - p \).
Application: Probability of Return to Origin

- Suppose the binomial random walk has a probability of \(2^{-1} = 0.5\) of going in either direction (p. 46).
 - This is called a **symmetric random walk**.

- The number of ways it is at the origin after \(2n\) steps is \(\binom{2n}{n}\) by formula (5) on p. 43.\(^a\)

- The probability for this to happen is

\[
\frac{\binom{2n}{n}}{2^{2n}} \approx \frac{1}{\sqrt{2\pi}} \frac{2^n}{2^{2n}} \sqrt{\frac{2}{n}} \approx \sqrt{\frac{1}{\pi n}} = O\left(\frac{1}{\sqrt{n}}\right)
\]

(25)

by Eq. (24) on p. 144.

\(^a\)We have seen \(\binom{2n}{n}\) many times before (e.g., p. 58, p. 62, p. 120, and p. 124). We will continue to encounter it.
Application: Probability of Return to Origin (concluded)

- Suppose 100 U.S. Senators vote on a bill randomly.\(^a\)
- What is the probability of a tie?\(^b\)
- By Eq. (25) on p. 145, it equals
 \[
 \frac{\binom{100}{50}}{2^{100}} = 0.0795892 \approx \frac{1}{12}.
 \]
- The probability is surprisingly high.
- It rises to 0.176197 with 20 Senators in late 18th century.

\(^a\)Dixit & Nalebuff (1993).
\(^b\)Which is broken by the Vice President.
Application: Deviation

- Consider the symmetric random walk again.
- Its average position at the end is 0.
- Assume n is even.
- Given $c > 0$, after n steps what is the probability for the walk to end at a position $\geq c\sqrt{n}$ for n sufficiently large?
Application: Deviation (continued)

- The probability that the walk ends at position \(k \) after \(n \) steps is
 \[
 \left(\frac{n}{\frac{n+k}{2}} \right) 2^{-n}
 \]
 by formula (5) on p. 43, where \(k \) is even.

- The probability that the position is at least \(c\sqrt{n} \) is
 \[
 \sum_{k=\lceil c\sqrt{n} \rceil}^{n} \left(\frac{n}{\frac{n+k}{2}} \right) 2^{-n} \approx \frac{1}{2} - \sum_{k=2}^{\lfloor c\sqrt{n} \rfloor} \left(\frac{n}{\frac{n+k}{2}} \right) 2^{-n}
 \]
 by Eq. (10) on p. 59.
 - The integer \(k \) must be even.
Application: Deviation (concluded)

- But

\[
\frac{1}{2} - \sum_{k=2}^{\lfloor c\sqrt{n} \rfloor} \left(\frac{n}{2} + k \right)^{-n} \geq \frac{1}{2} - \frac{c\sqrt{n}}{2} \left(\frac{n}{2} \right)^{-n}
\]

according to the unimodal property (p. 28).\(^a\)

- That \(k \) is even accounts for the 2 in the denominator.

- Finally, the desired probability is

\[
\frac{1}{2} - 2^{-n} \frac{c\sqrt{n}}{2} \left(\frac{n}{2} \right) \geq \frac{1}{2} - c\sqrt{\frac{1}{2\pi}}
\]

by Eq. (25) on p. 145 for \(n \) sufficiently large.

\(^a\)Corrected by Mr. Gong-Ching Lin (B00703082) on March 8, 2012 and Mr. Rajon Geng (B03902010) on March 5, 2016.
An Upper Bound for $C(2n, n)$

Lemma 28 \(\binom{2n}{n} < \frac{4^n}{\sqrt{n \pi}} \).

Proof: From inequality (22) on p. 141,

\[
\binom{2n}{n} < \frac{1}{\sqrt{2\pi}} \left(\frac{2n}{n} \right)^n \left(\frac{2n}{2n - n} \right)^{2n-n} \sqrt{\frac{2n}{n(2n-n)}}
\]

\[
= \frac{1}{\sqrt{n \pi}} 4^n.
\]

Note that Lemma 25 (p. 137) gives a much looser upper bound of $(2e)^n \sim 5.43656^n$.
A Tight Bound for $C(2n, n)$

Lemma 29 \(\binom{2n}{n} \sim \frac{4^n}{\sqrt{n\pi}} \).\(^a\)

- From inequality (23) on p. 142,

\[
\binom{2n}{n} \cdot \frac{1}{\sqrt{2\pi}} \left(\frac{2n}{n} \right)^n \left(\frac{2n}{2n-n} \right)^{2n-n} \sqrt{\frac{2n}{n(2n-n)}} e^{-\frac{1}{6n}}
\]

\[
= \frac{1}{\sqrt{n\pi}} 4^n e^{-\frac{1}{6n}}.
\]

- Finally, recall Lemma 28 (p. 150).

\(^a\)In fact, $e^{-1/(8n)} < \sqrt{n\pi} \binom{2n}{n}/4^n < 1$ (Hipp & Mattner, 2008).
A Tight Bound for $C'(2n, n)$ (concluded)

\[\binom{2n}{n} / \left(4^n / \sqrt{n\pi} \right) \]
First Return to Origina

What is the probability a symmetric binomial random walk returns to the origin the \textit{first} time at step $2n$?

- Formula (20) on p. 126 says the probability is
 \[
 \frac{1}{2n - 1} \binom{2n}{n} 2^{-2n}.
 \]

- The above probability is asymptotically
 \[
 \sim \frac{1}{2\sqrt{n^3 \pi}}
 \]
 by Lemma 29 (p. 151).

aRecall p. 125.
Analytic Number Theory
A proof is that which convinces a reasonable man; a rigorous proof is that which convinces an unreasonable man.
— Mark Kac (1914–1984)
There Are an Infinite Number of Primes

Theorem 30 (Euclid, 300 B.C.) There are infinitely many primes.

• A prime is a positive integer larger than 1 whose only divisors are itself and 1.

• Suppose p_1, p_2, \ldots, p_k are all the primes.

• Let $B = p_1 p_2 \cdots p_k + 1$.

• Because $B > p_i$ for all i, B cannot be a prime.

Euclid (325 B.C.–265 B.C.). Some, such as Calude (1994), claim this is the most important result in all mathematics.
The Proof (concluded)

• So there must be a prime p_j such that p_j divides $B = p_1 p_2 \cdots p_k + 1$.

• But that implies p_j must divide 1, a contradiction.
There Are an Infinite Number of Primes: An Alternative Proofa

- Every number n can be uniquely factorized into prime factors $p_1^{k_1} p_2^{k_2} \ldots$.

- So

$$
\left(\sum_{k=0}^{\infty} \frac{1}{2^k} \right) \left(\sum_{k=0}^{\infty} \frac{1}{3^k} \right) \left(\sum_{k=0}^{\infty} \frac{1}{5^k} \right) \ldots
$$

$$
= \sum \frac{1}{2^{k_1} 3^{k_2} 5^{k_3} \ldots}
$$

$$
= \sum_{n \geq 1} \frac{1}{n}.
$$

aLeonhard Euler (1707–1783) in 1737.
The Proof (concluded)

- The right-hand side is an infinite number (why?).
- The left-hand side equals

\[
\frac{1}{1 - \frac{1}{2}} \frac{1}{1 - \frac{1}{3}} \frac{1}{1 - \frac{1}{5}} \cdots
\]

- It is an infinite number only if the number of primes is infinite.
Leonhard Euler (1707–1783)
The Prime Number Theorema

Let $\pi(n)$ stand for the number of primes up to n.

Theorem 31 $\pi(n) \sim n/\ln n$.

Corollary 32 The average density of primes from 1 to n is $1/\ln n$.

Corollary 33 The nth prime number is about $n \ln n$.

aJacques Salomon Hadamard (1865–1963) and Charles De la Vallée Poussin (1866–1962) in 1896. “[Hadamard’s] daughter claimed he could not count beyond four, ‘After that came n.’” (Derbyshire, 2003).
\(\pi(n) \ vs. \ n/\ln n \)