Orbits, Stabilizers, and Characters

- Let G be a permutation group on a finite set X.
- Let $x \in X$.
- $O_x = \{ g(x) : g \in G \} \subseteq X$ is the orbit of x.
 - Note that $x \in O_x$.
- $G_x = \{ g \in G : g(x) = x \} \subseteq G$ is the stabilizer of x.
- Let $g \in G$.
- $F(g) = \{ x \in X : g(x) = x \} \subseteq X$ is the permutation character of g.
Orbit of g_1

Stabilizer of g_1

Permutation character of g_1
Orbits and Stabilizers of Permutation

- Let g be a permutation of set $X = \{1, 2, \ldots, n\}$.
- Corollary 139 (p. 929) says \{ g^0, g^1, \ldots \} is a finite cyclic group.
- Call it $G = \langle g \rangle$.
- Pick an arbitrary $i \in X$.
- By definition $O_i = \{ g^k(i) : k \in \mathbb{N} \}$.
- If i is not moved by g, then $O_i = \{ i \}$ and $|O_i| = 1$.
Orbits and Stabilizers of Permutation (continued)

- Now assume $i = i_1$ is moved by g.
- Let $g_1 \cdots g_m$ be the cycle decomposition of g.
- Let the cycle involving i_1 be $(i_1 \ i_2 \ \cdots \ i_r)$.
 - It is one of the g_j’s.
- Clearly, $g^k(i_1) = i_{k+1}$ for $0 \leq k \leq r - 1$.
- We conclude
 $$O_i = \{i_1, i_2, \ldots, i_r\}$$
 and $|O_i| = r$.
Orbits and Stabilizers of Permutation (concluded)

- The stabilizer of \(i \) is \(G_i = \{ g^k : g^k(i) = i, k \in \mathbb{Z} \} \).

- If \(i \) is not moved by \(g \), then \(g^k(i) = i \) for all \(k \in \mathbb{Z} \); so \(G_i = G \).

- On the other hand, if \(g \) does not fix \(i \), then \(G_i \subsetneq G \).
 - For instance, \(g \notin G_i \).

- In fact, Theorem 145 (p. 947) will show that
 \[
 |G| = |G_i| \cdot |O_i|
 \]
 for all \(1 \leq i \leq n \).
 - Recall that Theorem 135 (p. 912) says \(o(g) = |G| \).
Orbits as Partitions

Lemma 140 If G be a permutation group on set X, then G’s orbits partition X.

- $\bigcup_x O_x = X$ because $x \in O_x$ for all $x \in X$.
- If $O_x \cap O_y \neq \emptyset$, then $O_x \subseteq O_y$.
 - For any $a \in O_x$, $a = g''(x)$ for some $g'' \in G$.
 - Suppose $z \in O_x \cap O_y$.
 - Then $z = g(x) = g'(y)$ for some $g, g' \in G$.
 - Hence $a = g''(g^{-1}(z)) = g''(g^{-1}(g'(y))) \in O_y$.
- The other direction $O_y \subseteq O_x$ is symmetric.
Orbithood as an Equivalence Relation

Lemma 141 Suppose G be a permutation group on set X. Two $i, j \in X$ are in the same orbit if and only if there is a $g \in G$ such that $g(i) = j$.

- Suppose $i, j \in X$ are in the same orbit O_x.
 - $i = g_1(x)$ and $j = g_2(x)$ for some $g_1, g_2 \in G$.
 - Hence $j = g_2(x) = g_2(g_1^{-1}(i))$.

- On the other hand, suppose there is a $g \in G$ such that $g(i) = j$.

- Then $j \in O_i$ and also $i \in O_i$.

©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University
Grouphood of Stabilizers

Lemma 142 A stabilizer is a subgroup.

- Let G be a permutation group on set X.
- Consider a stabilizer $G_x = \{ g \in G : g(x) = x \}$ for $x \in X$.
- For all $g_1, g_2 \in G_x$, $g_1 \circ g_2 \in G_x$ because $g_2(g_1(x)) = x$.
- For all $g \in G_x$, $g^{-1} \in G_x$ because $g^{-1}(x) = x$.
- The lemma then follows by Theorem 111 (p. 835).
Stabilizers of Elements of an Orbit

Lemma 143 Let G be a permutation group and x, y be in the same orbit. (1) $|G_x| = |G_y|$. (2) $G_x = hG_yh^{-1}$ for some $h \in G$.

- By Lemma 141 (p. 936), $y = h(x)$ for some $h \in G$.
- $G(x, y) \triangleq \{ g \in G : g(x) = y \} \neq \emptyset$ as it contains h.
- Let $g \in G(x, y)$.
- Then $g(x) = h(x)$, which implies
 $$h^{-1}(g(x)) = x.$$
- We conclude that
 $$g \circ h^{-1} \in G_x.$$ (114)
The Proof (continued)

- Recall that $G_x h = \{ g \circ h : g \in G, g(x) = x \}$, a right coset of the stabilizer G_x.
- Then $g \in G_x h$.
- As a result $G(x, y) \subseteq G_x h$ by Eq. (114).
- Similarly, we can prove that $G_x h \subseteq G(x, y)$.
- Hence $G(x, y) = G_x h$.
- Recall that G_x is a subgroup by Lemma 142 (p. 937).
- By the coset partition theorem (p. 856),

 $$|G(x, y)| = |G_x|.$$
The Proof (concluded)

• By the same argument (why?), $G(x, y) = hG_y$, a left coset of G_y.

• Hence $|G(x, y)| = |G_y|$.

• We conclude $|G_x| = |G(x, y)| = |G_y|$.

• We move on to part (2).

• Recall

$$G(x, y) = G_x h = h G_y$$

when x, y are in the same orbit.

• Hence $G_x = h G_y h^{-1}$.
Burnside’s Lemmaa

Theorem 144 Let G be a permutation group on a finite X. The number of orbits equals the average number of fixed points of permutations in G, i.e.,

$$\frac{\sum_{g \in G} |F(g)|}{|G|}.$$

- The proof counts the total number of fixed points, in two ways.b

aWilliam Burnside (1852–1927) in 1911. The theorem is actually due to Cauchy and later Ferdinand Frobenius (1849–1917) in 1896! Rotman (2006), “Burnside was a fine mathematician, and there do exist theorems properly attributed to him.”

bRecall $F(g) = \{ x \in X : g(x) = x \} \subseteq X$.
The Proof (continued)

• Let O_1, O_2, \ldots, O_k be the k distinct orbits.

• They partition X by Lemma 140 (p. 935).

• Define $o_i \triangleq |O_i|$.

• Recall stabilizer G_x is the set of permutations fixing x.

• G_x is a subgroup of G by Lemma 142 (p. 937).
The Proof (continued)

- Consider $x \in X$ (recall that $x \in O_x$).

- Each right coset of G_x consists of those permutations in G that map x to the same element of O_x.
 - Consider the right coset $G_x g$ for some $g \in G$.
 - Every permutation in $G_x g$ maps x to the same $g(x) \in O_x$.

- Elements of O_x (such as x) are mapped only to elements of O_x by G by Lemma 141 (p. 936).

- As $|O_x| = o_x$, the subgroup G_x has o_x right cosets.
The Proof (continued)

- By the coset partition theorem (p. 856),
 \[|G_x| = \frac{|G|}{o_x} \] \hspace{1cm} (115)

- Let \(\kappa(g) \) denote permutation \(g \)'s number of fixed points.

- By definition,
 \[\kappa(g) = |F(g)|. \]
The Proof (continued)

- Clearly,
 \[\sum_{g \in G} \kappa(g) \]
 gives the total number of fixed points.

- Alternatively,
 \[\sum_{x \in X} |G_x| \]
 gives the total number of fixed points.\(^a\)

\(^a\)Recall p. 931.
The Proof (concluded)

- The average number of fixed points per permutation is

\[
\frac{1}{|G|} \sum_{g \in G} \kappa(g)
\]

\[
= \frac{1}{|G'|} \sum_{x \in X} |G_x|
\]

\[
= \frac{1}{|G|} \sum_{i=1}^{k} \sum_{x \in O_i} |G_x| \quad \text{by Lemma 140 on p. 935}
\]

\[
= \frac{1}{|G|} \sum_{i=1}^{k} o_i \frac{|G|}{o_i} \quad \text{by Eq. (115) on p. 944}
\]

\[
= k.
\]
The Orbit-Stabilizer Theorem

Equation (115) on p. 944 is of independent interest.

Theorem 145 If G is a permutation group on X and $x \in X$, then

$$|O_x| = \frac{|G|}{|G_x|} = [G : G_x],$$

where we recall O_x is the orbit of x.

aRecall p. 863.
An Example

• Consider $G = \langle g \rangle$, where

$$g = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 1 & 5 & 4 & 6
\end{pmatrix}.$$

• Clearly, $|F(g)| = 1$.

• Now

$$g^2 = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 4 & 5 & 6
\end{pmatrix}$$

with $|F(g^2)| = 3$.
An Example (continued)

- And

\[g^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 5 & 4 & 6 \end{pmatrix} \]

with \(|F(g^3)| = 4 \).

- And

\[g^4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 4 & 5 & 6 \end{pmatrix} \]

with \(|F(g^4)| = 3 \).
An Example (continued)

• And

\[
g^5 = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 2 & 5 & 4 & 6
\end{pmatrix}
\]

with \(|F(g^5)| = 1\).

• Finally,

\[
g^6 = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6
\end{pmatrix} = I
\]

with \(|F(g^6)| = 6\).
An Example (continued)

- The average number of fixed points per permutation is
 \[
 \frac{1 + 3 + 4 + 3 + 1 + 6}{6} = 3.
 \]

- So we expect to find 3 orbits and proceed to verify it.

- Indeed,

 \[
 O_1 = O_2 = O_3 = \{1, 2, 3\},
 \]
 \[
 O_4 = O_5 = \{4, 5\},
 \]
 \[
 O_6 = \{6\}.
 \]
An Example (continued)

• The 3 orbits do partition \{1, 2, 3, 4, 5, 6\} as promised by Lemma 140 (p. 935).

• One can verify that Lemma 141 (p. 936) holds here.\(^a\)
 – For example, 1, 2, and 3 are in the same orbit \(O_1\).
 – Indeed, they can be mapped to each other under \(G\).

\(^a\)That is, two \(i, j \in X\) are in the same orbit if and only if there is a \(g \in G\) such that \(g(i) = j\).
An Example (concluded)

• One can verify that Lemma 142 (p. 937) holds here.\(^a\)
 – For example, the stabilizer \(G_1 = \{ g^3, g^6 \} \) is a subgroup.

• Finally, the orbit-stabilizer theorem (p. 947) holds.
 – For example,
 \[
 |O_1| = 3 = \frac{|G|}{|G_1|}.
 \]

\(^a\)That is, a stabilizer is a subgroup.
How To Use Burnside’s Lemma

- The set X consists of possible “configurations” such as colorings, seatings, etc.

- By Lemma 141 (p. 936), $i, j \in X$ in the same orbit are considered identical (under G).

- Hence the number of orbits is the number of distinct configurations (under G).
Circular Seating (P. 19)
Circular Seating (continued)

Orbit 1

Orbit 2
Circular Seating (continued)

• In general, we want to seat \(n \) people around a circle.

• Two seatings are equivalent if one is the result of rotation of the other (i.e., in the same orbit).

• How many distinct seatings (i.e., orbits) are there?

• The permutation group consists of \(n \) clockwise rotations.

• Note that a rotation moves a seating into another.

• So the permutation group acts on the \(n! \) possible seatings, not merely the \(n \) people.
Circular Seating (concluded)

- The identity permutation \(g \) has \(|F(g)| = n! \) because every seating is fixed by \(g \).\(^a\)

- All other permutations \(g \) have \(|F(g)| = 0 \) because no seatings are fixed by \(g \).

- As there are \(n \) permutations, Burnside’s lemma (p. 941) says that the number of distinct seatings is

\[
\frac{n! + 0 + 0 + \cdots + 0}{n} = (n - 1)!
\]

- This agrees with the easy result on p. 19.

\(^a\)Recall \(F(g) = \{ x \in X : g(x) = x \} \), where \(X \) is the set of \(n! \) seatings.
Bracelet Coloring

- How many ways are there to color a bracelet of \(n \) beads with \(k \) colors, where \(n \) is an odd prime?
- The bracelet can be rotated but not flipped over.
- The configurations are colorings.
- The permutation group consists of \(n \) clockwise rotations.
- The identity permutation \(g \) has \(|F(g)| = k^n \) because there are \(k^n \) colorings.\(^a\)

\(^a\)Now \(F(g) = \{ x \in X : g(x) = x \} \), where \(X \) is the set of \(k^n \) colorings.
Bracelet Coloring (continued)
Bracelet Coloring (continued)

• All nonidentity permutations g have $|F(g)| \geq k$.
 – If a coloring is monochromatic, then it looks the same under rotations.
 – So colorings with beads painted with the same color are in the same equivalence class (orbit).
 – There are k colorings.
Bracelet Coloring (continued)

• In fact, all nonidentity permutations g have $|F(g)| = k$.
 – Suppose coloring C paints beads at positions a and b with different colors.
 – There exists an $i \in \mathbb{N}$ such that g^i moves the bead at location a to location b.
 * Solve $di \equiv (b - a) \mod n$ for i if g rotates the bracelet by $d > 0$ positions.\(^a\)
 – If coloring C is a fixed point under g, then it is also a fixed point under g^i by induction.
 – But this is impossible as positions a and b receive different colors.

\(^a\)Because n is a prime, $d^{-1} \mod n$ always exists (p. 808).
Bracelet Coloring (concluded)

- The number of distinct colorings is

\[
\frac{k^n + k + k + \cdots + k}{n} = \frac{k^n}{n} + \frac{n-1}{n} k.
\]

(116)
Bracelet Coloring with $n = 5$ and $k = 2$

Equation (116) gives $\frac{2^5 + (5-1) \times 2}{5} = 8$.
Striped Flags

- Suppose we have a striped flag with 6 stripes.
- Each stripe can be colored in red (r), green (g), or blue (b).
- Here is an example:

 $\begin{array}{cccc}
 r & g & b & r \\
 g & b & r & g \\
 \end{array}$

- Suppose two flags are considered equivalent if one looks the same as the other one when one stands in back of it.
- The following flag is considered equivalent to the one above:

 $\begin{array}{cccc}
 b & g & r & b \\
 g & r & b & g \\
 \end{array}$
Striped Flags (continued)

- Let X contain all possible (6-tuple) colorings (c_1, c_2, \ldots, c_6), where $c_i \in \{ r, g, b \}$.
- Let π be the permutation that reverses the positions of the colors,

$$
\pi = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 3 & 2 & 1
\end{pmatrix} = (1 \ 6)(2 \ 5)(3 \ 4).
$$

- It "turns over" the flag.
 - It makes $c_{\pi(i)}$ the ith color, $i = 1, 2, \ldots, 6$.
- Note that π turns one coloring into another.
- The cyclic group $G = \langle \pi \rangle$ acts on X.
Striped Flags (continued)

• It is clear that $|G| = 2$.

 – In fact, $G = \{ I, \pi \}$ as $\pi^2 = I$.

• By definition or Theorem 145 (p. 947), $|O_x| \leq |G|$.

• So each orbit contains either one coloring or two colorings.

• Here is the orbit we saw,

\[
\{ (r, g, b, r, g, b), (b, g, r, b, g, r) \}.
\]

• Note that

\[
\pi(r, g, b, r, g, b) = (b, g, r, b, g, r).
\]
Striped Flags (continued)

• Here is another orbit,

\[\{ (r, g, b, b, g, r) \} , \]

and \(\pi \) fixes the coloring \((r, g, b, b, g, r)\), a palindrome!

• Palindromes form only a proper subset of all flags.
 – There are \(3 \times 3 \times 3 = 27 \) palindromes as there are 3 choices for each of \(c_1, c_2, c_3 \).

• A distinct coloring of the flag corresponds to an orbit, and vice versa.
Striped Flags (continued)

- The number of distinct colorings of the flag is thus the number of orbits.
- Burnside’s lemma (p. 941) says the number of orbits is
 \[\frac{|F(I)| + |F(\pi)|}{2}. \]
- The identity permutation \(I \) fixes every coloring \(x \in X \).
- So \(|F(I)| = 3^6 \).
Striped Flags (concluded)

- On the other hand, π fixes a coloring $x \in X$ if and only if x is a palindrome.
- Hence $|F(\pi)| = 3^3$.
- Our desired count is hence
 \[\frac{3^6 + 3^3}{2} = 378. \]
- In general, if the flag has $2s$ stripes and k colors, then the count equals
 \[\frac{k^{2s} + k^s}{2}. \]
Finite Fields and Combinatorial Designs
Fields Revisited

• A ring \((R, +, \cdot)\) is a field if \((R - \{0\}, \cdot)\) is an abelian group.\(^a\)

 – This means there is a multiplicative identity \(1 \neq 0\) and every nonzero element is a unit.\(^b\)

• Alternatively, \((R, +, \cdot)\) is a field if:

 – \((R, +)\) is an abelian group.

 – \((R - \{0\}, \cdot)\) is an abelian group.

 – The distributive law of \(\cdot\) over \(+\) holds.

\(^{a}\)Recall p. 794.

\(^{b}\)That is, it has a multiplicative inverse (p. 776).
Proper Divisors of Zero and Fields

Theorem 146 If \((F, +, \cdot)\) is a field, then it has no proper divisors of zero.

- Immediate from Theorem 108 (p. 797).
The Ring Properties of \mathbb{Z}_n

- $(\mathbb{Z}_n, +, \cdot)$ is a ring, where both $+$ and \cdot are modulo n.
- It is in fact abelian under \cdot as well as $+$.
- Furthermore, it has a multiplicative identity, 1.
- From p. 808, we know each $a \in \mathbb{Z}_n$ has a multiplicative inverse a^{-1} if and only if $\gcd(a, n) = 1$.
- Hence in \mathbb{Z}_n, $[a]$ is a unit\(^a\) if and only if $\gcd(a, n) = 1$.\(^b\)

\(^a\)In other words, $a \in \mathbb{Z}_n$ has a multiplicative inverse (p. 776).
\(^b\)Recall p. 801 for the notation $[a]$: All the integers congruent to a modulo n.
When Is \mathbb{Z}_n a (Finite) Field?

Theorem 147 \mathbb{Z}_n is a field if and only if n is a prime.

Proof (\Leftarrow):

- Verify each condition.\(^a\)

Proof (\Rightarrow):

- Suppose $n = n_1n_2$ is not a prime, where $1 < n_1, n_2 < n$.
- Because $n_1n_2 \equiv 0 \mod n$, we have $n_1 \cdot n_2 = 0$.
- As F has proper divisors of zero, it is not a field by Theorem 146 (p. 973).

\(^a\)Page 808 is helpful here.
A Finite Field with 4 Elements

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

So it cannot be isomorphic to \mathbb{Z}_4 by Theorem 147.
Polynomials

- Let \((R, +, \cdot)\) be a ring.
- Let \(x\) denote an indeterminate—a formal symbol that is not an element of \(R\).
- Then
 \[
 f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,
 \]
 where \(a_i \in R\), is called a polynomial in the indeterminate \(x\) with coefficients from \(R\).
Polynomials (continued)

• If $a_n \neq 0$, the a_n is called the leading coefficient of $f(x)$, and the degree of $f(x)$ is n.
 – The degree of $f(x)$ is denoted by $\deg f(x)$, $\deg f$, or $\deg(f)$.

• A degree-0 polynomial is an element of R.
 – They are called constant polynomials.
Polynomials (concluded)

- $R[x]$ is the set of all polynomials in the indeterminate x with coefficients from R.

- By identifying constant polynomials with elements of R, we can view R as a subring of $R[x]$.

- If R has unity 1, a polynomial is **monic** if its leading coefficient is 1.
Polynomial Additions and Multiplications

• Let \(f(x) = \sum_{i=0}^{n} a_i x^i \) and \(g(x) = \sum_{i=0}^{m} b_i x^i \), with \(n \geq m \).

• \(f(x) + g(x) = \sum_{i=0}^{n} (a_i + b_i) x^i \), where \(b_i = 0 \) for \(i > m \).

• \(f(x) \cdot g(x) = \sum_{i=0}^{n+m} \left[\sum_{j=0}^{i} (a_j \cdot b_{i-j}) \right] x^i \).

• Note that \(+ \) and \(\cdot \) for polynomials are built on \(+ \) and \(\cdot \) for elements of \(R \); they are not identical, however.

Theorem 148 \((R[x], +, \cdot)\) is a ring called the polynomial ring over \(R \). The zero element is 0, the zero polynomial.
Polynomial Additions and Multiplications (concluded)

Theorem 149 For $f, g \in R[x]$,

\[\deg(f + g) \leq \max(\deg(f), \deg(g)), \]
\[\deg(f \cdot g) \leq \deg(f) + \deg(g). \]

If R is an integral domain, then

\[\deg(f \cdot g) = \deg(f) + \deg(g). \]

- An integral domain has no proper divisors of zero.
- Hence the product of two leading coefficients cannot be zero.
Polynomial Rings over \mathbb{Z}_n

- $\mathbb{Z}_n[x]$ is a polynomial ring because \mathbb{Z}_n is a ring.
- The multiplication of two polynomials of degrees n and m may produce a polynomial of degree \textit{less than} $n + m$.
- For example, in $\mathbb{Z}_8[x]$,

\[
(4x^2 + 1)(2x + 3) = 8x^3 + 12x^2 + 2x + 3 = 4x^2 + 2x + 3.
\]
Polynomial Ring over a Field

- We shall limit polynomial rings $R[x]$ to cases where R is a field from now on.
- Hence F will be used instead of R.
- The multiplication of two nonzero polynomials will produce a polynomial whose degree is the addition of the degrees of the original two polynomials.
The Division Algorithm

- Let \(f(x), g(x) \in F[x] \) with \(f(x) \neq 0 \).
- There exist unique polynomials \(q(x), r(x) \in F[x] \) such that
 \[
g(x) = q(x)f(x) + r(x),
\]
 where \(\deg r < \deg f \).
Divisors and Units

- The ideas of divisors and multiples for polynomials are the standard ones.
- The units\(^a\) of \(F[x]\) are the divisors of the constant polynomial 1.
- In other words, they are all the nonzero constant polynomials.

\(^a\)Recall p. 776.
Greatest Common Divisors Again

- Let \(f(x), g(x) \in F[x] \).
- Then \(h(x) \in F[x] \) is a greatest common divisor of \(f(x) \) and \(g(x) \) if:
 - \(h(x) \) divides both \(f(x) \) and \(g(x) \).
 - If \(k(x) \in F[x] \) and \(k(x) \) divides both \(f(x) \) and \(g(x) \), then \(k(x) \) divides \(h(x) \).
Greatest Common Divisors Again (concluded)

- A monic greatest common divisor, denoted by $\gcd(f(x), g(x))$, is unique.
- A greatest common divisor can be calculated by the Euclidean algorithm for polynomials.
- Two polynomials are relatively prime if their gcd is 1.
- The generalization to $\gcd(f_1(x), f_2(x), \ldots, f_n(x))$ is straightforward.
Irreducible Polynomialsa

• Let $f(x) \in F[x]$ with F a field and $\text{deg } f(x) \geq 1$.

• We call $f(x)$ reducible (over F) if:

 – There exist $g(x), h(x) \in F[x]$ such that

 $$f(x) = g(x)h(x).$$

 – Besides, $\text{deg } g, \text{deg } h \geq 1$.

• If $f(x)$ is not reducible, it is called irreducible or prime.

aI changed the book’s definition on p. 807, which is not quite correct.
Irreducible Polynomials (concluded)

• Every polynomial of degree one is irreducible.

• Members of F are neither irreducible nor reducible.
 – We required $\deg f(x) \geq 1$.

• The reducibility or irreducibility of a polynomial depends on the field under consideration.
 – $x^2 - 2$ is irreducible over \mathbb{Q} but reducible over \mathbb{R}.

• Testing irreducibility is not believed to be computationally easy unless factorization is easy.
Sieve Method to Enumerate Irreducible Polynomials over \mathbb{Z}_p

1: $P = \{ x, x + 1, \ldots, x + (p - 1) \}$;
2: {Find irreducible polynomials of degree n.}
3: for $n = 2, 3, \ldots$ do
4: for each polynomial $q(x)$ of degree n over \mathbb{Z}_p do
5: if $q_1(x) \nmid q(x)$ for all $q_1(x) \in P$ with degree $< n$
 then
6: $P := P \cup \{ q(x) \}$;
7: end if
8: end for
9: end for
Irreducible Polynomials over \mathbb{Z}_2

For polynomials over the binary field \mathbb{Z}_2, the irreducible polynomials are

$$x, x + 1$$
$$x^2 + x + 1$$
$$x^3 + x + 1, x^3 + x^2 + 1$$
$$x^4 + x^3 + x^2 + x + 1, x^4 + x + 1, x^4 + x^3 + 1$$
$$\vdots$$
Characteristic

• Let \((R, +, \cdot)\) be a ring.

• Suppose there is a least positive integer \(n\) such \(nr = z\), the zero of \(R\), for all \(r \in R\).

 – Recall that \(nr\) is a shorthand for \(\underbrace{r + r + \cdots + r}_{n}\), not \(n \cdot r\), which is undefined.

• Then we say \(R\) has characteristic \(n\).

• When no such integer exists, \(R\) is said to have characteristic 0.
Examples

• The ring \((\mathbb{Z}_n, +, \cdot)\) has characteristic \(n\).
 – Clearly, \(nr = 0 \mod n\) for all \(r \in \mathbb{Z}_n\).
 – Any other number \(m < n\) cannot cut it.

• The ring \((\mathbb{Z}, +, \cdot)\) has characteristic 0.

• The ring \(\mathbb{Z}_n[x]\) has characteristic \(n\).
 – Clearly, \(np(x) = 0\) for all polynomial \(p(x) \in \mathbb{Z}_n[x]\).
 – Again, \(np(x)\) means \(\underbrace{p(x) + p(x) + \cdots + p(x)}_{n}\).
 – Any other number \(m < n\) cannot cut it.
The Characteristic of a Field

Theorem 150 *The characteristic of a field must be zero or a prime.*

- Let \(n > 0 \) be the characteristic.
- Write the unity of the field as \(u \) to distinguish it from integer 1 for clarity.
- Suppose instead that \(n = mk \), where \(1 < m, k < n \).
- By definition, \(nu = z \), the zero of the field.
- Hence,

\[
(mk)u = z.
\]
The Proof (continued)

• But

\[(mk)u = \underbrace{mk} u + \cdots + u\]

\[= \underbrace{mk} u^2 + \cdots + u^2\]

\[= \underbrace{m} (u + \cdots + u) \cdot \underbrace{k} (u + \cdots + u)\]

\[= (mu) \cdot (ku).\]

– Note that \(u^2 = u\) (why?).
The Proof (concluded)

- As we are working with a field, \((mu) \cdot (ku) = z\) would imply \(mu = z\) or \(ku = z\).

- Assume \(ku = z\) (the case of \(mu = z\) is identical).

- Then for all \(r\) in the field,

 \[
 kr = k(u \cdot r) = u \cdot r + \cdots + u \cdot r = \underbrace{(u + \cdots + u)}_{k} \cdot r = (ku) \cdot r = z \cdot r = z.
 \]

- As \(k < n\), this contradicts the assumption that \(n\) is the characteristic.
Order of a Finite Field

Theorem 151 A finite field has order p^t for some prime p and $t \in \mathbb{Z}^+$. (And p is the characteristic of the field.)

- We skip the proof.
Congruence Modulo a Polynomial

- Let $f(x), g(x), s(x) \in F[x]$, and $s(x) \neq 0$.
- Write $f(x) \equiv g(x) \pmod{s(x)}$ if $s(x)$ divides $f(x) - g(x)$.
 - We say $f(x)$ is congruent to $g(x)$ modulo $s(x)$.
- By the division algorithm, there exist polynomials $q(x), r(x) \in F[x]$ such that
 \[f(x) = q(x)s(x) + r(x), \]
 where $r(x) = 0$ or $\deg r(x) < \deg s(x)$.
- Then $f(x) \equiv r(x) \pmod{s(x)}$.
Algebra of Polynomials Modulo a Polynomial

- Let \(s(x) \in F[x] \) be a nonzero polynomial.
- Consider the algebra of polynomials over \(F \) where polynomial additions and multiplications are modulo \(s(x) \).
- This algebra is a ring, denoted by \(F[x]/(s(x)) \).
 - Just go over each condition required of a ring.
Finite Field Representation

Theorem 152 \(F[x]/(s(x)) \) is a field if and only if \(s(x) \) is irreducible.

- We skip the proof.
- Let \(p \) be a prime.
- If \(\deg s(x) = n \), then
 \[
 | \mathbb{Z}_p[x]/(s(x)) | = p^n.
 \]
- This is consistent with Theorem 151 (p. 997).
The Galois Field

- Irreducible polynomial of degree \(n \) with coefficients in \(\mathbb{Z}_p \) exists for any prime \(p \) and \(n \in \mathbb{Z}^+ \).
- An irreducible polynomial \(s(x) \) can be used to generate the finite field \(\mathbb{Z}_p[x]/(s(x)) \) by Theorem 152 (p. 1000).
- We call the finite field \(\mathbb{Z}_p[x]/(s(x)) \) the **Galois field** of order \(p^n \).
- It is denoted by \(\text{GF}(p^n) \).
- All finite fields of order \(p^n \) are fundamentally identical.\(^a\)
- By Theorem 151 (p. 997), \(\text{GF}(p^n) \) exists for any prime \(p \) and any \(n \in \mathbb{Z}^+ \).

\(^a\)A finite field is also called a Galois field.
Equations

- By the Fermat–Euler theorem (p. 865), we know

\[x^{p^n-1} = 1 \]

for any \(x \in GF(p^n) - \{0\} \).

- Hence,

\[x^{p^n} - x = \prod_{a \in GF(p^n)} (x - a). \]
Equations (concluded)

• In particular,

\[x^{p-1} = 1 \mod p \]

for any \(0 < x < p \) by Fermat’s “little” theorem (p. 868).

– Hence,

\[x^p - x = \prod_{0 \leq a < p} (x - a). \]
Examples

• For GF(3),

\[(x - 0)(x - 1)(x - 2)\]
\[= x^3 - 3x^2 + 2x\]
\[= x^3 + 2x\]
\[= x^3 - x.\]

• For GF(5),

\[(x - 0)(x - 1)(x - 2)(x - 3)(x - 4)\]
\[= x^5 - 10x^4 + 35x^3 - 50x^2 + 24x\]
\[= x^5 + 24x\]
\[= x^5 - x.\]
Generators of a Finite Field

• Every finite field has a generator (or primitive root) g that generates its nonzero elements.
 – The multiplicative group (F^*, \cdot) of a finite field F is cyclic.\(^a\)

• The number of generators in $\text{GF}^*(p^n)$ is $\phi(p^n - 1) > 0$.
 – The four generators in $\text{GF}^*(11)$ are 2, 6, 7, and 8.
 – For $\text{GF}^*(p)$, the likelihood of drawing a generator from $\{1, 2, \ldots, p - 1\}$ is $\phi(p - 1)/(p - 1)$.

• For $\text{GF}^*(p)$, $\phi(k)$ numbers between 1 and $p - 1$ have an order of k, where $k \mid (p - 1)$.\(^b\)

\(^a\)Recall Theorem 132 (p. 893).
\(^b\)Recall Lemma 131 (p. 890).
Finis