Functions with a Given Range Size

- There are \(n!S(m, n) \) onto functions from a domain of size \(m \) to a codomain of size \(n \).

- In general, there are \(P(n, r) \ S(m, r) \) functions from a domain of size \(m \) to a codomain of size \(n \) with a range of size \(r \).\(^a\)
 - There are \(\binom{n}{r} \) to choose the range.
 - Given a range as the codomain, there are \(r!S(m, r) \) onto functions.
 - Hence the desired count is
 \[
 \binom{n}{r} r!S(m, r) = P(n, r) \ S(m, r). \quad (39)
 \]

\(^a\)Recall from Eq. (1) on p. 13 that \(P(n, r) = n(n - 1) \cdots (n - r + 1) \).
Functions with a Given Range Size (concluded)

- In the special case of \(r = n \), Eq. (39) reduces to

\[
P(n, n) S(m, n) = n! S(m, n),
\]

as it should be.
An Identity for Stirling Numbers

\[\sum_{k=1}^{m} S(m, k) x(x - 1) \cdots (x - k + 1) = x^m. \quad (40) \]

- The number of functions from \(A \) to \(B \) is \(x^m \), where \(| A | = m \) and \(| B | = x \) (p. 244).
- Equation (39) on p. 290 says
\[S(m, k) x(x - 1) \cdots (x - k + 1) \]
is the number of functions whose range has size \(k \).
- This proves the identity for \(x \in \mathbb{Z}^+ \).
An Identity for Stirling Numbers (concluded)

- Hence the polynomial

\[\sum_{k=1}^{m} S(m, k) x(x - 1) \cdots (x - k + 1) - x^m \]

has more than \(m \) roots, its degree.

- Therefore, it must be identically zero.
Finally, Proof of Eq. (33) on P. 269

It suffices to prove Eq. (37) on p. 277:

\[
\frac{1}{n!} \sum_{j=0}^{n} (-1)^{n-j} \binom{n}{j} j^m
\]

\[
= \sum_{j=0}^{n} \frac{(-1)^{n-j}}{(n-j)! j!} \sum_{r=0}^{j} S(m, r) j(j-1) \cdots (j-r+1) \quad \text{by Eq. (40) on p. 292}
\]

\[
= \sum_{j=0}^{n} \sum_{r=0}^{j} (-1)^{n-j} S(m, r) \frac{1}{(n-j)! (j-r)!}
\]

\[
= \sum_{r=0}^{n} S(m, r) \frac{1}{(n-r)!} \sum_{j=r}^{n} (-1)^{n-j} \frac{(n-r)!}{(n-j)! (j-r)!}
\]

\[
= S(m, n) + \sum_{r=0}^{n-1} S(m, r) \frac{1}{(n-r)!} (1 - 1)^{n-r} = S(m, n) \quad \text{by Eq. (11) on p. 60}
\]
A Recurrence Relation for Stirling Numbers

\[
S(m + 1, n) = \begin{cases}
1, & \text{if } m + 1 = n, \\
1, & \text{if } n = 1, \\
S(m, n - 1) + nS(m, n), & \text{if } 2 \leq n \leq m.
\end{cases}
\] (41)

- \(S(m + 1, n)\) counts the number of ways objects

\[a_1, a_2, \ldots, a_{m+1}\]

are distributed among \(n\) identical containers, with no containers left empty.\(^a\)

- Object \(a_{m+1}\) can be in a container all by itself or with other objects.

\(^a\)Recall p. 276.
The Proof (concluded)

• Object a_{m+1} is alone.
 - $S(m, n-1)$ is the number of ways a_1, a_2, \ldots, a_m are distributed among $n-1$ identical containers, with none left empty.

• Object a_{m+1} is not alone.
 - $S(m, n)$ is the number of ways a_1, a_2, \ldots, a_m are distributed among n identical containers, with none left empty.
 - Now object a_{m+1} has n containers to choose from.
Another Recurrence Relation for Stirling Numbers

\[S(m, n) = \sum_{k=n-1}^{m-1} \binom{m-1}{k} S(k, n-1), \quad n \leq m. \]

(42)

• The left-hand side denotes the number of distributions of \(m \) distinct objects into \(n \) identical containers with none left empty.

• Fix an object \(O \).

• Call a container that has \(O \) the \(O \)-container.

• The \(O \)-container must contain \(r \) other objects, where

\[0 \leq r \leq m - n. \]

\[a \]

\[a \text{The } O \text{-container thus has } r + 1 \text{ objects.} \]
The Proof (concluded)

- These r objects can be chosen in $\binom{m-1}{r}$ ways.
- With each choice, the other $n - 1$ containers may be filled in $S(m - r - 1, n - 1)$ ways.

- Hence

$$S(m, n) = \sum_{r=0}^{m-n} \binom{m-1}{r} S(m - 1 - r, n - 1)$$

$$= \sum_{r=0}^{m-n} \binom{m-1}{m-1-r} S(m - 1 - r, n - 1)$$

$$= \sum_{k=n-1}^{m-1} \binom{m-1}{k} S(k, n - 1).$$
A Special Case: \(S(m, m - 1) = \binom{m}{2} \) for \(m > 0 \)

From Eq. (42) on p. 297,

\[
S(m, m - 1) = \sum_{k=m-2}^{m-1} \binom{m-1}{k} S(k, m - 2)
\]

\[
= \binom{m-1}{m-2} S(m-2, m - 2) + \binom{m-1}{m-1} S(m-1, m - 2)
\]

\[
= (m - 1) + S(m - 1, m - 2)
\]

\[
= (m - 1) + (m - 2) + S(m - 2, m - 3)
\]

\[
= (m - 1) + (m - 2) + \cdots + 1 = \binom{m}{2}.
\]

\(^a\)Check that the proof works even when \(m = 1 \). Thanks to a lively discussion on March 29, 2018.
\[S(m, m - 1) = \binom{m}{2} \] the Easier Way

- Consider any distribution of \(m \) distinct objects into \(m - 1 \) identical containers with no containers left empty.
- There must be one container with 2 objects and \(m - 2 \) containers with 1 object (why?).
- The 2-object container can be composed in \(\binom{m}{2} \) ways.
Bella Numbers

- The mth Bell number P_m is the number of partitions of m distinct objects.b

- Alternatively, there are P_m ways for m distinct objects to form groups.
 - There are 5 ways to partition 3 distinct objects:

 $$\{\{1, 2, 3\}\}, \{\{1\}, \{2\}, \{3\}\},$$
 $$\{\{1, 2\}, \{3\}\}, \{\{1, 3\}, \{2\}\}, \{\{1\}, \{2, 3\}\}. $$

aEric Temple Bell (1883–1960).
bIt differs from the Stirling number of the second kind in that the number of partitions is \textit{not} fixed.
A Formula for Bell Numbers

• By convention $P_0 = 1$.

• For $m > 0$,\(^a\)

$$
P_m = \sum_{k=0}^{m} S(m, k) = \sum_{k=0}^{\infty} S(m, k).
$$

– The above formula also works for P_0.\(^b\)

• Indeed, $P_3 = 5$.

\(^a\)Recall that $S(m, 0) = 0$ for $m > 0$ by Eq. (38) on p. 278.

\(^b\)Recall that $S(0, 0) = 1$ on p. 278.
Dobinski’s Equality

• Now,

\[
P_m = \sum_{k=0}^{\infty} \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^m
\]

\[= \sum_{j=0}^{\infty} \frac{j^m}{j!} \sum_{k=j}^{\infty} \frac{(-1)^{k-j}}{(k-j)!}
\]

\[= \frac{1}{e} \sum_{j=0}^{\infty} \frac{j^m}{j!}.
\]
A Recurrence Relation for Bell Numbers

\[P_n = \begin{cases}
1, & \text{if } n = 0, \\
\sum_{k=0}^{n-1} \binom{n-1}{k} P_k, & \text{if } n \geq 1.
\end{cases} \quad (43) \]

- The proof is the same as that for Eq. (42) on p. 297.
- Let \(|S| = n\) and fix an \(x \in S\).
- A group with \(k\) elements that contains \(x\) can be chosen in \(\binom{n-1}{k-1}\) ways.
- The remaining \(n - k\) elements can be partitioned in \(P_{n-k}\) ways.
The Proof (concluded)

• So the number of partitions in which the group containing x has k elements is $\binom{n-1}{k-1}P_{n-k}$.

• Finally,

$$P_n = \sum_{k=1}^{n} \binom{n-1}{k-1}P_{n-k}$$

$$= \sum_{k=1}^{n} \binom{n-1}{n-k}P_{n-k}$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k}P_k.$$
Where five economists are gathered together there will be six conflicting opinions, and two of them will be held by Keynes.

— Thomas Jones (1954)
The Pigeonhole Principlea

- If \(m \) pigeons occupy \(n \) pigeonholes and \(m > n \), at least one pigeonhole has two or more pigeons roosting in it.

- With \(m \) pigeons and \(n \) single-occupancy pigeonholes with \(m > n \), at least one pigeon is “homeless.”

aDirichlet (1834).
The Pigeonhole Principle (continued)

• If m pigeons occupy n pigeonholes and $m > n$, at least one pigeonhole has $\geq \lceil (m - 1)/n \rceil + 1$ pigeons.a

 – Otherwise, every pigeonhole has $\leq \lfloor (m - 1)/n \rfloor$ pigeons.

 – So the number of pigeons is at most $n \lfloor (m - 1)/n \rfloor \leq m - 1 < m$, a contradiction.

• If $nk + 1$ pigeons occupy n pigeonholes and $k \in \mathbb{Z}^+$, at least one pigeonhole has $\geq k + 1$ pigeons.

 – Otherwise, the number of pigeons is at most nk.

\footnote{It may be called the averaging principle, similar to the mean-value theorem in calculus.}
The Pigeonhole Principle (concluded)

Theorem 42 If there are $\geq p_1 + p_2 + \cdots + p_n - n + 1$ pigeons occupying pigeonholes 1, 2, \ldots, n, then for some j, pigeonhole j contains $\geq p_j$ pigeons.

- Assume otherwise: Every pigeonhole j has at most $p_j - 1$ pigeons.

- The total number of pigeons is at most

\[
(p_1 - 1) + (p_2 - 1) + \cdots + (p_n - 1)
= p_1 + p_2 + \cdots + p_n - n,
\]

a contradiction.
Johann Peter Gustav Lejeune Dirichlet (1805–1859)
Application: Friendship

- Assumption 1: If A is a friend of B’s, then B is also a friend of A’s.

- Assumption 2: One cannot be a friend of oneself.\(^a\)

Theorem 43 In any group of people, there exist 2 people who have the same number of friends in the group.

- Let \(x_i\) denote the number of friends of person \(i\), where \(0 \leq i \leq n - 1\).

- Note that \(0 \leq x_i \leq n - 1\).

- Suppose \(x_i\) are distinct.

\(^a\)“And so it was you that was your own friend, was it?” — Charles Dickens (1839), *Oliver Twist*.
The Proof (concluded)

- Relabel them so that $x_0 < x_1 < \cdots < x_{n-1}$.
- Then $x_i = i$ for all i.
- Remove the friendless person 0 from the group.
- The remaining $n - 1$ persons’ friends will be unchanged.
- Hence person $n - 1$ is a friend of $n - 1$ other people.
- This is impossible because there are only $n - 1$ people.
Application: Dividends

Theorem 44 Let \(n \in \mathbb{Z}^+ \) be odd. Then there exists a positive integer \(m \leq n \) such that \(n \mid (2^m - 1) \).

- Consider \(n + 1 \) integers: \(2^1 - 1, 2^2 - 1, \ldots, 2^{n+1} - 1 \).
- There exist \(s < t \) such that \(2^s - 1 \equiv 2^t - 1 \mod n \).
 - Only \(n \) remainders are possible.
- So \(n \mid (2^t - 2^s) \), or equivalently \(n \mid (2^{t-s} - 1) \cdot 2^s \).
- Because \(n \) is odd, \(n \mid (2^{t-s} - 1) \).
- Pick \(m = t - s \leq n \) to finish the proof.
Application: Coding Theory

Theorem 45 Let \(n \in \mathbb{Z}^+ \) and \(q \in \mathbb{Z}^+ \) such that \(\gcd(n, q) = 1 \). Then \(n \mid (q^m - 1) \) for some \(1 \leq m \leq n \).

- Use the division algorithm to yield the following set of \(n + 1 \) equations:

\[
\begin{align*}
q &= Q_1 n + r_1, \\
q^2 &= Q_2 n + r_2, \\
& \quad \vdots \\
q^{n+1} &= Q_{n+1} n + r_{n+1}.
\end{align*}
\]

- Above, \(0 \leq r_i \leq n - 1 \) for all \(i \).
The Proof (concluded)

- Because there are $n + 1$ equations with n possible remainders, two remainders must be identical, say $r_i = r_j, \quad i < j$.

- Hence

$$q^j - q^i = Q_j n + r_j - Q_i n - r_i.$$

- This implies that

$$q^i(q^{j-i} - 1) = (Q_j - Q_i) n.$$

- Because $\gcd(n, q) = 1$, n divides $q^{j-i} - 1$.

- Finally, set $m = j - i \leq n$ to finish the proof.
Application: Mutual Divisibility

Theorem 46 (Putnam, 1958) Any subset of \(n + 1 \) numbers from \(\{1, 2, \ldots, 2n\} \) must contain \(x, y \) such that \(x \) divides \(y \) or \(y \) divides \(x \).

- Express every positive integer as \(2^k m \), where \(m \) is odd.
- There are at most \(n \) possibilities for \(m \):

 \[1, 3, 5, \ldots, 2n - 1. \]

- Hence any set of \(n + 1 \) integers must contain two \(x, y \) with the same \(m \): \(x = 2^{k_1} m \) and \(y = 2^{k_2} m \).
- Now, \(x \mid y \) if \(k_1 < k_2 \) and \(y \mid x \) otherwise.
Bijective Functions

• A function $f : A \to B$ is bijective or a one-to-one correspondence\(^a\) if it is one-to-one and onto.
 - Necessarily, $|A| = |B|$.

• For example, $f : \mathbb{Z} \to \mathbb{Z}$ is bijective for $f(x) = x$.

• But $f(x) = x$ is not bijective if $f : \mathbb{Z} \to \mathbb{Q}$ (it is not onto).

• If $|A| = |B| = m$, then there are $m!$ bijective functions from A to B.

\(^a\)Note the definitional difference between a one-to-one (injective) function (p. 260) and a one-to-one correspondence.
Function Composition

• Suppose \(f : A \to B \) and \(g : B \to C \).

• The \textbf{composite function} \(g \circ f : A \to C \) is defined as

\[
(g \circ f)(a) = g(f(a))
\]

for each \(a \in A \).\(^{a}\)

• Note that \(f \) is applied \textit{first}.

• Also, \(f \)'s range must be a subset of \(g \)'s domain for \(g \circ f \) to work.

\(^{a}\)Read as “\(g \) circle \(f \),” “\(g \) composed with \(f \),” “\(g \) after \(f \),” “\(g \) following \(f \),” or “\(g \) of \(f \).”
Properties of Composite Functions

Theorem 47 Let $f : A \rightarrow B$ and $g : B \rightarrow C$. If f and g are one-to-one, then $g \circ f$ is also one-to-one.

- Let $a_1, a_2 \in A$ with
 \[(g \circ f)(a_1) = (g \circ f)(a_2).\]
- Then
 \[g(f(a_1)) = g(f(a_2)).\]
- As g is one-to-one, this implies
 \[f(a_1) = f(a_2).\]
- As f is one-to-one, this implies $a_1 = a_2$, as desired.
Function Composition Is Associative

Theorem 48 Let \(f : A \rightarrow B\), \(g : B \rightarrow C\), and \(h : C \rightarrow D\). Then \((h \circ g) \circ f = h \circ (g \circ f)\).

For every \(a \in A\),

\[
((h \circ g) \circ f)(a) = (h \circ g)(f(a)) = h(g(f(a))) = h((g \circ f)(a)) = (h \circ (g \circ f))(a).
\]
Powers of Functions

• As function composition is associative (p. 321), we write

\[h \circ g \circ f \]

in place of \((h \circ g) \circ f\) or \(h \circ (g \circ f)\).

• Let \(f : A \rightarrow A\).

• Define \(f^1 = f\).

• In general,

\[f^{n+1} = f \circ (f^n) = \cdots = f(f(f(\cdots f))) \]

for \(n \in \mathbb{Z}^+\).
The Identity Function

- Function $1_A : A \to A$ is defined by
 \[1_A(a) = a \]
 for all $a \in A$.
- This function is called the **identity function** for A.
Invertibility of Functions

• Suppose \(f : A \to B \).

• \(f \) is said to be \textbf{invertible} if there is a function \(g : B \to A \) such that
 \[g \circ f = 1_A \quad \text{and} \quad f \circ g = 1_B. \]

• So
 - \(g(f(a)) = a \) for all \(a \in A \).
 - \(f(g(b)) = b \) for all \(b \in B \).
Uniqueness of the Inverse Function

Theorem 49 Suppose \(f : A \to B \) is invertible. Then a function \(g : B \to A \) such that

\[
\begin{align*}
g \circ f &= 1_A, \\
f \circ g &= 1_B,
\end{align*}
\]

must be unique.

- Suppose there is another function \(h : B \to A \) with

\[
\begin{align*}
h \circ f &= 1_A, \\
f \circ h &= 1_B.
\end{align*}
\]
The Proof (concluded)

• Now,

\[
\begin{align*}
h &= h \circ 1_B \\
 &= h \circ (f \circ g) \\
 &= (h \circ f) \circ g \\
 &= 1_A \circ g \\
 &= g.
\end{align*}
\]
The Inverse Function

• We call the function \(g \) in Theorem 49 (p. 325), the inverse of \(f \), written as

\[
 f^{-1}.
\]

• Again by Theorem 49 (p. 325), if \(f \) is invertible, so is \(f^{-1} \), whose inverse is \((f^{-1})^{-1} \) by definition.

• In fact, if \(f \) is invertible, then

\[
 (f^{-1})^{-1} = f.
\]

 – Note that

\[
 (f^{-1})^{-1} \neq f^{-2}.
\]
Conditions for Invertibility

Theorem 50 \(f \) is invertible if and only if it is bijective.

- Assume that \(f : A \to B \) is invertible first.
- Then by Theorem 49 (p. 325) there is a unique function \(g : B \to A \) such that \(g \circ f = 1_A \) and \(f \circ g = 1_B \).
- Suppose \(a_1, a_2 \in A \) such that \(f(a_1) = f(a_2) \).
- Then \(g(f(a_1)) = g(f(a_2)) \); i.e.,
 \[
 (g \circ f)(a_1) = (g \circ f)(a_2).
 \]
- This implies \((1_A)(a_1) = (1_A)(a_2) \); i.e., \(a_1 = a_2 \).
- Hence \(f \) is one-to-one.
The Proof (continued)

• Let \(b \in B \).

• Then

\[
b = (1_B)(b) = (f \circ g)(b) = f(g(b)).
\]

• So \(f \) is onto.

• Conversely, suppose \(f \) is bijective.

• Define \(g : B \to A \) by

\[
g(b) = a
\]

whenever \(f(a) = b \).
The Proof (concluded)

• As \(f \) is onto, for each \(b \in B \) there is an \(a \in A \) such that \(f(a) = b \).

• This \(a \) is also unique.
 – If \(f(a_1) = f(a_2) = b \), then \(a_1 = a_2 \) because \(f \) is one-to-one.

• Hence \(g \) is a function.

• By \(g \)'s definition, \(g \circ f = 1_A \) and \(f \circ g = 1_B \).

• Hence \(g = f^{-1} \) by Theorem 49 (p. 325).
Inverse of the Composite Function

Theorem 51 If \(f : A \to B \) and \(g : B \to C \) are invertible, then \(g \circ f \) is also invertible and

\[
(g \circ f)^{-1} = f^{-1} \circ g^{-1}.
\]
Preimage of a Function

• Consider $f : A \rightarrow B$, an arbitrary function (not necessarily bijective).

• Let $B' \subseteq B$.

• Define

$$f^{-1}(B') = \{ a \in A : f(a) \in B' \}.$$

• The set $f^{-1}(B')$ is called the preimage or inverse image of B' under f.

• Above, f^{-1} is not meant to denote the inverse function of f as f may not even be invertible.

• We do not even assume f^{-1} is a function at all.
Relations: The Second Time Around
Whatsoever we imagine is finite. Therefore there is no idea, or conception of any thing we call infinite.
— Thomas Hobbes (1588–1679), *Leviathan* (1651)
Reflexive Relations

- $R \subseteq A \times A$ is a relation on A.
- R is reflexive if $(x, x) \in R$ (or xRx) for all $x \in A$.
 - “\leq” is reflexive because $x \leq x$.
 - “$=$” is reflexive because $x = x$.
- If $|A| = m$, then there are $2^{m^2} - m$ reflexive relations on A.
 - Except the m required $(x, x) \in R$, membership in R for the other $m^2 - m$ pairs of $A \times A$ is arbitrary.
Irreflexive Relations

• Relation \mathcal{R} on A is **irreflexive** if $(x, x) \notin \mathcal{R}$ for all $x \in A$.

 – “$<$” is irreflexive because $x \not< x$.

• For $|A| = m$, there are again

 $$2^{m^2} - m$$

 irreflexive relations on A (see next page).

• “Being irreflexive” (exact opposite) is not the same thing as “not being reflexive”\(^a\) (complement).

\(^a\)Which means there is an x such that $(x, x) \notin \mathcal{R}$. By Eq. (27) on p. 240, there are $2^{m^2} - 2^{m^2} - m$ relations that are *not* reflexive.
Symmetric Relations

- \mathcal{R} is **symmetric** if $(x, y) \in \mathcal{R} \Rightarrow (y, x) \in \mathcal{R}$ for all $x, y \in A$.

- For example, “=” and “≠” are symmetric.
 - If $x = y$, then $y = x$.
 - If $x \neq y$, then $y \neq x$.
Number of Symmetric Relations

Lemma 52 If $|A| = m$, then there are

$$2^{(m^2+m)/2}$$

symmetric relations on A.

• There are m (x, x)s and $\binom{m}{2} = (m^2 - m)/2$ \{ x, y \}s with $x \neq y$.

• Number of decisions to make for membership in R:

$$m + (m^2 - m)/2 = (m^2 + m)/2.$$

\(^{a}\)Or focus on the upper triangular elements on the next page.
Transitive Relations

• \mathcal{R} is transitive if $(x, y) \in \mathcal{R} \land (y, z) \in \mathcal{R} \Rightarrow (x, z) \in \mathcal{R}$
 for all $x, y, z \in A$.
 - “\leq” is transitive.
 - “$<$” is transitive.
 - “\subseteq” is transitive.

• The number of transitive relations on a finite set seems hard to derive.a

aIt will make a nice research project.
Tournaments

- \mathcal{R} is a tournament if
 - \mathcal{R} is irreflexive: $(x, x) \not\in \mathcal{R}$.
 - For all $x \neq y$, either $(x, y) \in \mathcal{R}$ (x beats y) or $(y, x) \in \mathcal{R}$ (y beats x), but not both.
Number of Tournaments

Lemma 53 There are $2^{\binom{m}{2}}$ possible tournaments on m players.

- There are $\binom{m}{2}$ games for a tournament on m players.
- Each tournament has 2 outcomes.
Transitive Tournaments Can Be Ranked

• Suppose every player is beaten at least once.

• Start with any node \(a \) and follow the “is beaten by” edges, we will eventually obtain a cycle.

• Suppose node \(a' \) is on the cycle.

• This implies \((a', a') \in R\) by transitivity, a contradiction because \(R\) is irreflexive.

• Hence some player \(x \) is unbeaten and \(x \) is a “champion.”

\[^{a}^\text{Could there be multiple such } x \text{'s?}\]
Transitive Tournaments Can Be Ranked (concluded)

- Remove \(x \) and repeat the above argument.
- Player \(x \) must beat the next “champion” because \(x \) was unbeaten.
- Continue this process until there are no players left.
- The result is a sequence of players where earlier ones beat the later ones by transitivity.
Antisymmetric Relations

- \mathcal{R} is **antisymmetric** if

\[(x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R} \Rightarrow x = y\]

for all $x, y \in A$.

- “\subseteq” is antisymmetric.
- “\leq” is antisymmetric.

- Alternatively, \mathcal{R} is antisymmetric if

\[x \neq y \Rightarrow (x, y) \notin \mathcal{R} \lor (y, x) \notin \mathcal{R}\] \quad (44)

for all $x, y \in A$.

©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University
Antisymmetric Relations (continued)

• With DeMorgan’s law, Eq. (44) can be rewritten as

\[x \neq y \Rightarrow \neg[(x, y) \in R \land (y, x) \in R]. \]

• “\(<\)” is antisymmetric because

\[x \neq y \Rightarrow \neg[(x < y) \land (y < x)]. \]

 The original version would have asked us to prove

\[(x < y) \land (x > y) \Rightarrow x = y, \]

which is true too but perhaps less straightforward.
Antisymmetric Relations (concluded)

- Antisymmetry is clearly not the same as symmetry.
 - “⊆” is antisymmetric (p. 347) but not symmetric.

- Antisymmetry is not synonymous with “not being symmetric” either.
 - Take \mathcal{R} as the relation that is the empty set.
 - So $(x, y) \notin \mathcal{R}$ for any x, y.
 - Then \mathcal{R} is antisymmetric.
 - \mathcal{R} is also symmetric.
Number of Antisymmetric Relations

Lemma 54 If $|A| = m$, then there are

$$2^m 3^{(m^2 - m)/2}$$

antisymmetric relations on A.

- The m decisions on $(x, x) \in R$ are arbitrary.

- For each of the other $\binom{m}{2} = (m^2 - m)/2$ unordered pairs \{x, y\} (x \neq y), there are 3 choices by Eq. (44) on p. 347:
 1. $(x, y) \in R$ but $(y, x) \notin R$.
 2. $(x, y) \notin R$ but $(y, x) \in R$.
 3. $(x, y) \notin R$ and $(y, x) \notin R$.
Inverse Relations

- Let $\mathcal{R} \subseteq A \times B$ be a relation.

- The inverse of \mathcal{R}, denoted \mathcal{R}^{-1}, is this relation from B to A:
 $$\mathcal{R}^{-1} = \{(b, a) : (a, b) \in \mathcal{R}\}.$$
 - The inverse of “\leq” is “\geq” (not “$>$”).
 - The inverse of “$<$” is “$>$” (not “\geq”).

- Note that inversehood and complement are distinct concepts.
Lemma 55 If R is reflexive on A, then R^{-1} is also reflexive.

- Let $a \in A$.
- Then $(a, a) \in R$.
- Hence $(a, a) \in R^{-1}$.
- So R^{-1} is reflexive.
Composite Relations

- Let \(R_1 \subseteq A \times B \) and \(R_2 \subseteq B \times C \) be two relations.

- The **composite relation** \(R_1 \circ R_2 \) is a relation from \(A \) to \(C \) defined by
 \[
 \{(x, z) : x \in A, z \in C, \exists y \in B \ [(x, y) \in R_1 \land (y, z) \in R_2] \}.
 \]

- The associative law holds:
 \[
 R_1 \circ (R_2 \circ R_3) = (R_1 \circ R_2) \circ R_3.
 \]

- \(R^n = R \circ R \circ \cdots \circ R \) is called the **power** of \(R \).
Composition of Relations

A \rightarrow_B \rightarrow_C
Composite Functions and Relations

- A function is a special type of relation.\(^a\)
- For a composite function \(f_1 \circ f_2\), \(f_2\) is applied first.\(^b\)
- For a composite relation \(R_1 \circ R_2\), however, \(R_1\) is applied first followed by \(R_2\).\(^c\)

\(^a\)Recall p. 243.
\(^b\)Recall p. 318.
\(^c\)Recall p. 353.
Matrices and Zero-One Matrices

- The $m \times n$ matrix $(a_{ij})_{m \times n}$ denotes the entry in the ith row and the jth column is a_{ij}.

- The transpose of $A = (a_{ij})_{m \times n}$, written as A^{tr}, is the matrix $(b_{ij})_{n \times m}$, where $b_{ij} = a_{ji}$.

- I_n is the $n \times n$ identity matrix.

- A zero-one matrix has entries of zeros and ones.
 - Interpret “+” as “∨.”
 - Interpret “×” as “∧.”
Matrix Precedence

• Let $E = (e_{ij})$ and $F = (f_{ij})$ be two $m \times n$ zero-one matrices.

• We say E precedes (or is less than) F, written as $E \leq F$, if $e_{ij} \leq f_{ij}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$.

• For example,

\[
\begin{bmatrix}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} \leq \begin{bmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}.
\]
The Zero-One Matrix Representation of Relations

- Let R be a relation from $A = \{ a_1, a_2, \ldots, a_m \}$ to $B = \{ b_1, b_2, \ldots, b_n \}$.

- The relation matrix of R, $M(R)$, is the $m \times n$ zero-one matrix $(r_{ij})_{m \times n}$, where

$$
\begin{align*}
 r_{ij} &\triangleq \begin{cases}
 1, & \text{if } (a_i, b_j) \in R \\
 0, & \text{if } (a_i, b_j) \notin R
 \end{cases}
\end{align*}
$$

- It can be shown that

$$
M(R_1 \circ R_2) = M(R_1)M(R_2). \quad (45)
$$

 - This is why the specific order of composing relations on p. 353 is most convenient.
An Example

• Consider the binary relation $<$ on $\{1, 2, 3, 4\}$.

• Here is the relation matrix:

$$M(\langle) = \begin{bmatrix}
1 & 0 & 1 & 1 & 1 \\
2 & 0 & 0 & 1 & 1 \\
3 & 0 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 0
\end{bmatrix}.$$
An Example (continued)

• Now,

\[
M(\langle)M(\langle) = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}.
\]

• The entry at \((1, 4)\) is calculated as follows:

\[
[0, 1, 1, 1] \cdot [1, 1, 1, 0] = (0 \land 1) \lor (1 \land 1) \lor (1 \land 1) \lor (1 \land 0) = 1.
\]
An Example (concluded)

• By Eq. (45) on p. 358, the above denotes the relation \ll where $x \ll y$ if there exists a z with $x < z$ and $z < y$.

• Sensibly, it says

$$1 \ll 3, 1 \ll 4, 2 \ll 4.$$
Relation Matrices and Relations

- Let \mathcal{R} be a relation on A with $|A| = n$ and $M = M(\mathcal{R})$.
- \mathcal{R} is reflexive if and only if $I_n \leq M$.
 - This means that $m_{ii} = 1$ in $M = (m_{ij})_{1 \leq i,j \leq n}$.
- \mathcal{R} is symmetric if and only if $M = M^{tr}$.
- \mathcal{R} is transitive if and only if $M^2 \leq M$.
 - Verify this inequality with the $M(\prec)M(\prec)$ on p. 360.
- \mathcal{R} is antisymmetric if and only if $(M \wedge M^{tr}) \leq I_n$.
 - Verify this inequality with the $M(\prec)$ on p. 359.

aEquivalently, $\mathcal{R}^2 \subseteq \mathcal{R}$.

bRecall the definition (44) on p. 347.