Financial Application: Compound Interesta

- Consider $a_{n+1} = (1 + r) a_n$.
 - Deposit grows at a period interest rate of $r > 0$.
 - The initial deposit is a_0 dollars.
- The solution is obviously

 $a_n = (1 + r)^n a_0$.

- The deposit thus grows exponentially with time.

a“In the fifteenth century mathematics was mainly concerned with questions of commercial arithmetic and the problems of the architect,” wrote Joseph Alois Schumpeter (1883–1950) in \textit{Capitalism, Socialism and Democracy} (1942).
Financial Application: Amortization

• Consider $a_{n+1} = (1 + r) a_n - M$.
 – The initial loan amount is a_0 dollars.
 – The monthly payment is M dollars.
 – The outstanding loan principal after the nth payment is a_n.

• By Eq. (94) on p. 599, the solution is

$$a_n = (1 + r)^n a_0 - M \frac{(1 + r)^n - 1}{r}.$$
The Proof (concluded)

- What is the unique monthly payment M for the loan to be paid off after k monthly payments?

- Set $a_k = 0$ to obtain

$$a_k = (1 + r)^k a_0 - M \left(\frac{(1 + r)^k - 1}{r} \right) = 0.$$

- Hence

$$M = \frac{(1 + r)^k a_0 r}{(1 + r)^k - 1}.$$

- This is a standard formula for home mortgages and annuities.\(^a\)

\(^a\)Lyuu (2002).
Trial and Error a Third Time

- Consider the more general \(a_{n+1} - Aa_n = BC^n \).

- Calculations show that

 \[
 a_1 = Aa_0 + B, \\
 a_2 = Aa_1 + BC = A^2a_0 + B(A + C), \\
 a_3 = Aa_2 + BC^2 = A^3a_0 + B(A^2 + AC + C^2).
 \]

- Conjecture that is easily verified by substitution:

 \[
 a_n = \begin{cases}
 A^n a_0 + B \frac{A^n - C^n}{A - C}, & \text{if } A \neq C \\
 A^n a_0 + BA^{n-1}, & \text{if } A = C
 \end{cases}
 \quad (95)
 \]
Application: Runs of Binary Strings

- A run is a maximal consecutive list of identical objects (p. 113).
 - Binary string “0 0 1 1 1 0” has 3 runs.

- Let r_n denote the total number of runs determined by the 2^n binary strings of length n.

- First, $r_1 = 2$.
 - Each of “0” and “1” has 1 run.

- Next, $r_2 = 6$.
 - “00” and “11” each has 1 run, while “01” and “10” each has 2 runs.
The Proof (continued)

- In general, suppose we append a bit to every \((n-1)\)-bit string \(b_1b_2\cdots b_{n-1}\) to make \(b_1b_2\cdots b_{n-1}b_n\).

- First, suppose \(b_{n-1} = b_n\) (i.e., the last 2 bits are identical).

- Then the total number of runs does not change.
 - The total number of runs remains \(r_{n-1}\).
The Proof (continued)

• Next, suppose $b_{n-1} \neq b_n$ (i.e., the last 2 bits are distinct).

• Then the total number of runs increases by 1 for each $(n - 1)$-bit string.
 – There are 2^{n-1} of them.
 – So the total number of runs becomes $r_{n-1} + 2^{n-1}$.
The Proof (continued)

• Hence

\[r_n = 2r_{n-1} + 2^{n-1}, \quad n \geq 2. \] \hfill (96)

• By Eq. (95) on p. 604,

\[r_n = 2^n r_0 + 2^{n-1}n. \]

• To make sure that \(r_1 = 2 \), it is easy to see that \(r_0 = 1/2 \).

• Hence

\[r_n = 2^{n-1} + 2^{n-1}n = 2^{n-1}(n + 1). \]
The Proof (concluded)

• The recurrence (96) is identical to that for the number of edges of a Hasse diagram (p. 597).

• But the initial condition was different: \(a_1 = 1\).

• Its slightly different solution appeared in Eq. (93) on p. 596: \(a_n = n2^{n-1}\).
Method of Undetermined Coefficients

• Recall Eq. (92) on p. 593, repeated below:

\[C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = f(n). \]

(97)

• Let \(a_n^{(h)} \) denote the general solution of the associated homogeneous relation (with \(f(n) = 0 \)).

• Let \(a_n^{(p)} \) denote a particular solution of the nonhomogeneous relation.

• Then

\[a_n = a_n^{(h)} + a_n^{(p)}. \]

• All the entries in the table on p. 595 fit the claim.
Conditions for the General Solution

Similar to Theorem 69 (p. 551), we have the following.

Theorem 70 Let \(a_n^{(p)} \) be any particular solution of the nonhomogeneous recurrence relation Eq. (97) on p. 610. Let

\[
a_n^{(h)} = C_1 a_n^{(1)} + C_2 a_n^{(2)} + \cdots + C_k a_n^{(k)}
\]

be the general solution of its homogeneous version as specified in Theorem 69. Then \(a_n^{(h)} + a_n^{(p)} \) is the general solution of Eq. (97) on p. 610.
Solution Techniques

- Typically, one finds the general solution of its homogeneous version $a_n^{(h)}$ first.
- Then one finds a particular solution $a_n^{(p)}$ of the nonhomogeneous recurrence relation Eq. (97) on p. 610.
- Make sure $a_n^{(p)}$ is “independent” of $a_n^{(h)}$.
- Finally, use the initial conditions to nail the coefficients of $a_n^{(h)}$.
- Output $a_n^{(h)} + a_n^{(p)}$.
\[a_{n+1} - Aa_n = B \]

Revisited

- Recall that the general solution is \(a_n^{(h)} = cA^n \) by Eq. (81) on p. 545.

- A particular solution is (verify it)

\[
a_n^{(p)} = \begin{cases}
 B/(1 - A), & \text{if } A \neq 1, \\
 Bn, & \text{if } A = 1.
\end{cases} \tag{98}
\]

- So \(a_n = cA^n + a_n^{(p)} \).

- In particular,

\[
c = a_0 - a_0^{(p)} = \begin{cases}
 a_0 - B/(1 - A), & \text{if } A \neq 1, \\
 a_0, & \text{if } A = 1.
\end{cases}
\]
\[a_{n+1} - Aa_n = B \] Revisited (concluded)

- The solution matches Eq. (94) on p. 599.
- We can also write the solution as

\[
a_n = \begin{cases}
 A^n [a_0 - a_0^{(p)}] + a_n^{(p)}, & \text{if } A \neq 1, \\
 a_0 + a_n^{(p)}, & \text{if } A = 1.
\end{cases}
\] (99)
Nonhomogeneous $a_n - 3a_{n-1} = 5 \times 7^n$ with $a_0 = 2$

- $a_n^{(h)} = c \times 3^n$, because the characteristic equation has the nonzero root 3.
- We propose $a_n^{(p)} = a \times 7^n$.
- Place $a \times 7^n$ into the relation to obtain $a \times 7^n - 3a \times 7^{n-1} = 5 \times 7^n$.
- Hence $a = 35/4$ and $a_n^{(p)} = (35/4) \times 7^n = (5/4) \times 7^{n+1}$.
- The general solution is $a_n = c \times 3^n + (5/4) \times 7^{n+1}$.
- Now, $c = -27/4$ because $a_0 = 2 = c + (5/4) \times 7$.
- So the solution is $a_n = -(27/4) \times 3^n + (5/4) \times 7^{n+1}$.
Nonhomogeneous \(a_n - 3a_{n-1} = 5 \times 3^n \) with \(a_0 = 2 \)

- As before, \(a_n^{(h)} = c \times 3^n \).
- But \(a_n^{(h)} \) and \(f(n) = 5 \times 3^n \) are not “independent” this time.
- So propose \(a_n^{(p)} = an \times 3^n \).
- Plug \(an \times 3^n \) into the relation to obtain
 \[an \times 3^n - 3a(n - 1) \times 3^{n-1} = 5 \times 3^n. \]
- Hence \(a = 5 \) and \(a_n^{(p)} = 5n \times 3^n \).
- The general solution is \(a_n = c \times 3^n + 5n \times 3^n \).
- Finally, \(c = 2 \) with use of \(a_0 = 2 \).
Nonhomogeneous $a_{n+1} - 2a_n = n + 1$ with $a_0 = 4$

- From Eq. (94) on p. 599, $a_n^{(h)} = c \times 2^n$.
- Guess $a_n^{(p)} = an + b$.
- Substitute this particular solution into the relation to yield

$$a(n + 1) + b - 2(an + b) = n + 1.$$

- Rearrange the above to obtain

$$(-a - 1)n + (a - b - 1) = 0.$$

- This holds for all n if $a = -1$ and $b = -2$.

The Proof (concluded)

• Hence \(a_n^{(p)} = -n - 2 \).

• The general solution is

\[
a_n = c \times 2^n - n - 2.
\]

• Use the initial condition

\[
4 = a_0 = c - 2
\]

to obtain \(c = 6 \).

• The solution to the complete relation is

\[
a_n = 6 \times 2^n - n - 2.
\]
Nonhomogeneous $a_{n+1} - a_n = 2n + 3$ with $a_0 = 1$

- This equation is very similar to the previous one:

$$a_{n+1} - 2a_n = n + 1.$$

- First, $a_n^{(h)} = d \times 1^n = d$.

- If one guesses $a_n^{(p)} = an + b$ as before, then

$$a_{n+1} - a_n = a(n + 1) + b - an - b = a,$$

which cannot be right.\(^a\)

- So we guess $a_n^{(p)} = an^2 + bn + c$.

\(^a\)Contributed by Mr. Yen-Chieh Sung (B01902011) on June 17, 2013.
The Proof (continued)

- Substitute this particular solution into the relation to yield

\[a(n + 1)^2 + b(n + 1) + c - (an^2 + bn + c) = 2n + 3. \]

- Simplify the above to obtain

\[2an + (a + b) = 2n + 3. \]

- The solutions are \(a = 1 \) and \(b = 2 \).

- Hence \(a_n^{(p)} = n^2 + 2n + c \).

- The general solution is \(a_n = n^2 + 2n + c. \)

\[^a \text{We merge} \ d \text{into} \ c. \]
The Proof (concluded)

- Use the initial condition

 \[1 = a_0 = c \]

 to obtain \(c = 1 \).

- The solution to the complete relation is

 \[a_n = n^2 + 2n + 1 = (n + 1)^2. \]

- It is very different from the solution to the previous example:

 \[a_n = 6 \times 2^n - n - 2. \]
Nonhomogeneous $a_{n+2} - 3a_{n+1} + 2a_n = 2$ with $a_0 = 0$ and $a_1 = 2$

- The characteristic equation $r^2 - 3r + 2 = 0$ has roots 2 and 1.
- So $a_n^{(h)} = c_11^n + c_22^n = c_1 + c_22^n$.
- Guess $a_n^{(p)} = an + b$.
- Substitute $a_n^{(p)}$ into the relation to yield

 $$a(n + 2) + b - 3[a(n + 1) + b] + 2(an + b) = 2.$$

- Rearrange the above to obtain $a = -2$.
- Hence $a_n^{(p)} = -2n + b$.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University
The Proof (concluded)

- The general solution is now \(a_n = c_1 + c_22^n - 2n \).\(^a\)

- Use the initial conditions

\[
\begin{align*}
0 &= a_0 &= c_1 + c_2, \\
2 &= a_1 &= c_1 + 2c_2 - 2.
\end{align*}
\]

To obtain \(c_1 = -4 \) and \(c_2 = 4 \).

- The solution to the complete relation is

\[
a_n = -4 + 2^{n+2} - 2n.
\]

\(^a\)We merge \(b \) into \(c_1 \).
The Method of Generating Functionsa

- Consider the relation $a_n - 3a_{n-1} = n$ with $a_0 = 1$.
- Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for a_0, a_1, \ldots.
- From the recurrence equation,
 \[
 \sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} 3a_{n-1} x^n = \sum_{n=1}^{\infty} n x^n.
 \]
- $f(x) - a_0 - 3xf(x) = \sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2}$ from p. 479.
- Hence
 \[
 f(x) = \frac{x}{(1-x)^2} + 1 \frac{1}{1 - 3x}.
 \]

a Recall p. 567.
The Method of Generating Functions (continued)

• Now,

\[
f(x) = \frac{1}{1 - 3x} + \frac{x}{(1 - x)^2(1 - 3x)}
\]

\[
= \frac{7/4}{1 - 3x} + \frac{-1/4}{1 - x} + \frac{-1/2}{(1 - x)^2}
\]

by a partial fraction decomposition.

– The following equivalent form is not a partial fraction decomposition:

\[
\frac{7/4}{-3x + 1} + \frac{x - 3}{(1 - x)^2}.
\]
The Method of Generating Functions (continued)

Now,

\[
\frac{7/4}{1 - 3x} = (\frac{7}{4}) \frac{1}{1 - 3x} = (\frac{7}{4}) \sum_{n=0}^{\infty} (3x)^n,
\]

\[
\frac{-1/4}{1 - x} = -(\frac{1}{4}) \frac{1}{1 - x} = -(\frac{1}{4}) \sum_{n=0}^{\infty} x^n,
\]

\[
\frac{-1/2}{(1 - x)^2} = -(\frac{1}{2}) \frac{1}{(1 - x)^2} = -(\frac{1}{2}) \sum_{n=0}^{\infty} (n + 1) x^n, \quad \text{from p. 478.}
\]
The Method of Generating Functions (concluded)

- Now,

\[
f(x) = \left(\frac{7}{4}\right) \sum_{n=0}^{\infty} 3^n x^n - \left(\frac{1}{4}\right) \sum_{n=0}^{\infty} x^n - \left(\frac{1}{2}\right) \sum_{n=0}^{\infty} (n + 1) x^n.
\]

- So

\[
a_n = \left(\frac{7}{4}\right) 3^n - \left(\frac{1}{4}\right) - \left(\frac{1}{2}\right)(n + 1).
\]

- The methodology should be clear.
The Method of Generating Functions for
\[a_{n+1} - a_n = 3^n \text{ with } a_0 = 1 \]

- Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be the generating function for \(a_0, a_1, \ldots \).

- From the recurrence equation,
 \[\sum_{n=0}^{\infty} a_{n+1} x^{n+1} - \sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{n=0}^{\infty} 3^n x^{n+1}. \]

- \(f(x) - a_0 - xf(x) = x \sum_{n=0}^{\infty} (3x)^n = \frac{x}{1-3x}. \)

- This implies that
 \[f(x) = \frac{x}{1-3x} + \frac{1}{1-x} = \frac{1/2}{1-3x} + \frac{1/2}{1-x} = (1/2) \sum_{n=0}^{\infty} (3^n + 1) x^n. \]

- Hence \(a_n = (3^n + 1)/2. \)
The Method of Generating Functions for
\[a_{n+1} - Aa_n = B \] Again

- Assume \(A \neq 1 \).

- We next obtain Eq. (99) on p. 614,
\[
a_n = A^n [a_0 - a_0^{(p)}] + a_n^{(p)},
\]
by the method of generating functions.

- Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be the generating function for \(a_0, a_1, \ldots \).
The Proof (continued)

• Then

\[
\sum_{n=0}^{\infty} a_{n+1}x^{n+1} - \sum_{n=0}^{\infty} Aa_n x^{n+1} = \sum_{n=0}^{\infty} Bx^{n+1}.
\]

• So

\[
f(x) - a_0 - Ax f(x) = Bx \frac{1}{1-x}
\]

from p. 475.
The Proof (continued)

- Simplify the identity to yield

\[
f(x) = \frac{a_0}{1 - Ax} + \frac{Bx}{(1 - x)(1 - Ax)}
\]

\[
= \frac{a_0}{1 - Ax} + \frac{B}{1 - A} \left(\frac{1}{1 - x} - \frac{1}{1 - Ax} \right)
\]

\[
= \frac{a_0}{1 - Ax} + a_n^{(p)} \left(\frac{1}{1 - x} - \frac{1}{1 - Ax} \right)
\]

\[
= \left[a_0 - a_n^{(p)} \right] \frac{1}{1 - Ax} + a_n^{(p)} \frac{1}{1 - x},
\]

where \(a_n^{(p)} = B/(1 - A)\), matching Eq. (98) on p. 613.
The Proof (concluded)

• From p. 475,

\[
f(x) = \left[a_0 - a_n^{(p)} \right] \sum_{n=0}^{\infty} A^n x^n + a_n^{(p)} \sum_{n=0}^{\infty} x^n.
\]

– Note that \(a_n^{(p)} \) is independent of \(n \).

• So

\[
a_n = A^n \left[a_0 - a_n^{(p)} \right] + a_n^{(p)},
\]

matching the earlier solution (99) on p. 614 as desired.
Convolution

• Consider the following recurrence equation,

\[b_{n+1} = b_0 b_n + b_1 b_{n-1} + \cdots + b_{n-1} b_1 + b_n b_0. \]

• Let \(f(x) = \sum_{n=0}^{\infty} b_n x^n \).

• Then

\[\sum_{n=0}^{\infty} b_{n+1} x^{n+1} = \sum_{n=0}^{\infty} (b_0 b_n + b_1 b_{n-1} + \cdots + b_n b_0) x^{n+1}. \]

• So \(f(x) - b_0 = x f^2(x) \) from p. 485.
The Proof (continued)

• When $b_0 = 1$,

$$f(x) = \left(1 \pm \sqrt{1 - 4x}\right)/(2x).$$

• Pick

$$f(x) = \left(1 - \sqrt{1 - 4x}\right)/(2x)$$

to match b_0.\(^a\)

• By Eq. (69) on p. 496,

$$\sqrt{1 - 4x} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n (-4x)^n = \sum_{n=0}^{\infty} \binom{1/2}{n} (-4)^n x^n.$$

\(^a f(0) = \infty \) if one picked $f(x) = (1 + \sqrt{1 - 4x})/(2x)$ instead (Graham, Knuth, & Patashnik, 1989).
The Proof (concluded)

• Now, by Eq. (65) on p. 494,

\[
\binom{1/2}{n}(-4)^n = \frac{1}{n!} \left(\frac{1}{2} - 1 \right) \cdots \left(\frac{1}{2} - n + 1 \right) (-4)^n = -\frac{1}{2n-1} \binom{2n}{n}.
\]

• So

\[
f(x) = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2(2n-1)} x^{n-1} = \sum_{n=1}^{\infty} \frac{\binom{2n-2}{n-1}}{n} x^{n-1} = \sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{n+1} x^n,
\]

the Catalan numbers (recall Eq. (18) on p. 120)!
An Example

• It is easy to verify that

\[f(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + \cdots. \]

• The coefficients indeed match

\[\frac{0}{1}, \frac{2}{2}, \frac{4}{3}, \frac{6}{4}, \frac{8}{5}, \frac{10}{6}, \cdots. \]
A Binary Tree

\[\text{Gustav Kirchhoff (1824–1887).}\]
Number of Rooted Binary Trees

- There is a distinct node called the **root**.
- Every node has at most two descendants.
- A rooted binary tree is **ordered** if the left and right branches are considered distinct.
- What is the number b_n of rooted ordered binary trees on n nodes?
Illustration: $b_3 = 5$
Number of Rooted Binary Trees: The Formula

• $b_0 = 1$, as it is the empty tree.

• Recursively,

$$b_{n+1} = b_0 b_n + b_1 b_{n-1} + \cdots + b_{n-1} b_1 + b_n b_0.$$

- $b_i b_{n-i}$: i nodes on the left and $n - i$ nodes on the right, $0 \leq i \leq n$.

• So b_n is the nth Catalan number by Eq. (100) on p. 635:

$$b_n = \frac{\binom{2n}{n}}{n+1}.$$
An Introduction to Graph Theory
If 50 million people believe a foolish thing, it’s still a foolish thing.
— George Bernard Shaw (1856–1950)
Graphs\(^a\)

- Let \(V \) be a finite nonempty set of nodes.
- Let \(E \subseteq V \times V \) be a set of edges.
- \(G = (V, E) \) is the directed graph (or digraph) made up of the node set \(V \) and the edge set \(E \).
- When \(E \) is considered to consist of *unordered* pairs, \((V, E)\) is called an **undirected graph**.\(^b\)

\(^a\)Founded by Leonhard Euler in 1736.

\(^b\)Assumed unless stated otherwise.
Graphs (continued)

- A graph is **loop-free** if it contains no (self-)loops.
- A **multigraph** allows parallel edges between nodes.
Graphs (concluded)

- A loop-free undirected graph without parallel edges between nodes is said to be **simple**.
- A node is **isolated** if it has no incident edges.
- For an undirected graph, we typically use \{x, y\} to represent an edge.
- For a digraph, we always use (x, y) to represent an edge.
Illustration of Graphs

- In the following graph G,

$$V = \{ a, b, c, d, e, f, g, h \}$$

$$E = \{ \{ a, b \}, \{ a, e \}, \{ a, f \}, \{ b, c \}, \{ b, g \}, \{ b, f \}, \{ f, g \}, \{ f, h \}, \{ c, d \}, \{ c, h \}, \{ c, g \}, \{ d, e \}, \{ d, h \}, \{ g, h \}, \{ h, e \} \}.$$
Applications of Graph Theory

- Representation of networks, both structured ones like interconnection networks and unstructured ones like telephone networks or social networks.
- Natural representation of relations (p. 364).
- A computation can be described as a digraph.
- Optimization problems such as circuit layout.
- Physical systems such as ferromagnetism.

- ...
Additional Notions

• Let $G = (V, E)$ be a graph (directed or otherwise).

• $G_1 = (V_1, E_1)$ is called a **subgraph** of G if
 - $\emptyset \neq V_1 \subseteq V$.
 - $E_1 \subseteq V_1 \times V_1$.
 - $E_1 \subseteq E$.

• G_1 is an **induced subgraph** of G if it is a subgraph of G and $E_1 = E \cap (V_1 \times V_1)$.

• An undirected graph G is **connected** if there is a path between any two distinct nodes of G.

• A **component** is a maximal subgraph that is connected.
Illustration of Subgraphs
All Kinds of Walks on Undirected Graphs

- A walk from x to y is a finite sequence of non-loop edges connecting x and y.
- The length of a walk is the number of edges in it.
- A walk from x to y where $x \neq y$ is called an open walk.
- A walk from x to itself is called a closed walk.
- A walk without repeated edges is called a trail.
- A closed trail is called a circuit.
All Kinds of Walks on Undirected Graphs (concluded)

- A walk without repeated nodes is a (simple) path.
- A closed path is called a cycle.
 - A cycle must be a circuit, but not vice versa.
- By convention, a cycle has at least 3 distinct edges.
- A cycle of even length is called an even cycle.
- A cycle of odd length is called an odd cycle.
- These definitions apply to digraphs with minimum changes.
- A digraph that has no cycles is acyclic.
Illustration of Walks

- \((b, c, g, b, f)\) is a trail of length 4.
- \((a, b, c)\) is a path of length 2.
- \((a, b, c, d, e, a)\) is a cycle of length 5.
- \((g, b, c, g, h, e, a, f, g)\) is a circuit but not a cycle (as \(g\) is repeated).
Partial Order and Its Digraph Representation

• The digraph representation of a partial ordera must be acyclic.b

• Any acyclic digraph entails a partial order.
 – Take the transitive closure of the digraph.
 – The resulting digraph clearly remains acyclic.
 – Add a loop to every node.
 – It is not hard to check that the digraph’s associated relation satisfies the definition of partial order.

aRecall p. 371.

bRecall p. 376.
Transitive Closure of a Digraph
Diameter

- Let $G(V, E)$ be an undirected graph.
- The **distance** between nodes $x, y \in V$ (or $d(x, y)$) is the minimum length of all the paths between x and y.
- The **diameter** $d(G)$ of G is the maximum distance over all pairs of nodes of G.
 - So the distance between any two nodes is at most $d(G)$.
- Diameter can be computed by an efficient all-pair-shortest-paths algorithm.\(^a\)

\(^a\)Roy (1959); Floyd (1962); Warshall (1962).
Complete Graphs

- Let V be a set of n nodes.
- The **complete graph** on V, denoted K_n, is a loop-free\(^a\) undirected graph.
 - There is an edge between any pair of distinct nodes.
 - K_n has $\binom{n}{2}$ edges.
- The diameter of K_n is clearly one.

\(^a\)Depending on applications, sometimes (self-)loops are allowed.
K_{17}
Complete Graphs (concluded)

- There are \(\binom{n}{i} \) ways to pick \(i \) nodes from \(K_n \).\(^a\)

- As there are \(\binom{i}{2} \) pairs of nodes, there are \(2^{\binom{i}{2}} \) ways to pick the edges.

- Hence \(K_n \) has

\[
\sum_{i=1}^{n} \binom{n}{i} 2^{\binom{i}{2}}
\]

subgraphs.

- Can you simplify it?

\(^aK_n\) is a labeled graph.
An Inequality Relating $|V|$ and $|E|$

Lemma 71 Let $G = (V, E)$ be a simple undirected graph. Then $|V| \geq \frac{1+\sqrt{1+8|E|}}{2}$.

- G has at most $\left(\frac{|V|}{2}\right)$ edges (the complete graph).
- So V must be big enough such that $\left(\frac{|V|}{2}\right) \geq |E|$.
- This results in $|V|^2 - |V| \geq 2 \times |E|$, or
 \[
 \left(|V| - \frac{1}{2}\right)^2 \geq \frac{1}{4} + 2 \times |E| \geq \frac{1 + 8 \times |E|}{4}.
 \]
Complements

- The **complement** of graph G, denoted \overline{G}, is the subgraph of K_n consisting of the nodes in G and all edges that are *not* in G.

- \overline{K}_n, consisting of n nodes and no edges, is called a **null graph**.
Degrees

- Let $G = (V, E)$ be an undirected graph.

- For each node $v \in G$, the degree of v, or $\text{deg}(v)$, is the number of edges in G that are incident with v.

- A self-loop contributes two incident edges.
A Useful Identity

Lemma 72 (The handshaking theorem)

\[\sum_{v \in V} \deg(v) = 2 \times |E|. \] (101)

- An edge is counted twice, once at each end.

Corollary 73 For finite graphs, the number of nodes of odd degree must be even.
Existence of Nodes with Identical Degree

- Let $G = (V, E)$ be a simple undirected graph without isolated nodes.
- Let $n \triangleq |V| \geq 2$.
- Observe that $1 \leq \deg(v) \leq n - 1$.
- But there are n nodes.
- By the pigeonhole principle (p. 308), there must be 2 nodes with the same degree.
Regular Graphs

- A **d-regular graph** is an undirected graph such that every node has degree d.

- An d-regular graph $G = (V, E)$ must have an even number of nodes if d is odd.
 - By Eq. (101) on p. 662,
 \[2 \times |E| = d \times |V|. \]
 - As d is odd, $|V|$ must be even.
The Hypercube

• The nodes of the n-dimensional hypercube Q_n are represented as n-bit numbers.a

 – There are 2^n nodes.

• Two nodes are connected if they differ in one dimension.

 – For example, there is an edge between 00100 and 00110.

• The diameter is n.

• It is n-regular.

aRecall p. 597.
The Hypercube (concluded)

- There are
 \[
 \frac{n2^n}{2} = n2^{n-1}
 \]
 undirected edges.

- The hypercube was once a popular topology for massively parallel processors (MPPs).

- The record is \(n = 16 \) set by Thinking Machine Corp.’s Connection Machine CM-2.\(^a\)

\(^a\)Hillis (1985).
Illustration with Q_3