Graph Coloring

- Let $G = (V, E)$ be an undirected graph.

- A proper coloring of G occurs when its nodes are colored so that adjacent nodes have different colors.

- The minimum number of colors needed to color G is the chromatic number of G and is written as $\chi(G)$.

- Four colors suffice to color any planar graph.a

aAppel & Haken (1976). Although the original proof uses a computer, a computer-generated formal proof has been given by Gonthier (2004)! This theorem was examined in 1850 by Francis Guthrie (1831–1899) and made its official birth in a letter from DeMorgan to Hamilton in 1852. Kenneth Appel (1932–2013), “Without computers, we would be stuck only proving theorems that have short proofs.”
Graph Coloring (concluded)

- The graph colorability problem for 3 colors and up is computationally hard—it is NP-complete.\(^a\)

- The number of ways to color a graph on \(n\) nodes using \(k\) colors can be calculated in time \(O(2^n n^{O(1)})\).\(^b\)

- \(\chi(G)\) can be calculated in time \(O(2.2461^n)\).\(^c\)

\(^a\)Karp (1972).
\(^b\)Bjöklund & Husfeldt (2006).
\(^c\)Bjöklund & Husfeldt (2006).
The four-color theorem says that any map can be colored with just 4 colors.
Elementary Facts

• For all $n \geq 1$, $\chi(K_n) = n$.
 – Each node is adjacent to $n - 1$ other nodes.

• If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
 – A proper coloring of G is also one of H.

• An undirected graph G is bipartite if and only if $\chi(G) \leq 2$.
 – Given a bipartite partition $V = V_1 \cup V_2$, color V_1 and V_2 with two different colors.
An Upper Bound on the Chromatic Number

Theorem 82 (Vizing, 1964; Gupta, 1966) Every graph is \((\kappa + 1)\)-colorable, where \(\kappa\) is the maximum degree of the nodes.

1: \textbf{while} \(G(V, E)\) has uncolored nodes \textbf{do}
2: \hspace{1em} Pick an arbitrary uncolored \(v \in V\);
3: \hspace{1em} Choose color \(c\) that is not used by \(v\)’s \(\leq \kappa\) neighbors;
4: \hspace{1em} Color \(v\) with \(c\);
5: \textbf{end while}
Comments on Vizing’s Theorem

• This bound is tight because $\chi(K_n) = n$ (p. 709).

• Some neighbors may be colored with the same colors if they are not adjacent to each other.

• So $\kappa + 1$ may not be a lower bound for the chromatic number.\(^a\)

• A **clique** is a subgraph that is also a complete graph.

• Is the size of the largest clique in a graph the chromatic number?\(^b\)

\(^a\)Contributed by Mr. Asger K. Pedersen (T02202107) on June 5, 2014.

\(^b\)Contributed by Ms. Zhijing Jin (T05902125) on May 18, 2017.
Theorem 83 (Wigderson, 1983) Any 3-colorable graph can be colored in polynomial time with $O(\sqrt{n})$ colors.

• Surprisingly, no one knows how to do better!\(^a\)

\(^a\)Williamson & Shmoys (2011).
Independent Set

- Let $G = (V, E)$ be an undirected graph.
- An **independent set** for G is a set of nodes no two of which are adjacent.
- The size of a largest independent set is called the **independence number** or $\alpha(G)$.
A Maximum Independent Set
The Proof (concluded)

• Hence

\[
\alpha(G) \geq \sum_{v \in V} \frac{1}{\text{deg}(v) + 1} \\
\geq \sum_{v \in V} \frac{1}{d + 1} \\
\geq \frac{n}{d + 1} \\
\geq \frac{n}{2d}.
\]
Trees
I love a tree more than a man.
— Ludwig van Beethoven (1770–1827)

Most mathematicians work with calculus-type “smooth” problems, not discrete things like cleverly arranged arrays of zeros and ones.
— Diaconis and Graham, Magical Mathematics (2012)
Trees

- A **tree** is a loop-free undirected graph that is connected and contains no cycles.
- A **forest** is a loop-free undirected graph whose components are trees.

Lemma 84 A loop-free connected undirected graph has cycles if and only if it is not a tree.

- By definition of tree.

\(^{a}\)Kirchhoff (1847).
A Tree
Spanning Trees

- A **spanning tree** for a connected graph \(G = (V, E) \) is a subgraph of \(G \) with the same node set \(V \) that is also a tree.
 - A (minimum) spanning tree is computationally easy to construct.\(^a\)
 - The number of spanning trees of a connected labeled graph is easy to compute.\(^b\)

\(^{a}\)Borůvka (1926).
\(^{b}\)Kirchhoff (1847).
A Spanning Tree

The solid lines constitute the edges of a spanning tree.

An undirected graph has a spanning tree if and only if it is connected.
Properties of Trees

• If x and y are distinct nodes in a tree, then there is a unique path that connects them.
 – There is at least one such path because a tree is connected.
 – But more than one such path implies the existence of a cycle, a contradiction.
Properties of Trees (continued)

Theorem 85 For a tree \((V, E)\), \(|V| = |E| + 1\).

- Obviously true when \(|E| = 0\) as it is a single node.
- In general, a tree with \(|E| = k + 1\) edges breaks into two trees \((V_1, E_1)\) and \((V_2, E_2)\) by the deletion of an edge.
- By the induction hypothesis, \(|V_1| = |E_1| + 1\) and \(|V_2| = |E_2| + 1\).
- Hence,

\[|V| = |V_1| + |V_2| = |E_1| + |E_2| + 2 = |E| + 1. \]
Properties of Trees (continued)

- Theorem 85 (p. 723) may hold for nontrees.
- Consider the following graph:

```
  o-----o
    |   |
    o-----o
```

- It satisfies Theorem 85.
- But the graph is not connected.
Properties of Trees (concluded)

The following statements are equivalent for a loop-free undirected graph $G = (V, E)$.

1. G is a tree.

2. G is connected, but the removal of any edge disconnects G into two subgraphs that are trees.

4. G is connected, and $|V| = |E| + 1$.

5. G contains no cycles, and if $x, y \in V$ with $\{x, y\} \not\in E$, then the graph obtained by adding edge $\{x, y\}$ to G has precisely one cycle.
Corollary 86 For a forest \((V, E)\), \(|V| = |E| + \kappa\), where \(\kappa\) is the number of trees in the forest.

- From Theorem 85 (p. 723), \(|V_i| = |E_i| + 1\) for each tree in the forest.

- Hence

\[
|V| = \sum_{i=1}^{\kappa} |V_i| \\
= \sum_{i=1}^{\kappa} (|E_i| + 1) \\
= |E| + \kappa.
\]
Trees and Cycles

Corollary 87 If a loop-free connected undirected graph is not a tree, then $|V| \leq |E|$.

• Suppose $|V| \geq |E| + 1$ instead.

• Because the graph is not a tree, $|V| > |E| + 1$ by Property 4 on p. 725.

• But then the graph cannot be connected (why?), a contradiction.
Trees Have the Most Nodes

Corollary 88 Among loop-free connected undirected graphs with the same number of edges, trees have the most nodes.

- Consider a graph with \(m \) edges.
- From Corollary 87 (p. 727), a nontree must have \(\leq m \) nodes.
- But Theorem 85 (p. 723) says that a tree with \(m \) edges has \(m + 1 \) nodes.
Coloring of Trees

Theorem 89 Every tree is 2-colorable.

• Pick any node v.
• Color any node reachable from v via an odd number of edges red.
• Color any node reachable from v via an even number of edges blue.
• Because a tree has no cycles,\(^a\) ythe above operations will not contradict each other at any node.

\(^a\)Recall Lemma 84 (p. 718).
Planarity of Trees

Lemma 90 Trees are planar.

• A tree contains no cycles.

• So it cannot contain a subgraph homeomorphic to either $K_{3,3}$ or K_5.

• The lemma follows by Kuratowski’s theorem (p. 697).
Theorem 85 (p. 723) Reproved

- A tree \((V, E)\) is planar by Lemma 90 (p. 730).
- Then Euler’s theorem (p. 684) says \(|V| - |E| + 1 = 2\).
- But this is exactly what Theorem 85 says,

\[|V| = |E| + 1. \]
Theorem 91 (Berge, 1973) Let $1 \leq d_1 \leq d_2 \leq \cdots \leq d_n$ be integers. There exists a tree with degrees d_1, d_2, \ldots, d_n if and only if
\[d_1 + d_2 + \cdots + d_n = 2(n - 1). \tag{102} \]

- A tree on n nodes has $n - 1$ edges by Theorem 85 (p. 723).
- Hence $d_1 + d_2 + \cdots + d_n = 2(n - 1)$ by Eq. (98) on p. 659.
- We next prove the sufficiency of $d_1 + d_2 + \cdots + d_n = 2(n - 1)$ by induction on n.
The Proof (continued)

• As the case $n \leq 2$ is trivial, assume $n \geq 3$ from now on.

• $d_1 = 1$ because, otherwise,

\[d_1 + d_2 + \cdots + d_n \geq 2n > 2(n - 1). \]

• $d_n > 1$ because, otherwise,

\[d_1 + d_2 + \cdots + d_n = n < 2(n - 1). \]

• Therefore,

\[d_2 + d_3 + \cdots + (d_n - 1) = 2n - 4 = 2(n - 2). \]
The Proof (concluded)

• By the induction hypothesis, there exists an \((n - 1)\)-node tree \(T\) with degrees \(d_2, d_3, \ldots, d_{n-1}, d_n - 1\).\(^a\)

• Add a new node and join it to the node of \(T\) with degree \(d_n - 1\).

• This \(n\)-node tree has degrees

\[d_1(= 1), d_2, d_3, \ldots, d_n,\]

as desired.

\(^a\)It is not guaranteed that \(d_{n-1} \leq d_n - 1\).
Different Trees May Have the Same Degree Sequence

Contributed by Mr. Jyh-Jau Ma (B91902082) on December 8, 2003.
Degrees, Node Counts, and Edge Counts

Corollary 92 For a tree \((V,E)\) with degrees \(d_1, d_2, \ldots, d_{|V|}\),

\[
|V| = \left(\frac{1}{2} \sum_{i=1}^{\frac{|V|}{2}} d_i \right) + 1,
\]

\[
|E| = \frac{1}{2} \sum_{i=1}^{\frac{|V|}{2}} d_i.
\]

- Theorem 91 (p. 732) says
 \[d_1 + d_2 + \cdots + d_{|V|} = 2 \times |V| - 2.\]
- Theorem 85 (p. 723) says \(|V| = |E| + 1.\)
Remarks

• From Theorem 91 (p. 732), a valid degree sequence \(d_1 \leq d_2 \leq \cdots \leq d_n\) of an \(n\)-node tree must satisfy Eq. (102) on p. 732:

\[
d_1 + d_2 + \cdots + d_n = 2n - 2.
\]

• We also knew from the proof that \(d_1 = 1\) and \(d_n > 1\).
 – This fact is a consequence of the above identity.
 – It has nothing to do with whether the graph in question is a tree or not.
Remarks (continued)

• Furthermore, \(d_2 = 1\) because, otherwise,
\[
d_1 + d_2 + \cdots + d_n \geq 1 + 2(n - 1) = 2n - 1 > 2n - 2.
\]

 – Again, this fact is a consequence of
 \[
d_1 + d_2 + \cdots + d_n = 2n - 2 \text{ alone.}
\]
 – It has nothing to do with whether the graph in question is a tree or not.

• The number of **pendant nodes** (end nodes) in a tree with at least 3 nodes is therefore at least 2 and at most \(n - 1\).

\(^a\)Contributed by Mr. Chun-Hung Hsiao (B91902102), Ms. Microat Wu (B91902051), and Mr. Jyh-Jau Ma (B91902082) on December 8, 2003.
Remarks (concluded)

• When $n = 3$, then $d_1 = 1$, $d_2 = 1$, $d_3 = 2$.
 - As $d_n > 1$ and the tree has 3 nodes, $d_3 = 2$.
 - Finally, $d_2 = 2(n - 1) - d_1 - d_3 = 4 - 1 - 2 = 1$.

• Theorem 91 (p. 732) may hold for nontrees.

• For example, it holds for the following nontree:

 \[\text{Diagram of a nontree} \]

• For undirected simple graphs, see Erdős and Gallai (1960).
Number of Valid Degree Sequences

• From Theorem 91 (p. 732), the number of valid degree sequences for \(n \)-node trees equals the number of integer solutions to

\[
d_1 + d_2 + \cdots + d_n = 2(n - 1),
\]

where \(1 \leq d_1 \leq d_2 \leq \cdots \leq d_n \).

• An equivalent formulation is

\[
x_1 + x_2 + \cdots + x_n = n - 2,
\]

where \(0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \).
The Proof (continued)

• From p. 532, the desired number equals the coefficient of x^{n-2} in

$$\frac{1}{(1-x)(1-x^2)\cdots(1-x^n)}.$$

- For instance,

$$\frac{1}{(1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)}$$

$$= 1 + x + 2x^2 + 3x^3 + \cdots.$$

- For 5-node trees, there are 2 valid degree sequences for 4-node trees, and 3 valid degree sequences.
The Proof (concluded)
Number of Labeled Trees with Degrees Specified

Lemma 93 The number of trees with degrees \(d_1, d_2, \ldots, d_n \) on \(n \) labeled nodes \(v_1, v_2, \ldots, v_n \) is

\[
\frac{(n - 2)!}{(d_1 - 1)! (d_2 - 1)! \cdots (d_n - 1)!},
\]

where node \(v_i \) has degree \(d_i > 0, i = 1, 2, \ldots, n \).

- We use induction on \(n \).
- The lemma holds trivially for \(n = 1, 2 \).\(^b\)

\(^a\)But counting the number of graphs with a specified degree sequence is hard—it is \(\#P \)-complete (Sinclair, 1993).

\(^b\)When \(n = 1 \), the formula says \((-1)!/(-1)! = 1\), which is true.
The Proof (continued)

- Without loss of generality, assume \(d_n = 1 \).\(^a\)
- Now remove node \(v_n \), which is adjacent to some node \(v_j \).
- The new tree on \(\{ v_1, v_2, \ldots, v_{n-1} \} \) has degrees
 \[
 d_1, \ldots, d_{j-1}, d_j - 1, d_{j+1}, \ldots, d_{n-1}.
 \]

\(^a\)See p. 737.
The Proof (continued)

- By the induction hypothesis, the number of trees with these characteristics is

\[
\frac{(n-3)!}{(d_1 - 1)! \cdots (d_{j-1} - 1)! (d_j - 2)! (d_{j+1} - 1)! \cdots (d_{n-1} - 1)!} = \frac{(d_j - 1)(n-3)!}{(d_1 - 1)! \cdots (d_{n-1} - 1)!}.
\]

- By Theorem 91 (p. 732),

\[
\sum_{j=1}^{n-1} (d_j - 1) = \left(\sum_{j=1}^{n-1} d_j \right) - (n - 1) = \left(\sum_{j=1}^{n} d_j \right) - 1 - (n - 1) = 2(n - 1) - n = n - 2.
\]
The Proof (concluded)

- Finally, the number of n-node trees with degrees d_1, d_2, \ldots, d_n equals

$$\sum_{j=1}^{n-1} \frac{(d_j - 1)(n - 3)!}{(d_1 - 1)! \cdots (d_{n-1} - 1)!}$$

$$= \left[\sum_{j=1}^{n-1} (d_j - 1) \right] \frac{(n - 3)!}{(d_1 - 1)! \cdots (d_{n-1} - 1)!}$$

$$= \frac{(n - 2)(n - 3)!}{(d_1 - 1)! \cdots (d_{n-1} - 1)!} = \frac{(n - 2)!}{(d_1 - 1)! \cdots (d_n - 1)!}.$$
The Case \((d_1, d_2, \ldots, d_5) = (1, 2, 2, 2, 1)\) with \(n = 5\)

There are \(\frac{3!}{0!0!1!1!1!} = 6\) trees.

\begin{align*}
\text{1} & \quad \text{1} \\
\text{2} & \quad \text{2} & \quad \text{3} & \quad \text{3} & \quad \text{4} & \quad \text{4} & \\
\text{3} & \quad \text{4} & \quad \text{2} & \quad \text{4} & \quad \text{2} & \quad \text{3} & \\
\text{4} & \quad \text{3} & \quad \text{4} & \quad \text{2} & \quad \text{3} & \quad \text{2} & \\
\text{5} & \quad \text{5} & \\
\end{align*}
T_n: The Number of n-Node Labeled Treesa

Theorem 94 (Cayley’s formula (1889); Kirchhoff, 1847)

The number of trees on n labeled nodes is

1. $T_n = n^{n-2}$ for $n > 1$,

2. $T_1 = 1$.

- It is trivial to see that $T_1 = 1$.
- Assume $n > 1$ from now on.

aOr, the number of spanning trees of K_n with labeled nodes.
The Proof (concluded)

- From Lemma 93 (p. 743) and Eq. (102) on p. 732, the desired number is

\[\sum_{d_1, \ldots, d_n \geq 1} \frac{(n - 2)!}{(d_1 - 1)! (d_2 - 1)! \cdots (d_n - 1)!} \frac{1}{d_1 + \cdots + d_n = 2n - 2} \]

\[= \sum_{k_1, \ldots, k_n \geq 0} \frac{(n - 2)!}{k_1! k_2! \cdots k_n!} \]

- But the above equals \((1 + 1 + \cdots + 1)^{n-2} = n^{n-2}\) by the multinomial theorem (p. 71).
Arthur Cayley (1821–1895)
The Case $T_4 = 4^2 = 16$
The Case $T_5 = 5^3 = 125$ (p. 742)

There are $5 \times 4 \times 3 = 60$ choices for (a), \(\binom{5}{2} \times 3! = 60\) choices for (b), and 5 choices for (c).
Rooted Trees

• Let G be a directed graph.

• G is called a **directed tree** if the undirected graph associated with G is a tree.

• A directed tree G is called a **rooted tree** if there is a unique node r, called the root, with an in degree of zero and for all other nodes v, the in degree of v is 1.

• A node with an out degree of zero is called a **leaf**.

• Non-leaf nodes are called **internal** nodes.

• The **level number** of a node in a rooted tree is the length of the path from the root to that node.
A Rooted Tree

- The level number of x is 4.
- Don’t ask me why computer scientists plant their trees upside down.
Binary Trees and Beyond

- A rooted tree is called a **binary tree** if the out degree of each node is 0, 1, or 2.
- A rooted tree is called a **complete binary tree** if the out degree of each node is 0 or 2.
- A rooted tree is called an **m-ary tree** if the out degree of each node is at most m.
- An m-ary tree is called a **complete m-ary tree** if the out degree of each node is 0 or m.
A Complete Binary Tree

root
Properties of Complete m-Ary Trees

Theorem 95 For a complete m-ary tree with n nodes, ℓ leaves, and i internal nodes,

1. $n = mi + 1$.
2. $\ell = (m - 1)i + 1$.
3. $i = (\ell - 1)/(m - 1) = (n - 1)/m$.

- Need to remove m leaves to “expose” one internal node.
- Now inductively, $n - m = m(i - 1) + 1$, proving property 1.
- Observe that $\ell = n - i = mi + 1 - i = (m - 1)i + 1$.
- Property 3 merely restates properties 1 and 2.
A Numerical Example Based on p. 756

- There, \(m = 2 \), \(n = 11 \), \(\ell = 6 \), and \(i = 5 \).

- We verify the three properties of Theorem 95 below.
 \[n = mi + 1: \quad 11 = 2 \times 5 + 1. \]
 \[\ell = (m - 1)i + 1: \quad 6 = (2 - 1) \times 5 + 1. \]
 \[i = (\ell - 1)/(m - 1) = (n - 1)/m: \]
 \[5 = (6 - 1)/(2 - 1) = (11 - 1)/2. \]

- All are satisfied.
Useful Corollaries for Binary Trees

Corollary 96 For a complete binary tree with ℓ leaves and i internal nodes,

$$i = \ell - 1 = (n - 1)/2.$$

- Apply Theorem 95(3) (p. 757) with $m = 2$.
Useful Corollaries for Binary Trees (concluded)

Corollary 97 For any binary tree with \(\ell \) leaves and \(i \) internal nodes, \(i \geq (n - 1)/2 \) and \(i \geq \ell - 1 \).

- For every internal node with an out degree of 1, append a leaf node to make its degree 2.
- Suppose \(k \geq 0 \) leaves are added in the end.
- As the new tree is a complete binary tree,
 \[i = \ell + k - 1 = \frac{n + k - 1}{2} \]
 by Corollary 96.
Additional Properties of Complete Trees

Theorem 98 Let T be a complete m-ary tree with n nodes and ℓ leaves. Then

1. $n = (m\ell - 1)/(m - 1)$.
2. $\ell = [(m - 1)n + 1]/m$.

- Let i be the number internal nodes.
- From Theorem 95(1) (p. 757), $n = mi + 1$.
- From Theorem 95(3) (p. 757), $i = (\ell - 1)/(m - 1)$.
- Combine the two to obtain

$$n = m[(\ell - 1)/(m - 1)] + 1 = (m\ell - 1)/(m - 1).$$
Of Height and Balance

• Let T be a rooted tree.

• If h is the largest level number achieved by a leaf of T, then T is said to have **height** h.

 – The tree on p. 754 has height 4.

• A rooted tree of height h is said to be **balanced** if the level number of every leaf is $h - 1$ or h.
Maximum Height of Binary Trees

Lemma 99 The maximum height of a rooted binary tree with n nodes is $n - 1$.

• A rooted binary tree achieves the maximum height when it forms a line.

• A line with n nodes has a length of $n - 1$.

• The result holds for rooted m-ary trees as well.a

aContributed by Mr. Asger K. Pedersen (T02202107) on June 5, 2014.
Height and Number of Leaves

Theorem 100 Consider a complete m-ary tree of height h with ℓ leaves. Then

$$\ell \leq m^h$$

(equivalently, $h \geq \lceil \log_m \ell \rceil$).

- True when $h = 1$ as T is a tree with a root and $\ell = m$ leaves.
- Assume the theorem holds for trees of height less than h.
- Consider a tree with height h and ℓ leaves.
The Proof (concluded)

- It has m subtrees T_1, T_2, \ldots, T_m at each of the children of the root.
- Let ℓ_i be T_i’s number of leaves and $h_i \leq h - 1$ be T_i’s height.
- $\ell_i \leq m^{h_i} \leq m^{h-1}$ by the induction hypothesis.
- So
 \[\ell = \ell_1 + \ell_2 + \cdots + \ell_m \leq m(m^{h-1}) = m^h. \]
Corollary 101 Consider a balanced complete m-ary tree with ℓ leaves. Then its height h equals $\lceil \log_m \ell \rceil$.

- $\ell \leq m^h$ by Theorem 100 (p. 764).
- $m^{h-1} < \ell$ because there are already m^{h-1} nodes with a level number of $h - 1$.
- Hence
 \[\lceil \log_m \ell \rceil \leq h < \log_m \ell + 1 \leq \lceil \log_m \ell \rceil + 1. \]
- As h must be an integer, $h = \lceil \log_m \ell \rceil$.
Rings and Modular Arithmetic
It you tackle a problem and seem to get stuck,
Just take it mod p and you’ll have better luck.
— Tom M. Apostol (1955)
and Saunders MacLane (1973),
Where Are the Zeros of Zeta of s?
Rings\(^a\)

- Let \(R \) be a nonempty set endowed with 2 closed binary operations “+” and “·”.

- \((R, +, ·)\) is a **ring** if the following conditions hold for all \(a, b, c \in R \).
 - \(a + b = b + a \) (commutative law of +).
 - \(a + (b + c) = (a + b) + c \) (associative law of +).
 - There exists \(z \in R \) such that \(a + z = z + a = a \) for every \(a \in R \) (existence of the **additive identity** or **zero element** for +).
 - For each \(a \in R \), there is a \(b \in R \) with \(a + b = b + a = z \) (existence of inverse under +).

\(^a\)Named by David Hilbert (1862–1943).
Rings (concluded)

• (continued)

 – $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associative law of \cdot).

 – $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in R$ (distributive laws of \cdot over $+$).

• The ring is said to be **commutative** if

 $$a \cdot b = b \cdot a$$

 for all $a, b, \in R$.
David Hilbert (1862–1943)
Comments

• It is helpful but dangerous to think of “+” as addition and “·” as multiplication.

• From the definitions,
 – A ring has an additive identity \(z \) (sometimes denoted by 0 and called zero element).
 – The additive inverse exists in a ring.

• A \(u \in R \) is called a multiplicative identity or unity if \(u \neq z \) and \(a \cdot u = u \cdot a = a \) for all \(a \in R \).
 – Sometimes, \(u \) is denoted by 1.
Comments (concluded)

• If a ring has a multiplicative identity, then it is called a ring with unity.

• An element $b \in R$ is said to be a’s *multiplicative* inverse if

$$a \cdot b = b \cdot a = 1.$$

• A multiplicative inverse is not guaranteed to exist in a ring.

• If $a \in R$ has a multiplicative inverse, then a is called a unit.
Some Basic Facts

• \((\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)\) are all rings.

 – The additive identity is 0.

 – The additive inverse of each number \(x\) is written as \(-x\).\(^a\)

• In any ring, the zero element \(z\) (i.e., the additive identity) is unique.

 – If \(z_1\) and \(z_2\) are two additive identities, then

 \[
 z_1 = z_1 + z_2 = z_2.
 \]

\(^a\)Note that “−” is not in the language of rings; it is merely a shorthand for the additive inverse.
Some Basic Facts (concluded)

- The additive inverse of a ring element is also unique.
 - For $a \in R$, suppose there are two elements $b, c \in R$ where

 $a + b = b + a = z,$
 $a + c = c + a = z.$

 - Then

 $b = b + z = b + (a + c) = (b + a) + c = z + c = c.$
A Useful Shorthand

- Let \((R, +, \cdot)\) be a ring.
- Consider \(kx\), where \(k \in \mathbb{Z}^+\) and \(x \in R\).
- This is clearly not an operation in \(R\) because \(k \notin R\).
- In fact, it is merely a shorthand for

\[
\underbrace{x + \cdots + x}_{k}\]

Rings with Sets

- Let U be a finite set.
- Consider $(R, +, \cdot) = (2^U, \Delta, \cap)$.
 - $A + B = A \Delta B$ for $A, B \subseteq U$.\(^a\)
 - $A \cdot B = A \cap B$ for $A, B \subseteq U$.
- It is not hard to see that $(2^U, \Delta, \cap)$ is a ring with unity.
- The additive identity is \emptyset.
- The multiplicative identity is U.
- This example shows it is dangerous to think of “+” as addition and “\cdot” as multiplication exclusively.

\(^a\)Recall Eq. (25) on p. 194.
Generalized Distributive Laws

Lemma 102 Let \((R, +, \cdot)\) be a ring. Then

\[(a_1 + \cdots + a_m) \cdot (b_1 + \cdots + b_n) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_i \cdot b_j\]

for \(m, n \in \mathbb{Z}^+\) and \(x, y \in R\).\(^a\)

Proof: By induction, it equals

\[(a_1 + \cdots + a_m) \cdot b_1 + \cdots + (a_1 + \cdots + a_m) \cdot b_n\]

\[= a_1 \cdot b_1 + a_2 \cdot b_1 + \cdots + a_m \cdot b_n.\]

\(^a\)Again, \(\sum\) is a shorthand.
A Practice Run

Lemma 103 Let \((R, +, \cdot)\) be a ring. Then \((kx) \cdot (jy) = (kj)(x \cdot y)\) for \(k, j \in \mathbb{Z}^+\) and \(x, y \in R\).

Proof:

\[
(kx) \cdot (jy) = (\underbrace{x + \cdots + x}_{k}) \cdot (\underbrace{y + \cdots + y}_{j})
\]

\[
= \underbrace{kj}_{x \cdot y + \cdots + x \cdot y}
\]

\[
= (kj)(x \cdot y),
\]

where the second equality is by Lemma 102 (p. 778).
Lemma 104 Let \((R, +, \cdot)\) be a ring. Then
\[(kx) \cdot (jy) = ((kj)x) \cdot y\]
for \(k, j \in \mathbb{Z}^+\) and \(x, y \in R\).

Proof:

\[
(kx) \cdot (jy) = \sum_{i=1}^{k} (x + \cdots + x) \cdot \sum_{i=1}^{j} (y + \cdots + y)
\]

\[
= \sum_{i=1}^{kj} x \cdot y + \cdots + x \cdot y
\]

\[
= (x + \cdots + x)^{kj} \cdot y
\]

\[
= ((kj)x) \cdot y,
\]

where the third equality is by Lemma 102 (p. 778).
The Cancellation Laws of $+$

Theorem 105 For all $a, b, c \in R$, (a) $a + b = a + c$ implies $b = c$, and (b) $b + a = c + a$ implies $b = c$.

- We focus on (a).
- As $a \in R$, it follows that $-a \in R$.
- Hence

\[
\begin{align*}
a + b &= a + c \quad \Rightarrow \quad (-a) + (a + b) = (-a) + (a + c) \\
&\Rightarrow \quad [(-a) + a] + b = [(-a) + a] + c \\
&\Rightarrow \quad z + b = z + c \\
&\Rightarrow \quad b = c.
\end{align*}
\]
Comments

• In the proof, we implicitly used the following property:

 \[
 \text{if } b = c, \text{ then } a + b = a + c.
 \]

• This is the opposite of the cancellation law.

• It is true because the left and right sides are identical.
A Corollary

Corollary 106 For any ring \((R, +, \cdot)\) and any \(a \in R\),

\[a \cdot z = z \cdot a = z. \]

- \(a \cdot z + a \cdot z = a \cdot (z + z) = a \cdot z.\)
- By the left-cancellation property (p. 781), \(a \cdot z = z.\)
A Criterion for Commutativity

Lemma 107 Let \((R, +, \cdot)\) be a ring. It is commutative if and only if
\[(a + b)^2 = a^2 + 2(a \cdot b) + b^2\]
for all \(a, b \in R\).

- Note that
\[(a + b)^2 = (a + b) \cdot (a + b) = a^2 + b \cdot a + a \cdot b + b^2.\]

- So if \((a + b)^2 = a^2 + 2(a \cdot b) + b^2\), then
\[2(a \cdot b) = a \cdot b + b \cdot a.\]

- As \(2(a \cdot b) = a \cdot b + a \cdot b\), the above and the left-cancellation property (p. 781) imply \(a \cdot b = b \cdot a.\)

- The other direction is trivial.
Additional Properties

Corollary 108 For any ring \((R, +, \cdot)\), for all \(a, b \in R\), (a)
\(-(-a) = a\). (b) \(a \cdot (-b) = (-a) \cdot b = -(a \cdot b)\). (c)
\((-a) \cdot (-b) = a \cdot b\).

- By definition \(-(-a)\) is the additive inverse of \(-a\).
- As \((-a) + a = z\), \(a\) is also the additive inverse of \(-a\).
- By the uniqueness of the additive inverse (p. 774), \(-(-a) = a\), establishing (a).
The Proof (concluded)

- By definition $-(a \cdot b)$ is the additive inverse of $a \cdot b$.

- But

 \[a \cdot b + a \cdot (-b) = a \cdot [b + (-b)] = a \cdot z = z \]

 by Corollary 106 (p. 783).

- By the uniqueness of the additive inverse (p. 774),
 $a \cdot (-b) = -(a \cdot b)$, establishing part of (b).

- The other part of (b) can be proved similarly.

- From (b), $(-a) \cdot (-b) = -[a \cdot (-b)] = -[-(a \cdot b)]$.

- Part (c) then follows from (a).
The Uniqueness of Unity

Theorem 109 Let $(R, +, \cdot)$ be a ring with unity. (a) The unity is unique. (b) If x is a unit of R, then the multiplicative inverse of x is unique.

- As a result, the unity of a ring with unity will be denoted by u or 1.
- Furthermore, the multiplicative inverse of each unit x will be denoted by x^{-1}.

\[\text{prove it!} \]
Proper Divisor of Zero

- A ring may contain **proper divisors of zero**.

- \(a \) is a proper divisor of zero if \(a \neq z \) and there exists a \(b \neq z \) such that \(a \cdot b = z \) or \(b \cdot a = z \).

 - The set of \(2 \times 2 \) integral matrices with matrix addition and multiplication is a ring.\(^a\)

- But

\[
\begin{pmatrix}
1 & -1 \\
-1 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
2 & 1
\end{pmatrix} =
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}.
\]

\(^a\)It is not commutative, however.
Units and Proper Divisors of Zero

Lemma 110 A unit in a ring R cannot be a proper divisor of zero.

- Let $x \in R$ be a unit (p. 773).
- Hence there exists a $y \in R$ such that $x \cdot y = y \cdot x = 1$.
- Suppose $x \cdot w = z$ for some $w \in R$.
- By Corollary 106 (p. 783),
 \[
y \cdot (x \cdot w) = y \cdot z = z.
 \]
- On the other hand,
 \[
y \cdot (x \cdot w) = (y \cdot x) \cdot w = 1 \cdot w = w.
 \]
- As $w = z$, x is not a proper divisor of zero.
Units and Proper Divisors of Zero in a Finite Commutative Ring

Theorem 111 Let \((R, +, \cdot)\) be a finite commutative ring with unity 1. Then any nonzero element \(r \in R\) is either a unit or a proper divisor of zero.

- Assume \(r\) is not a proper divisor of zero and proceed to prove that it must be a unit.
- Consider the function \(f(a) = a \cdot r\) for all \(a \in R\).
The Proof (continued)

• f is one-to-one (injective).
 – Otherwise, $a_1 \cdot r = a_2 \cdot r$ for some $a_1 \neq a_2$.
 – Let b be the unique additive inverse of a_2: $a_2 + b = z$.
 – But $a_1 + b \neq z$ because, otherwise,
 \[a_2 = a_2 + z = a_2 + a_1 + b = a_2 + b + a_1 = z + a_1 = a_1. \]
 – Now,
 \[a_1 \cdot r + b \cdot r = a_2 \cdot r + b \cdot r = (a_2 + b) \cdot r = z \cdot r = z. \]
 – But then $(a_1 + b) \cdot r = z$.
 – As $r \neq z$ and $a_1 + b \neq z$, r is a proper divisor of zero, a contradiction.
The Proof (concluded)

• Because f is from R to R and R is finite, f must be onto.
• As a result, there is an $s \in R$ such that $f(s) = 1$.
• But $f(s) = s \cdot r$.
• As R is commutative, $s \cdot r = r \cdot s = 1$.
• So r is a unit.
Remarks

• Theorem 111 (p. 790) is not valid when R is infinite.

• For example, consider the ring $(\mathbb{Z}, +, \cdot)$.

• It is commutative and has unity 1.

• But any integer $n \not\in \{-1, 0, 1\}$ is neither a unit nor a proper divisor of zero.
Integral Domains and Fieldsa

- Let \((R, +, \cdot)\) be a commutative ring with unity.
 - \(R\) is called an \textbf{integral domain} if \(R\) has no proper divisors of zero.
 - \(R\) is called a \textbf{field} if every nonzero element is a unit.

aDue to Evariste Galois.
Evariste Galois (1811–1832)
Some Examples

• \((\mathbb{Z}, +, \cdot)\) is an integral domain but not a field (p. 793).
• \((\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)\) are both integral domains and fields.
Fields Are Integral Domains

Theorem 112 If \((F, +, \cdot)\) is a field, then it is an integral domain.

- Let \(a, b \in F\) with \(a \cdot b = z\).
- If \(a = z\), then we are done.
- Suppose \(a \neq z\).
- Then \(a\) has a multiplicative inverse \(a^{-1}\) as \(F\) is a field.
- Now, \(a \cdot b = z\) implies

\[
a^{-1} \cdot (a \cdot b) = a^{-1} \cdot z = z
\]

by Corollary 106 (p. 783).
The Proof (concluded)

- But
 \[a^{-1} \cdot (a \cdot b) = (a^{-1} \cdot a) \cdot b = u \cdot b = b. \]
- Hence \(b = z \) and \(F \) has no proper divisors of zero.
A Finite Integral Domain Must Be a Field

Theorem 113 A finite integral domain \((D, +, \cdot)\) is a field.

- The proof mirrors that of Theorem 111 (p. 790).
- Assume \(D = \{d_1, d_2, \ldots, d_n\}\).
- For \(d \in D\), where \(d \neq z\), we have
 \[
 dD \triangleq \{d \cdot d_1, d \cdot d_2, \ldots, d \cdot d_n\} \subseteq D
 \]
 because \(D\) is closed under \(\cdot\).
- Suppose \(|dD| < n\).
- Then
 \[
 d \cdot d_i = d \cdot d_j
 \]
 for some distinct \(i, j\).
The Proof (concluded)

• As D is an integral domain and $d \neq z$, it follows that

$$d_i = d_j,$$

a contradiction.

• We conclude that $|dD| = n$ and thus $dD = D$.

• As a result, $d \cdot d_k = u$, the unity of D, for some $1 \leq k \leq n$.

• This implies d is a unit of D.

• Because this is true for all $d \neq z$, $(D, +, \cdot)$ is a field.