The Method of Generating Functions (Recall p. 565)

• Consider the relation $a_n - 3a_{n-1} = n$ with $a_0 = 1$.

• Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for a_0, a_1, \ldots.

• From the recurrence equation,

\[
\sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} 3a_{n-1} x^n = \sum_{n=1}^{\infty} nx^n.
\]

• $f(x) - a_0 - 3xf(x) = \sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}$ from p. 474.

• Hence

\[
f(x) = \frac{x}{(1-x)^2} + 1
\]

\[
= \frac{1}{1 - 3x}.
\]
The Method of Generating Functions (continued)

• Now,

\[f(x) = \frac{1}{1 - 3x} + \frac{x}{(1 - x)^2(1 - 3x)} \]

\[= \frac{7/4}{1 - 3x} + \frac{-1/4}{1 - x} + \frac{-1/2}{(1 - x)^2} \]

by a partial fraction decomposition.

– The following equivalent form is not a partial fraction decomposition:

\[\frac{7/4}{-3x + 1} + \frac{x - 3}{(1 - x)^2}. \]
The Method of Generating Functions (continued)

- Now,

\[
\frac{7/4}{1 - 3x} = (7/4) \frac{1}{1 - 3x}
\]

\[
= (7/4) \sum_{n=0}^{\infty} (3x)^n,
\]

\[
\frac{-1/4}{1 - x} = -(1/4) \frac{1}{1 - x}
\]

\[
= -(1/4) \sum_{n=0}^{\infty} x^n,
\]

\[
\frac{-1/2}{(1 - x)^2} = -(1/2) \frac{1}{(1 - x)^2}
\]

\[
= -(1/2) \sum_{n=0}^{\infty} (n + 1) x^n, \quad \text{from p. 473.}
\]
The Method of Generating Functions (concluded)

- Now,

\[f(x) = \frac{7}{4} \sum_{n=0}^{\infty} 3^n x^n - \frac{1}{4} \sum_{n=0}^{\infty} x^n - \frac{1}{2} \sum_{n=0}^{\infty} (n + 1) x^n. \]

- So

\[a_n = \frac{7}{4} 3^n - \frac{1}{4} - \frac{1}{2} (n + 1). \]

- The methodology should be clear.
The Method of Generating Functions for
\[a_{n+1} - a_n = 3^n \text{ with } a_0 = 1 \]

- Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be the generating function for \(a_0, a_1, \ldots \).

- From the recurrence equation,
 \[
 \sum_{n=0}^{\infty} a_{n+1} x^{n+1} - \sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{n=0}^{\infty} 3^n x^{n+1}.
 \]

- Hence \(a_n = (3^n + 1)/2 \).
The Method of Generating Functions for
\[a_{n+1} - Aa_n = B \] Again

- Assume \(A \neq 1 \).
- We want to obtain Eq. (96) on p. 611 by the method of generating functions.
- Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be the generating function for \(a_0, a_1, \ldots \).
The Proof (continued)

• Then

\[\sum_{n=0}^{\infty} a_{n+1}x^n - \sum_{n=0}^{\infty} Aa_nx^n = \sum_{n=0}^{\infty} Bx^n. \]

• So

\[\frac{f(x) - a_0}{x} - Af(x) = \frac{B}{1 - x} \]

from p. 470.
The Proof (continued)

- Simplify the identity to yield

\[
 f(x) = \frac{a_0}{1 - Ax} + \frac{Bx}{(1 - x)(1 - Ax)}
 \]

\[
 = \frac{a_0}{1 - Ax} + \frac{B}{1 - A} \left(\frac{1}{1 - x} - \frac{1}{1 - Ax} \right)
 \]

\[
 = \frac{a_0}{1 - Ax} + a_n^{(p)} \left(\frac{1}{1 - x} - \frac{1}{1 - Ax} \right)
 \]

\[
 = \left[a_0 - a_n^{(p)} \right] \frac{1}{1 - Ax} + a_n^{(p)} \frac{1}{1 - x},
 \]

where \(a_n^{(p)} \triangleq B/(1 - A) \).
The Proof (concluded)

• From p. 470,

\[f(x) = [a_0 - a_n^{(p)}] \sum_{n=0}^{\infty} A^n x^n + a_n^{(p)} \sum_{n=0}^{\infty} x^n. \]

- Note that \(a_n^{(p)}\) is independent of \(n\).

• So

\[a_n = A^n [a_0 - a_n^{(p)}] + a_n^{(p)}, \]

matching the earlier solution on p. 611 as desired.
Convolutions

• Consider the following recurrence equation,

\[b_{n+1} = b_0 b_n + b_1 b_{n-1} + \cdots + b_{n-1} b_1 + b_n b_0. \]

• Let \(f(x) = \sum_{n=0}^{\infty} b_n x^n. \)

• Then

\[\sum_{n=0}^{\infty} b_{n+1} x^{n+1} = \sum_{n=0}^{\infty} (b_0 b_n + b_1 b_{n-1} + \cdots + b_n b_0) x^{n+1}. \]

• So \(f(x) - b_0 = x f^2(x) \) from p. 480.
The Proof (continued)

- When \(b_0 = 1 \),

 \[
 f(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}.
 \]

- Pick

 \[
 f(x) = \frac{1 - \sqrt{1 - 4x}}{2x}
 \]

 to match \(b_0 \).\(^a\)

- By Eq. (67) on p. 491,

 \[
 \sqrt{1 - 4x} = \sum_{n=0}^{\infty} \binom{1/2}{n} (-4x)^n = \sum_{n=0}^{\infty} \binom{1/2}{n} (-4)^n x^n.
 \]

\(^a f(0) = \infty \) if one picks + (Graham, Knuth, & Patashnik, 1989).
The Proof (concluded)

- Now, by Eq. (63) on p. 489,
 \[
 \frac{1}{2} \left(\frac{1}{2} - 1 \right) \cdots \left(\frac{1}{2} - n + 1 \right) \frac{(-4)^n}{n!} = - \frac{1}{2n-1} \binom{2n}{n}.
 \]

- So
 \[
 f(x) = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2(2n-1)} x^{n-1} = \sum_{n=1}^{\infty} \frac{\binom{2n-2}{n-1}}{n} x^{n-1} = \sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{n+1} x^n, \tag{97}
 \]
 the Catalan numbers (recall Eq. (18) on p. 119)!
An Example

- It is easy to verify that
 \[f(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + \cdots. \]

- The coefficients are indeed
 \[
 \frac{0}{1}, \frac{2}{1}, \frac{4}{3}, \frac{6}{4}, \frac{8}{5}, \frac{10}{6}, \cdots.
 \]
A Binary Treea

aGustav Kirchhoff (1824–1887).
Number of Rooted Binary Trees

- There is a distinct node called the root.
- A rooted binary tree is ordered if the left and right branches are considered distinct.
- What is the number b_n of rooted ordered binary trees on n nodes?
Illustration: $b_3 = 5$
Number of Rooted Binary Trees: The Formula

- $b_0 = 1$, as it is the empty tree.
- Recursively,
 \[b_{n+1} = b_0b_n + b_1b_{n-1} + \cdots + b_{n-1}b_1 + b_nb_0. \]
 - b_ib_{n-i}: i nodes on the left and $n - i$ nodes on the right, $0 \leq i \leq n$.
- So b_n is the nth Catalan number by Eq. (97) on p. 632:
 \[b_n = \frac{{2n \choose n}}{n+1}. \]
An Introduction to Graph Theory
If 50 million people believe a foolish thing,
it’s still a foolish thing.
— George Bernard Shaw (1856–1950)
Graphsa

- Let V be a finite nonempty set of nodes.
- Let $E \subseteq V \times V$ be a set of edges.
- $G = (V, E)$ is the directed graph (or digraph) made up of the node set V and the edge set E.
- When E is considered to consist of unordered pairs, (V, E) is called an \textit{undirected graph}.b

aFounded by Leonhard Euler in 1736.
bAssumed unless stated otherwise.
Graphs (continued)

- A graph is **loop-free** if it contains no (self-)loops.
- A **multigraph** allows parallel edges between nodes.
Graphs (concluded)

- A loop-free undirected graph without parallel edges between nodes is said to be **simple**.
- For an undirected graph, we typically use \(\{x, y\} \) to represent an edge.
- For a digraph, we always use \((x, y)\) to represent an edge.
Illustration of Graphs

- In the following graph G,

\[
V = \{ a, b, c, d, e, f, g, h \}
\]

\[
E = \{ \{ a, b \}, \{ a, e \}, \{ a, f \}, \{ b, c \}, \{ b, g \}, \{ b, f \}, \\
\{ f, g \}, \{ f, h \}, \{ c, d \}, \{ c, h \}, \{ c, g \}, \\
\{ d, e \}, \{ d, h \}, \{ g, h \}, \{ h, e \} \}.
\]
Applications of Graph Theory

• Representation of networks, both structured ones like interconnection networks and unstructured ones like telephone networks or social networks.

• Natural representation of relations (p. 362).

• Practically any computation can be described as a graph.

• Optimization problems such as circuit layout.

• Physical systems such as ferromagnetism.

• …
Additional Notions

• Let $G = (V, E)$ be a graph (directed or otherwise).

• $G_1 = (V_1, E_1)$ is called a subgraph of G if
 - $\emptyset \neq V_1 \subseteq V$.
 - $E_1 \subseteq V_1 \times V_1$.
 - $E_1 \subseteq E$.

• G_1 is an induced subgraph of G if it is a subgraph of G and $E_1 = E \cap (V_1 \times V_1)$.

• An undirected graph G is connected if there is a path between any two distinct nodes of G.

• A component is a maximal subgraph that is connected.
Illustration of Subgraphs
All Kinds of Walks on Undirected Graphs

- A **walk** from x to y is a finite sequence of non-loop edges connecting x and y.
- The **length** of a walk is the number of **edges** in it.
- A walk from x to y where $x \neq y$ is called an **open walk**.
- A walk from x to itself is called a **closed walk**.
- A walk without repeated **edges** is called a **trail**.
- A closed trail is called a **circuit**.
All Kinds of Walks on Undirected Graphs (concluded)

- A walk without repeated nodes is a \textit{(simple)} path.
- A closed path is called a \textbf{cycle}.
 - A cycle must be a circuit, but not vice versa.
- By convention, a cycle has at least 3 distinct edges.
- A cycle of even length is called an \textbf{even cycle}; a cycle of odd length is called an \textbf{odd cycle}.
- These definitions apply to digraphs with minimal changes.
- A digraph that has no cycles is called \textbf{acyclic}.
Illustration of Walks

- (b, c, g, b, f) is a trail of length 4.
- (a, b, c) is a path of length 2.
- (a, b, c, d, e, a) is a cycle of length 5.
- $(g, b, c, g, h, e, a, f, g)$ is a circuit but not a cycle.
Partial Order and Its Digraph Representation

- The digraph representation of a partial order (p. 369) must be acyclic.
 - Recall p. 374.a

- Any acyclic digraph entails a partial order.
 - Take the transitive closure of the digraph.
 - The resulting digraph clearly remains acyclic.
 - Add a loop to every node.
 - It is not hard to check that the digraph’s associated relation satisfies the definition of partial order.

aWe called cycles “loops” there.
Transitive Closure of a Digraph
Diameter

- Let $G(V, E)$ be an undirected graph.

- The **distance** between nodes $x, y \in V$ (or $d(x, y)$) is the minimum length of all the paths between x and y.

- The **diameter** $d(G)$ of G is the maximum distance over all pairs of nodes of G.

 - So any two nodes must have distance at most $d(G)$ between them.

- Diameter can be computed by an efficient all-pair-shortest-paths algorithm.\(^a\)

\(^a\)Roy (1959); Floyd (1962); Warshall (1962).
Complete Graphs

- Let V be a set of n nodes.

- The complete graph on V, denoted K_n, is a loop-free undirected graph.
 - There is an edge between any pair of distinct nodes.
 - K_n has $\binom{n}{2}$ edges.
 - Depending on applications, sometimes (self-)loops are allowed.

- The diameter of K_n is clearly one.
K_{17}
Complete Graphs (concluded)

- There are \(\binom{n}{i} \) ways to pick \(i \) nodes from \(K_n \).\(^a\)

- As there are \(\binom{i}{2} \) pairs of nodes, there are \(2^{\binom{i}{2}} \) ways to pick the edges.

- Hence \(K_n \) has

\[
\sum_{i=1}^{n} \binom{n}{i} 2^{\binom{i}{2}}
\]

subgraphs.

- Can you simplify it?

\(^a\)Recall that \(K_n \) is labeled.
An Inequality Relating $|V|$ and $|E|$

Lemma 72 Let $G = (V, E)$ be an undirected graph. Then $|V| \geq \frac{1+\sqrt{1+8\times |E|}}{2}$.

- G has at most $\left(\frac{|V|}{2}\right)$ edges (the complete graph).
- So V must be big enough such that $\left(\frac{|V|}{2}\right) \geq |E|$.
- This results in $|V|^2 - |V| \geq 2 \times |E|$, or

\[
\left(|V| - \frac{1}{2} \right)^2 \geq \frac{1}{4} + 2 \times |E| \geq \frac{1 + 8 \times |E|}{4}.
\]
Complements

- The complement of graph G, denoted \overline{G}, is the subgraph of K_n consisting of the nodes in G and all edges that are not in G.

- \overline{K}_n, consisting of n nodes and no edges is called a null graph.
Degrees

• Let $G = (V, E)$ be an undirected graph.

• For each node $v \in G$, the **degree** of v, or $\text{deg}(v)$, is the number of edges in G that are incident with v.

• A loop is considered as *two* incident edges.
A Useful Identity

Lemma 73 (The handshaking theorem)

$$\sum_{v \in V} \deg(v) = 2 \times |E|.$$ \hfill (98)

- An edge is counted twice, once at each end.

Corollary 74 *For finite graphs, the number of nodes of odd degree must be even.*
Existence of Nodes with Identical Degree

- Let $G = (V, E)$ be a loop-free connected undirected graph with $n = |V| \geq 2$.
- Observe that $1 \leq \deg(v) \leq n - 1$.
- But there are n nodes.
- By the pigeonhole principle (p. 305), there must be 2 nodes with the same degree.
Regular Graphs

• A d-regular graph is an undirected graph such that every node has degree d.

• An d-regular graph $G = (V, E)$ must have an even number of nodes if d is odd.

 – By Eq. (98) on p. 659, $2 \times |E| = d \times |V|$.
 – As d is odd, $|V|$ must be even.
The Hypercube

- The nodes of the n-dimensional hypercube Q_n are represented as n-bit numbers (see p. 594).
 - There are 2^n nodes.
- Two nodes are connected if they differ in one dimension.
 - For example, there is an edge between 00100 and 00110.
 - The diameter is n.
 - It is n-regular.
 - There are
 \[
 \frac{n2^n}{2} = n2^{n-1}
 \]
 undirected edges.
The Hypercube (concluded)

- The hypercube was once a popular topology for massively parallel processors (MPPs).

- The record is $n = 16$ set by Thinking Machine Corp.’s Connection Machine CM-2.a

aHillis (1985).
Illustration with Q_3
Bipartite Graphs

- A graph $G = (V, E)$ is called **bipartite** if:
 - $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$.
 - Every edge is of the form $\{x, y\}$ with $x \in V_1$ and $y \in V_2$.

- Express the above bipartite graph as

$$G = (V_1, V_2, E).$$
Bipartite Graphs (continued)

• If each node in V_1 is joined with every node in V_2, we have a complete bipartite graph.

• If $|V_1| = m$ and $|V_2| = n$, the complete bipartite graph is denoted by $K_{m,n}$.
$K_{5,5}$
Bipartite Graphs (concluded)

- Let graph $G = (V, E) = (V_1, V_2, E)$ be bipartite.
- Then G has at most $|V_1| \times |V_2|$ edges.
- Let $|V| = n$, $|E| = e$, and $|V_1| = m$.
- Then $e \leq (n - m) m$, which is maximized at (1) $m = n/2$ when \(n \) is even and (2) $m = (n \pm 1)/2$ when \(n \) is odd.
- In either case,
 \[
e \leq (n/2)^2.
 \]
- Hence a graph with $e > (n/2)^2$ cannot be bipartite.
Euler Circuits and Trails

- Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes.
 - Isolated nodes are nodes without incident edges.
- G is said to have an Euler circuit if there is a circuit in G that traverses every edge of the graph exactly once.
 - You can draw the edges without lifting the pen.
- If there is an open trail from x to y in G and this trail traverses every edge of the graph exactly once, the trail is called an Euler trail.

\(^a\)Euler in 1736, the year graph theory was born.
An Euler Circuit
Characterization of Having Euler Circuits

Theorem 75 (Euler, 1736) Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes. Then G has an Euler circuit if and only if G is connected and every node in G has an even degree.

- Testing if a graph is Eulerian hence is trivial.
- The proof will be constructive.
- Let $n = |E|$.
The Proof (⇒)

- Clearly G is connected.
- Each time the Euler circuit enters a non-starting node v, it must exit it before coming back again, if ever.
- This contributes a count of 2 to $\deg(v)$.
- Because every edge is traversed, $\deg(v)$ must be even.
- The Euler circuit must start from the starting node s and end at the same starting node.
- Each exit is matched by one entry.
- So $\deg(s)$ is even.
The Proof (\Leftarrow)

- The $n = 1, 2$ cases are easy, by inspection.
- Assume the result is true when there are $< n$ edges.
- If G has n edges, select a node $s \in G$ as the starting and ending node.
- Construct a circuit C from s.
 - Start from s.
 - Traverse any hitherto untraversed edge, and repeat.
 - We must eventually return to s because every node has an even degree and hence the last visit to it must be an exit, except s.
The Proof (\iff) (continued)

- If C traverses every edge, we are done.
- Otherwise, remove the edges of C and isolated nodes to yield a new graph K.
- The degree of each node in K remains even.
 - This observation is key to induction.
The Proof (\iff) (continued)a

- Suppose K is connected and s is not isolated.
 - Construct an Euler circuit c of K (doable by the induction hypothesis).
 - Node s is on this Euler circuit because $s \in K$ and K is connected.
 - The desired Euler circuit: Start from s and travel on C until we end at s and then traverse c until we end at s again.

aWith input from Mr. Cheng-Yu Lee (B91902103) on December 1, 2003.
The Proof (\leftrightarrow) (concluded)

- Suppose K is disconnected or s is isolated.
 - Construct an Euler circuit c_i in each component of K (doable by the induction hypothesis).
 - Each component must have at least one node in common with C because originally G is connected.
 - Let s_i be the first node with which C visits c_i.\(^a\)
 - The desired Euler circuit: Start from s and travel on C until we reach s_1, traverse c_1, return to s_1, continue on C until we reach s_2, and so on.

\(^a\)C may visit many nodes of c_i (but not a single edge by definition).

Thanks to a lively class discussion on May 31, 2012.
Constructing an Euler Circuit
Characterization of Having Euler Trails

Corollary 76 Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes. Then G has an Euler trail if and only if G is connected and has exactly two nodes of odd degree.

- Let x, y be the two nodes of odd degree.
- Add edge $\{x, y\}$ to G.
- Construct an Euler circuit, which exists by Theorem 75.
- Remove the edge $\{x, y\}$ from the circuit to arrive at an Euler trail.
In and Out Degrees

• Let G be a directed graph.

• The **in degree** of $v \in V$ is the number of edges in G that are incident *into* v.

• The **out degree** of $v \in V$ is the number of edges in G that are incident *from* v.

 – The in and out degrees of a node may not equal.

• Similar to the definition of (undirected) regular graphs (p. 661), a directed d-regular graph is a directed graph such that every node has in-degree *and* out-degree d.
Characterization of Having Directed Euler Circuits

Theorem 77 Let $G = (V, E)$ be a digraph. Then G has a directed Euler circuit if and only if G is connected and the in degree equals the out degree at every node.

- Follow the same proof as Theorem 75 (p. 671).

- The only difference is that, whereas we maintained even node degrees, we now maintain the equality of in and out degrees.
Euler Circuits: Additional Remarks

- Counting the number of Euler circuits for digraphs can be solved efficiently.\(^b\)
- Counting the number of Euler circuits for undirected graphs is computationally hard—it is \(\#P\)-complete.\(^c\)
- Asymptotic formulas exist for the number of Euler circuits on \(K_n\) when \(n\) is odd.\(^d\)
- Very useful in approximation algorithms.\(^e\)

\(^a\)Contributed by Mr. Eric Ruei-Min Lee (B00902106) on June 4, 2012.
\(^b\)Harary & Palmer (1973).
\(^c\)Brightwell & Winkler (2004).
\(^d\)McKay & Robinson (1995).
\(^e\)Vazirani (2003).
Planar Graphs

• A graph or multigraph \(G \) is called **planar** if it can be drawn in the plane with the edges intersecting only at nodes of \(G \).

• Planarity can be tested efficiently.\(^a\)

\(^a\)Hopcroft & Tarjan (1974).
A Planar Graph

Such a drawing of G is called an **embedding** of G in the plane.
Euler’s Theorema

- Let $G = (V, E)$ be a connected planar graph or multigraph with $|V| = v$ and $|E| = e$.
- Let r be the number of regions in the plane determined by a planar embedding of G.
- One of these regions has infinite area.
 - It is called the \textbf{infinite region}.
- Then

 \[v - e + r = 2. \]

aEuler (1752).
A Planar Graph with $v = 16$, $e = 35$, $r = 21$
The Proofa

- The theorem holds if $e = 0, 1$.b
- Assume the theorem holds for any connected planar graph with e edges, where $0 \leq e \leq k$.
- Let $G = (V, E)$ be a connected planar graph with v nodes, r regions, and $e = k + 1$ edges.
- Let $\{x, y\} \in E$.
- Delete $\{x, y\}$ to obtain graph H:

\[G = H + \{x, y\}. \]

bSee p. 545 of the textbook (5th ed.).
The Proof When H Is Connected

- The dotted edge on p. 688 is $\{x, y\}$.
- So H has v nodes, k edges, and $r - 1$ regions.
- H is also planar.
- The induction hypothesis applied to H says
 \[
 v - k + (r - 1) = 2.
 \]
- Hence
 \[
 v - (k + 1) + r = 2.
 \]
- The theorem is proved because G has v nodes, $e = k + 1$ edges, and r regions.
A Planar G from a Planar H
The Proof When H Is Not Connected

- The dotted edge on p. 690 is $\{x, y\}$.
- So H has v nodes, $k = e - 1$ edges, and r regions.
- H has two components H_1 and H_2, both planar.
- Let H_i have v_i nodes, e_i edges, and r_i regions.
- The induction hypothesis applied to H_i says
 \[v_i - e_i + r_i = 2. \]

Therefore,

\[(v_1 + v_2) - (e_1 + e_2) + (r_1 + r_2) = 4. \quad (100) \]

\[^a \text{Thanks to a lively class discussion on December 1, 2003.} \]
A Planar G from Planar H_1 and H_2
The Proof When \(H \) Is Not Connected (concluded)

• Now,

\[
\begin{align*}
v_1 + v_2 &= v, \\
e_1 + e_2 &= k = e - 1, \\
r_1 + r_2 &= r + 1.
\end{align*}
\]

– Note that the infinite region is counted twice.

• Hence Eq. (100) on p. 689 becomes

\[
v - (e - 1) + (r + 1) = 4.
\]

• So, again, \(v - e + r = 2 \).
A Useful Corollary

Corollary 78 Let $G = (V, E)$ be a loop-free connected planar graph with $|V| = v$ and $|E| = e > 2$. Then

$$(3/2) r \leq e \leq 3v - 6.$$

- Let there be r regions.

- Each edge is shared by ≤ 2 regions.
 - The edge $\{x, y\}$ on p. 690 is shared by one region.
 - One can replace the above with “$= 2$” if that edge is considered to be shared by 2 regions.a

- The boundary of each region (including the infinite region) contains at least 3 edges (G is not a multigraph).

aSee p. 546 of the textbook.
The Proof (concluded)

• Hence

\[2e \geq \sum_{\text{region } R} |R's \text{ boundary}| \geq 3r. \]

(101)

– This proves the first inequality of the corollary.

• Euler’s theorem implies

\[2 = v - e + r \leq v - e + \left(\frac{2}{3} \right) e = v - \left(\frac{1}{3} \right) e. \]
K_5 Is Not Planar

- K_5 has $v = 5$ nodes and $e = 10$ edges.
- Suppose it is planar.
- By Corollary 78,

\[10 = e \leq 3v - 6 = 9, \]

a contradiction.
$K_{3,3}$ Is Not Planar

- $K_{3,3}$ has $v = 6$ nodes and $e = 9$ edges.
- Suppose it is planar.
- By Euler’s formula (99) on p. 684, the number of regions is

$$r = 2 + e - v = 5.$$
The Proof (concluded)

• But $K_{3,3}$ has no 3 nodes forming a complete subgraph.
• So the border of a region must contain at least 4 edges.
• The sum of those edges is at least $4r = 20$.
• By inequalities (101) on p. 693,

$$2e \geq \sum_{\text{region } R} | R's \text{ boundary } | \geq 20,$$

contradicting $e = 9$.
Kuratowski’sa Theorem

Theorem 79 (Kuratowski, 1930) A graph is nonplanar if and only if it contains a subgraph that is “homeomorphic” to either K_5 or $K_{3,3}$.

Corollary 80 (1) Shrinking any edge of a planar graph to a single node preserves planarity. (2) Shrinking any connected component of a planar graph to a single node preserves planarity.

aKasimir Kuratowski (1896–1980).
Hamiltoniana Paths and Cycles

• Let $G = (V, E)$ be a graph with $|V| \geq 3$.

• A Hamiltonian cycle is a cycle in G that contains every node (exactly once) in V.

• A Hamiltonian path is a path in G that contains every node (exactly once) in V.

• Testing if G has a Hamiltonian path or cycle is computationally hard—it is NP-complete.b

aWilliam Rowan Hamilton (1805–1865).
bKarp (1972).
William Rowan Hamilton (1805–1865)
Richard Karpa (1935–)

aTuring Award (1985).
Application: Tournaments

• Let K_n^* be a directed graph with n nodes.

• If for each distinct pair x, y of nodes, either $(x, y) \in K_n^*$ or $(y, x) \in K_n^*$ but not both, then K_n^* is called a tournament.\(^a\)

• A tournament is not necessarily transitive.
 - A digraph (V, E) is transitive if

 $$(a, b) \in E \land (b, c) \in E \Rightarrow (a, c) \in E.$$

• But the next theorem says that players can be ranked in at least one way.

\(^a\)Recall p. 342.
Tournaments Are Hamiltoniana

Theorem 81 (Redei, 1934) A tournament always contains a directed Hamiltonian path.

- Let $p_m = (v_1, v_2, \ldots, v_m)$ be a path of maximum length.
- Assume $m < n = |V|$ and proceed to derive a contradiction.
- Let v be a node not on p_m.
- If $(v, v_1) \in K_n^*$, then p_m can be lengthened to $(v, v_1, v_2, \ldots, v_m)$.
- Hence $(v, v_1) \notin K_n^*$ and $(v_1, v) \in K_n^*$.

aSimilar results appear on p. 344 and p. 381.
The Proof (continued)

• If there exists a $2 \leq j \leq m$ such that $(v_{j-1}, v) \in K_n^*$ and $(v, v_j) \in K_n^*$, then the path $(v_1, \ldots, v_{j-1}, v, v_j, \ldots, v_m)$ is longer than p_m, a contradiction.a

• As $(v_1, v) \in K_n^*$, we conclude that for each $2 \leq j \leq m$, $(v_{j-1}, v) \in K_n^*$ but $(v, v_j) \notin K_n^*$ by induction.

aImproved by a lively discussion on June 5, 2014.
The Proof (concluded)

- In particular, \((v, v_m) \notin K_n^*,\) so \((v_m, v) \in K_n^*\).

- We can add \((v_m, v)\) to \(p_m\) to make it longer, a contradiction.

- Remark: Now that \(K_n^*\) is Hamiltonian, how to find a Hamiltonian path efficiently?