Majority Decision

In a court with $2n + 1$ judges, in how many ways can a majority “yes” decision be handed down?

- There are $\binom{2n+1}{i}$ ways such that i judges vote “yes.”
- From Eq. (12) on p. 60, the desired answer is

$$\sum_{i=n+1}^{2n+1} \binom{2n + 1}{i} = 2^{2n}.$$
Ways To Merge Sets

What is the number of ways to merge members of

\{ \{1\}, \{2\}, \ldots, \{n\} \}

to form

\{ \{1,2,\ldots,n\} \}

in \(n-1\) steps?

- Each merge involves two members.
- For example, the number is 3 when \(n = 3\):

\[
\begin{align*}
\{\{1\}, \{2\}, \{3\}\} & \rightarrow \{\{1,2\}, \{3\}\} \rightarrow \{\{1,2,3\}\}, \\
\{\{1\}, \{2\}, \{3\}\} & \rightarrow \{\{1,3\}, \{2\}\} \rightarrow \{\{1,2,3\}\}, \\
\{\{1\}, \{2\}, \{3\}\} & \rightarrow \{\{2,3\}, \{1\}\} \rightarrow \{\{1,2,3\}\}.
\end{align*}
\]
Ways To Merge Sets (continued)

- The 1st step begins with n members.
- In general, the ith step begins with $n - i + 1$ members.
- There are
 \[
 \binom{n - i + 1}{2}
 \]
 ways to pick the two members.
Ways To Merge Sets (concluded)

- The desired number is thus

\[
\prod_{i=1}^{n-1} \binom{n-i+1}{2} = \binom{n}{2} \binom{n-1}{2} \cdots \binom{2}{2}
\]

\[
= \frac{n! (n-1)! \cdots 2!}{2^{n-1} (n-2)! (n-3)! \cdots 1!}
\]

\[
= \frac{n! (n-1)!}{2^{n-1}}.
\]
The Multinomial Theorem

Theorem 14

\[(x_1 + x_2 + \cdots + x_t)^n\]

\[= \sum_{0 \leq n_1, n_2, \ldots, n_t \leq n} \frac{n!}{n_1! n_2! \cdots n_t!} x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}.\]

- Expand \((x_1 + x_2 + \cdots + x_t)^n\).
- Each term in the expansion must have the form

 \((\text{coefficient}) \times x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t},\)

 where \(0 \leq n_1, n_2, \ldots, n_t \leq n\) and \(n_1 + n_2 + \cdots + n_t = n\).
The Proof (concluded)

• The coefficient of

\[x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t} \]

equals the number of ways to pick \(n_1 \) \(x_1 \)'s, \(n_2 \) \(x_2 \)'s, and so on.

• By Eq. (2) on p. 16, there are

\[
\binom{n}{n_1, n_2, \ldots, n_t} \triangleq \frac{n!}{n_1! n_2! \cdots n_t!}
\]

ways.
Coefficient of $a^2b^3c^2d^5$ in $(a + 2b - 3c + 2d + 5)^{16}$

- Make $x_1 = a$, $x_2 = 2b$, $x_3 = -3c$, $x_4 = 2d$, and $x_5 = 5$ symbolically.

- The coefficient of $a^2(2b)^3(-3c)^2(2d)^55^4$ is

$$\binom{16}{2, 3, 2, 5, 4} = \frac{16!}{2!3!2!5!4!} = 302,702,400$$

by the multinomial theorem with $n = 16$.

- The desired coefficient is then

$$302,702,400 \times 2^3 \times (-3)^2 \times 2^5 \times 5^4 = 435,891,456,000,000.$$
Distinct Objects into Identical Containers

Corollary 15 There are \(\frac{(rn)!}{(r!)^n n!} \) ways to distribute \(rn \) distinct objects into \(n \) identical containers so that each container contains exactly \(r \) objects.

- Consider \((x_1 + x_2 + \cdots + x_n)^{rn} \).
 - Let \(x_i \) denote the containers (distinct, for now).
 - Each object is associated with one \(x_1 + x_2 + \cdots + x_n \).
 - It means an object can be assigned to one of the \(n \) containers.

- What does the coefficient of
 \[x_1^r x_2^r \cdots x_n^r \]
 mean?
Distinct Objects into Identical Containers (continued)

- It is the number of ways \(rn \) distinct objects can be distributed into \(n \) distinct containers, each of which contains \(r \) objects.

- By Theorem 14 (p. 71), it is

\[
\binom{rn}{r, r, \ldots, r} \triangleq \frac{(rn)!}{r! r! \cdots r!}.
\]

- Finally, divide the above count by \(n! \) to remove the identities of the containers.
Distinct Objects into Identical Containers (concluded)

Corollary 16 \(\frac{(rn)!}{(r!)^n n!} \) is an integer.

- Immediate from Corollary 15 (p. 74).
An Alternative Proof of Corollary 16 (p. 76)\(^a\)

\[
\frac{(rn)!}{(r!)^nn!} = \frac{1}{n!} \frac{(rn)!}{[r(n-1)]!r!} \frac{[r(n-1)]!}{[r(n-2)]!r!} \cdots \frac{[r(1)]!}{[r(n-n)]!r!} = \prod_{k=0}^{n-1} \left(\frac{(r(n-k))}{r(n-k)} \right) = \prod_{k=0}^{n-1} \frac{[r(n-k)]!}{(n-k)r![r(n-k-1)]!} = \prod_{k=0}^{n-1} \frac{r(n-k)[r(n-k)-1]!}{(n-k)r[r-1]![r(n-k-1)]!} = \prod_{k=0}^{n-1} \frac{r(n-k)-1}{r-1}.
\]

\(^a\)Contributed by Mr. Ansel Lin (B93902003) on September 20, 2004.
Distinct Objects into Identical Containers (continued)

- Take \(n = 3 \) and \(r = 2 \).
- So we have

\[
(x_1 + x_2 + x_3)^6 = (x_1^6 + \cdots + x_3^6) \\
+ 6 \left(x_1^5 x_2 + \cdots + x_2 x_3^5 \right) \\
+ 15 \left(x_1^4 x_2^2 + \cdots + x_2^2 x_3^4 \right) \\
+ 20 \left(x_1^3 x_2^3 + \cdots + x_2^3 x_3^3 \right) \\
+ 30 \left(x_1^4 x_2 x_3 + \cdots + x_1 x_2 x_3^4 \right) \\
+ 60 \left(x_1^3 x_2^2 x_1 + \cdots + x_1 x_2^2 x_3^3 \right) \\
+ 90 x_1^2 x_2^2 x_3.
\]
An Example (concluded)

- Indeed, the coefficients are
 \[
 \binom{6}{6}, \binom{6}{6}, \binom{6}{5,1}, \binom{6}{4,2}, \binom{6}{3,3}, \binom{6}{4,1,1}, \binom{6}{3,2,1}, \binom{6}{2,2,2},
 \]
 consistent with the multinomial theorem (p. 71).

- The coefficient of \(x_1^2x_2^2x_3^3 \) is 90.

- Thus the desired count is
 \[
 \frac{90}{3!} = 15.
 \]
Combinations (Selections) with Repetition

Theorem 17 Suppose there are n distinct objects and $r \geq 0$ is an integer. The number of selections of r of these objects, with repetition, is

$$C(n + r - 1, r) = \binom{n + r - 1}{r}.$$

- Note that the order of selection is not important.
- Imagine there are n distinct types of objects.
The Proof (continued)

• Permute

\[
\begin{array}{c|c|c|c|c}
\{ r \} & \{ n-1 \} \\
xx \cdots x & | & | & | & |
\end{array}
\]

• Think of the \(i \)th interval as containing the \(i \)th type of objects.

• So

\[
xx | xxx | x | | | |
\]

means, out of 7 distinct objects, we pick 2 type-1 objects, 3 type-2 objects, and 1 type-3 object.
The Proof (concluded)

• Our goal equals the number of permutations of

\[
\underbrace{xx \cdots x}_{r} \underbrace{\mid \mid \cdots \mid}_{n-1}.
\]

• By Eq. (2) on p. 16, it is

\[
\frac{(r + n - 1)!}{r!(n-1)!} = \binom{n + r - 1}{r} = C(n + r - 1, r).
\]
Combinatorial Proof of the Hockeystick Identity (P. 36)

Corollary 18 For $m, n \geq 0$, $\sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+m+1}{m}$.

- The number of ways to select m objects out of $n + 2$ types is $\binom{n+m+1}{m}$ by Theorem 17 (p. 80).
- Alternatively, let us focus on how the objects of the first $n + 1$ types are chosen.
- There are $\binom{n+m}{m}$ ways to select m objects out of the first $n + 1$ types.
- There are $\binom{n+m-1}{m-1}$ ways to select $m - 1$ objects out of the first $n + 1$ types and 1 object out of the last type.

Contributed by Mr. Jerry Lin (B01902113) on March 13, 2014.
The Proof (concluded)

• There are \(\binom{n+m-2}{m-2} \) ways to select \(m-2 \) objects out of the first \(n+1 \) types and 2 objects of the last type.

• \ldots

• So,

\[
\binom{n+m}{m} + \binom{n+m-1}{m-1} + \binom{n+m-2}{m-2} + \cdots + \binom{n+0}{0} = \binom{n+m+1}{m}.
\]
Integer Solutions of a Linear Equation

The following three problems are equivalent:

1. The number of nonnegative integer solutions of

\[x_1 + x_2 + \cdots + x_n = r. \]

2. The number of selections, with repetition, of size \(r \) from a collection of \(n \) distinct objects (Theorem 17 on p. 80).

3. The number of ways \(r \) identical objects can be distributed among \(n \) distinct containers.\(^a\)

They all equal \(\binom{n+r-1}{r} \).\(^b\)

\(^a\)The case of distinct objects and identical containers will be covered on p. 271 (see p. 74 for a special case).

\(^b\)See p. 496 and p. 500 for alternative proofs.
Application: The Multinomial Theorem (P. 71)

• It concerned the coefficient of $x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}$ in the expansion of

$$ (x_1 + x_2 + \cdots + x_t)^r. $$

• But let us ask how many distinct forms of summands are there?

• Each term has the form $x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}$ such that
 - $n_1 + n_2 + \cdots + n_t = r$, and
 - $0 \leq n_1, n_2, \ldots, n_t$.

• For example, consider

$$ r = n_1 + n_2 + n_3 = 2. $$
Application: The Multinomial Theorem (continued)

• Now,

\[(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3.\]

- E.g., the solution “\(n_1 = 1, n_2 = 1, n_3 = 0\)” to \(n_1 + n_2 + n_3 = 2\) contributes 1 to the term \(x_1^1x_2^1x_3^0 = x_1x_2\).

- So there are 6 nonnegative integer solutions to \(n_1 + n_2 + n_3 = 2\) because there are 6 terms.
Application: The Multinomial Theorem (concluded)

• The desired number of terms is therefore
 \[\binom{r + t - 1}{r} \]
 from the equivalencies on p. 85.

• Indeed, \(\binom{2+3-1}{2} = 6 \).
Positive Integer Solutions of a Linear Equation

- Consider

\[x_1 + x_2 + \cdots + x_n = r, \]

where \(x_i > 0 \) for \(1 \leq i \leq n \).

- Define \(x'_i \equiv x_i - 1 \).

- The original problem becomes

\[x'_1 + x'_2 + \cdots + x'_n = r - n, \]

where \(x'_i \geq 0 \) for \(1 \leq i \leq n \).

- The number of solutions is therefore (p. 85)

\[
\binom{n + (r - n) - 1}{r - n} = \binom{r - 1}{r - n} = \binom{r - 1}{n - 1}.
\] (14)
Application: Subsets with Restrictions

How many n-element subsets of $\{1, 2, \ldots, r\}$ contain no consecutive integers?

- Say $r = 4$ and $n = 2$.
- Then the valid 2-element subsets of $\{1, 2, 3, 4\}$ are
 \[
 \{1, 3\}, \{1, 4\}, \{2, 4\}.
 \]
The Proof (continued)

- For each valid subset \(\{i_1, i_2, \ldots, i_n\} \), where \(1 \leq i_1 < i_2 < \cdots < i_n \leq r \), define
 \[
 d_k = i_{k+1} - i_k.
 \]

- As “placeholders,” introduce
 \[
 i_0 = 1, \\
 i_{n+1} = r.
 \]

- Then, by telescoping,
 \[
 d_0 + d_1 + \cdots + d_n = i_{n+1} - i_0 = r - 1.
 \]
The Proof (continued)

- Observe that

\[0 \leq d_0, d_n \]
\[2 \leq d_1, d_2, \ldots, d_{n-1}. \]

- Define

\[d'_0 \triangleq d_0, \]
\[d'_k \triangleq d_k - 2, \quad k = 1, 2, \ldots, n - 1, \]
\[d'_n \triangleq d_n. \]
The Proof (concluded)

• So equivalently,

\[d'_0 + d'_1 + \cdots + d'_n = r - 1 - 2(n - 1) \]

with \(0 \leq d'_0, d'_1, \ldots, d'_n \).

• The answer to the desired number is (p. 85)

\[
\begin{pmatrix}
(n + 1) + (r - 1 - 2(n - 1)) - 1 \\
r - 1 - 2(n - 1)
\end{pmatrix}
\begin{pmatrix}
r - n + 1 \\
r - 2n + 1
\end{pmatrix}
= \begin{pmatrix}
r - n + 1 \\
n
\end{pmatrix}.
\]

(15)
Application: Political Majoritya

In how many ways can $2n + 1$ seats in a parliament be divided among 3 parties so that the coalition of any 2 parties form a majority?

- If $n = 2$, there are 5 seats.
- Clearly, no party should have 3 or more seats.
- The only valid distribution of the 5 seats to 3 parties is: 2, 2, 1.
- The number of ways is therefore 3.

aRecall p. 67.
The Proof (continued)

• This is a problem of distributing identical objects (the seats) among distinct containers (the parties) (p. 85).

• So without the majority condition, the number is

\[
\binom{3 + (2n + 1) - 1}{2n + 1} = \binom{2n + 3}{2}.
\]

• Observe that the majority condition is violated if and only if a party gets \(n + 1\) or more seats (why?).
The Proof (concluded)

• If a given party gets \(n + 1 \) or more seats, the number of ways of distributing the seats is

\[
\binom{3 + n - 1}{n} = \binom{n + 2}{2}.
\]

– Allocate \(n + 1 \) seats to that party before allocating the remaining \(n \) seats to the 3 parties.

– Then refer to p. 85 for the formula.

• The desired number of no dominating party is

\[
\binom{2n + 3}{2} - 3 \binom{n + 2}{2} = \frac{n}{2} (n + 1) = \binom{n + 1}{2}. \quad (16)
\]
Political Majority: An Alternative Proofa

- Recall that the majority condition holds if and only if no party gets $n + 1$ or more seats.
- So each party can hold up to n seats.
- Give each party n slots to hold real seats.
- As there are $2n + 1$ seats, there will be
 \[3n - (2n + 1) = n - 1\]
 empty slots in the end.

aContributed by Mr. Weicheng Lee (B01902065) on March 14, 2013.
Political Majority: An Alternative Proof (concluded)

• So the answer to the desired number is the number of ways to distribute the \(n - 1 \) empty slots to 3 parties.

• The count is (p. 85)

\[
\binom{3 + (n - 1) - 1}{n - 1} = \binom{n + 1}{n - 1} = \binom{n + 1}{2}.
\]
Integer Solutions of a Linear Inequality

• Consider

\[x_1 + x_2 + \cdots + x_n \leq r, \]

where \(x_i \geq 0 \) for \(1 \leq i \leq n \).

• It is equivalent to

\[x_1 + x_2 + \cdots + x_n + x_{n+1} = r, \]

where \(x_i \geq 0 \) for \(1 \leq i \leq n + 1 \).

• The number of integer solutions of the original inequality is therefore (p. 85)

\[
\binom{(n + 1) + r - 1}{r} = \binom{n + r}{r}.
\]

(17)
The Hockeystick Identity (P. 36) Reproved

• By Eq. (17) on p. 99, there are \(\binom{n+1+m}{m} \) nonnegative integer solutions to

\[
x_1 + x_2 + \cdots + x_{n+1} \leq m, \quad m \geq 0.
\]

• By p. 85, there are \(\binom{n+k}{k} \) nonnegative integer solutions to

\[
x_1 + x_2 + \cdots + x_{n+1} = k.
\]

• Any solution to \(x_1 + x_2 + \cdots + x_{n+1} \leq m \) is a solution to \(x_1 + x_2 + \cdots + x_{n+1} = k \) for some \(0 \leq k \leq m \).
The Proof (concluded)

- The opposite is also true.
- It is also clear the correspondence is one-to-one.
- So
 \[\sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+m+1}{m}. \]
- This is exactly the hockeystick identity (p. 36).
Compositions of Positive Integers

• Let m be a positive integer.

• A **composition** for m is a sum of positive integers whose order is *relevant* and which sum to m.

• For $m = 3$, the number of compositions is 4:

 $3, 2 + 1, 1 + 2, 1 + 1 + 1$.

• For $m = 4$, the number of compositions is 8:

 $4, 3 + 1, 2 + 2, 1 + 3, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1$.

• Is the number of compositions for general m equal to 2^{m-1}?
The Number of Compositions

Theorem 19 *The number of compositions for* $m > 0$ *is* 2^{m-1}.

- Every composition with i summands corresponds to a positive integer solution to

 $$x_1 + x_2 + \cdots + x_i = m.$$

- So the number of solutions is $\binom{m-1}{m-i}$ by Eq. (14) on p. 89.

- The total number of compositions is therefore

 $$\sum_{i=1}^{m} \binom{m-1}{m-i} = 2^{m-1}$$

 by Eq. (8) on p. 56.
An Alternative Proof for Theorem 19 (p. 103)

- Let \(f(m) \) denote the number of compositions for \(m > 0 \).
- A composition for \(m \) is either (1) \(m \) or (2) \(i \) plus a composition for \(m - i \) (“\(i + \cdots \)”) for \(i = 1, 2, \ldots, m - 1 \).
- Then

\[
f(m) = 1 + \sum_{i=1}^{m-1} f(m - i) = 1 + \sum_{i=1}^{m-1} f(i).
\]

- The above implies that \(f(m + 1) - f(m) = f(m) \) so

\[
f(m + 1) = 2f(m).
\]

\[\text{Contributed by Mr. Chih-Ning Chou (B01902046) on March 7, 2013.}\]
The Proof (concluded)

- As a result,
 \[f(m) = 2^{m-1} f(1) \]
 by induction.

- Finally, as \(f(1) = 1 = 2^0 \),
 \[f(m) = 2^{m-1}. \]
A Third Proof for Theorem 19 (p. 103)a

- Start with m x’s and $m - 1$ ’s.
- Consider this arrangement:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline
& & & & & & & & & & & & \\
\hline
x & x & x & | & | & | & | & | & | & | & | & x \\
\hline
\end{array}
\]

- $2m - 1$

- Think of the ’s as dividers.
- Now remove some of the ’s.

aContributed by Mr. Jerry Lin (B01902113) on March 6, 2014.
The Proof (concluded)

• For example,

\[xx \mid xxx \mid x \mid x \]

means the composition

\[2 + 3 + 1 + 1 \]

for 7.

• Each removal of some |’s leads to a unique composition.

• As there are

\[2^{m-1} \]

ways to remove the |’s, this is the number of compositions for \(m \).
Palindromes of Positive Integers

- Let m be a positive integer.
- A palindrome for m is a composition for m that reads the same left to right as right to left.
 - For $m = 4$, the number of palindromes is 4:
 $\begin{bmatrix} 4 \end{bmatrix}, 1 + \begin{bmatrix} 2 \end{bmatrix} + 1, 2 + \begin{bmatrix} 2 \end{bmatrix}, 1 + 1 + 1 + 1 + 1$.
 - For $m = 5$, the number of palindromes is 4:
 $\begin{bmatrix} 5 \end{bmatrix}, 1 + \begin{bmatrix} 3 \end{bmatrix} + 1, 2 + \begin{bmatrix} 1 \end{bmatrix} + 2, 1 + 1 + \begin{bmatrix} 1 \end{bmatrix} + 1 + 1$.
 - The center elements are boxed above.
Palindromes of Positive Integers (concluded)

- The numbers to the left of the center element mirror those to the right, and with the same sum.
- Palindrome is possibly the hardest form of wordplay.\(^a\)
- For example,\(^b\)

 A man, a plan, a canal, Panama!

\(^a\)Bryson (2001, p. 228).
\(^b\)Skip the blanks and punctuation marks.
The Number of Palindromes

Theorem 20 The number of palindromes for $m > 0$ is $2^{\lfloor m/2 \rfloor}$.

- Assume m is even first.

- The central element of a composition of m can be $m, m - 2, \ldots, 2$ or “+” (we will think of it as 0).\(^a\)

- When the central element is m, the number of palindromes is clearly 1.

- Suppose the central element is some even number $0 \leq i < m$.

\(^a\)The central element must be even (why?)!
The Proof (concluded)

• Then the numbers to its left sum to \((m - i)/2\).\(^a\)

• Hence the number of palindromes is \(2^{(m-i)/2-1}\) by Theorem 19 (p. 103).

• The total number of palindromes for \(m\) is thus

\[
1 + \left(1 + 2 + 2^2 + \cdots + 2^{(m-2)/2-1} + 2^{m/2-1}\right) = 2^{m/2}.
\]

• Follow the same argument when \(m\) is odd to obtain a count of \(2^{(m-1)/2}\).

\(^a\)By symmetry, the numbers to its right automatically sum to \((m - i)/2\).
Runs

• Consider a permutation of 10 Os and 5 Es:

\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ E \ E \ E \ O \ O \ O \ E \ O.\]

• It has 7 runs:

\[
\underbrace{0 \ 0 \ E \ 0 \ 0 \ 0 \ 0 \ E} \underbrace{E \ E \ E} \underbrace{O \ O \ O \ E} \underbrace{E \ O}.
\]

• In general, a run is a maximal consecutive list of identical objects.
The Number of Runs

Theorem 21 There are

\[
\binom{m - 1}{m - \lfloor r/2 \rfloor} \binom{n - 1}{n - \lceil r/2 \rceil} + \binom{n - 1}{n - \lfloor r/2 \rfloor} \binom{m - 1}{m - \lceil r/2 \rceil}
\]

ways that \(m \) identical objects of type 1 and \(n \) identical objects of type 2 can give rise to \(r \) runs.

- Suppose the run starts with a type-1 object.
- Let \(x_i \) denote the number of type-1 objects in run \(i = 1, 3, \ldots, 2\lfloor r/2 \rfloor - 1 \).
The Proof (continued)

- The number of runs with the said counts \(x_1, x_3, \ldots \) equals the number of positive-integer solutions to

\[
x_1 + x_3 + \cdots + x_{2\lceil r/2 \rceil - 1} = m.
\]

- There are \(\lceil r/2 \rceil \) terms.

- By Eq. (14) on p. 89, the number of solutions equals

\[
\binom{m-1}{\lceil r/2 \rceil - 1} = \binom{m-1}{m - \lfloor r/2 \rfloor}.
\]
The Proof (continued)

• Now let x_i denote the number of type-2 objects in run $i = 2, 4, \ldots, 2\lfloor r/2 \rfloor$.

• The number of runs with the said counts x_2, x_4, \ldots equals that of positive-integer solutions to

$$x_2 + x_4 + \cdots + x_{2\lfloor r/2 \rfloor} = n.$$

 – There are $\lfloor r/2 \rfloor$ terms.

• By Eq. (14) on p. 89, the number of solutions equals

$$\binom{n - 1}{\lfloor r/2 \rfloor - 1} = \binom{n - 1}{n - \lfloor r/2 \rfloor}.$$
The Proof (concluded)

• Therefore the number of runs that start with a type-1 object equals

\[
\binom{m-1}{m-\lceil r/2 \rceil} \binom{n-1}{n-\lfloor r/2 \rfloor}.
\]

• Repeat the argument for the case where the 1st run starts with a type-2 object.

• The count is

\[
\binom{n-1}{n-\lceil r/2 \rceil} \binom{m-1}{m-\lfloor r/2 \rfloor}
\]

(by swapping \(m\) and \(n\)).
The Catalana Numbers (1838)

- A binomial random walk starts at the origin (p. 43).
- What is the number of ways it can end at the origin in $2n$ steps \textit{without} being in the negative territory?
- A left move lowers the position, whereas a right move increases the position.
- So it is equivalent to the number of ways
 \[
 \underbrace{RR \cdots R}_{n} \underbrace{LL \cdots L}_{n}
 \]
 can be permuted so that no prefix has more Ls than Rs.

aEugène Charles Catalan (1814–1894). But it was known to Euler (1707–1783) and, even earlier, Mongolian mathematician Minggatu (1730).
The Catalan Numbers (concluded)

- For example,

```
R LRLRRLLL.
```
Formula for the Catalan Number

The number is

\[b_n = \binom{2n}{n} - \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}, \quad n \geq 1. \]

(18)

with \(b_0 = 1 \).

- \(\underbrace{RR \cdots RR}_{n} \underbrace{LL \cdots L}_{n} \) can be permuted in \(\binom{2n}{n} \) ways by Eq. (2) on p. 16.\(^b\)

- Some of the permutations are illegal, such as \(RLLLRR \).

\(^a\) The subscript in \(b_n \) is \(n \) not \(2n! \)

\(^b\) Alternatively, recall Eq. (4) on p. 44.
The Proof (continued)

- We now prove that \(\binom{2n}{n-1} \) of the permutations are illegal.
- For every illegal permutation, we consider the first \(L \) move that makes the particle land at \(-1\).
 - Such as \(RL\underline{L}LRR \).
- Swap \(L \) and \(R \) for this offending \(L \) and all earlier moves.
 - Such as \(\underline{L}R\underline{R}LRR \).
- The result is a permutation of

\[
\underbrace{RR\cdots R}_{n+1} \underbrace{LL\cdots L}_{n-1}.
\]
The Proof (concluded)

- There are \(\binom{2n}{n} \) ways to permute

\[
\underbrace{RR \cdots R}_{n+1} \underbrace{LL \cdots L}_{n-1}
\]

by Eq. (2) on 16.

- But the correspondence is one-to-one between the permutations of

\[
\underbrace{RR \cdots R}_{n+1} \underbrace{LL \cdots L}_{n-1}
\]

and illegal permutations (see next page).

- So there are \(\binom{2n}{n-1} \) illegal walks.
The Reflection Principle

\[a \]

André (1887).
A Simple Corollary

Corollary 22 For $n \geq 1$,

$$b_n = \frac{\sum_{i=0}^{n} \binom{n}{i}^2}{n + 1}.$$

• See Eq. (13) on p. 61.
Application: No Return to Origin until End

What is the number of ways a binomial random walk that is never in the negative territory \textit{and} returns to the origin the \textit{first} time after $2n$ steps?

- Let $n \geq 1$.
- The answer is b_{n-1}.
Application: No Return to Origin until End (concluded)

What is the number of ways a binomial random walk returns to the origin the first time after \(2n\) steps?

- Let \(n \geq 1\).
- The answer is

\[
2b_{n-1} = \frac{1}{2n - 1} \binom{2n}{n}.
\]

(19)

- It may return to the origin by way of the negative territory.
- It may return to the origin by way of the positive territory.
Application: Nonnegative Partial Sums

What is the number of ways we can arrange \(n \) “+1” and \(n \) “−1” such that all \(2n \) partial sums are nonnegative?

- For example, the six partial sums of \((1, 1, -1, 1, -1, -1)\) are \((1, 2, 1, 2, 1, 0)\).

- Let \(n \geq 1 \).

- The answer is \(b_n \).

- The number remains \(b_n \) if we have only \(n - 1 \) “−1”.
 - In the original problem, the last number must be −1.
 - So it is “redundant.”
Application: Nonpositive Partial Sums

What is the number of ways we can arrange \(n \) “+1” and \(n \) “−1” such that all \(2n \) partial sums are nonpositive?

- For example, the six partial sums of \((-1, -1, 1, -1, 1, 1)\) are \((-1, -2, -1, -2, -1, 0)\).
- Let \(n \geq 1 \).
- The answer is \(b_n \).
- The number remains \(b_n \) if we have only \(n - 1 \) “+1”.
 - In the original problem, the last number must be 1.
 - So it is “redundant.”