
Theory of Computation

Final Examination on December 23, 2022

Fall Semester, 2022

Problem 1 (20 points) Prove that if NP ⊆ ZPP, then NP ⊆ BPP. (Recall

that a language in ZPP has two Monte Carlo algorithms, one with no false positives

and the other with no false negatives. The class BPP contains all languages L for

which there is a precise polynomial-time NTM N such that if x ∈ L, then at least

2/3 of the computation paths of N on x lead to “yes”; otherwise, at least 2/3 of the

computation paths of N on x lead to “no.”)

Proof: Assume NP ⊆ ZPP. Pick any NP-complete language L. We only need

to show that L ∈ BPP. There exists a Las Vegas algorithm A that decides L in

expected polynomial time, say p(n). By Markov’s inequality, the probability that

the running time of A exceeds 3 p(n) is at most 1/3. Run A for 3 p(n) steps to

determine with probability at least 1 − 1/3 = 2/3 whether the input belongs in L.

We therefore obtain a polynomial-time algorithm for L which errs with probability

at most 1/3 on each input. Hence L is in BPP.

Problem 2 (20 points) PSPACE is the set of all languages which can be decided

by a deterministic TM using polynomial space. Prove that BPP ⊆ PSPACE.

Proof: Let M be a randomized polynomial-time TM that recognizes L ∈ BPP

with two-sided error-probability ε ≤ 1/4. Let r(n) be the number of coin tosses of

M . Then TM decides L as follows. Count of the number s of accepting paths. If

s ≥ (1− ε)2r(n), then accept; otherwise, reject. By recycling space across executions

of the loop in counting the number of accepting paths, this can be implemented in

polynomial space.

Problem 3 (20 points) Let G = (V,E) be an undirected graph in which every

node has a degree of at most k. Let I be a nonempty set. I is said to be independent

if there is no edge between any two nodes in I. Maximum Independent Set

finds the largest independent set in G. Consider the greedy following algorithm for

Maximum Independent Set:

Algorithm 1

1: I := φ;

2: while ∃ v ∈ G do

3: Add v to I;

4: Delete v and all of its adjacent nodes from G;

5: end while

6: return I;

Prove that this algorithm for Maximum Independent Set is a k
k+1

-approximation

algorithm. Recall that an ε-approximation algorithm returns a solution that is at

least 1− ε times the maximum solution.

Proof: Since each stage of the algorithm adds a node to I and deletes at most

k+ 1 nodes from G, I has at least |V |
k+1

nodes, which is at least 1
k+1

times the size of

the maximum independent set because the size of the maximum independent set is

trivially at most |V |. Thus this algorithm returns solutions that are never smaller

than 1− 1
k+1

= k
k+1

times the maximum.

Problem 4 (20 points) Let Cn be a boolean circuit which has n boolean inputs.

Language L ⊆ { 0, 1 }∗ has polynomial circuits if there is a family of circuits C =

(C0, C1, . . .) such that Cn accepts L ∩ { 0, 1 }n and the size of Cn is at most p(n)

for some fixed polynomial p. Prove or disprove that IP contains all languages that

have polynomial circuits.

Proof: No. Polynomial circuits can accept undecidable languages which are clearly

not in IP. See p. 268 of the textbook.

Problem 5 (20 points) #Hamiltonian Path computes the number of Hamil-

tonian paths in a graph. Prove that #Hamiltonian Path is in #P.

Proof: Let f(G) be the number of Hamiltonian paths of the input graph G. A

polynomial-time NTM M guesses a path on G and accepts it if the path is Hamil-

tonian. Then M(G) has f(G) accepting paths for all input graphs G. So f ∈ #P.

