Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets { P_1, P_2, \ldots, P_p }, called **petals**, each of cardinality at most ℓ .
- Furthermore, all pairs of sets in the family must have the same intersection (called the **core**^a of the sunflower).

^aA core can be an empty set.

The Erdős-Rado Lemma

Lemma 86 Let \mathcal{Z} be a family of more than $M \stackrel{\Delta}{=} (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued) For example,

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 3, 6, 9\}, \{0, 4, 8, 11\}, \\ \{4, 5, 6, 7\}, \{5, 8, 9, 10\}, \{6, 7, 9, 11\}\}, \\ \mathcal{D} = \{\{1, 2, 3, 5\}, \{0, 4, 8, 11\}\}.$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - \mathcal{D} constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D} .
 - $|C| \le (p-1)\ell.$
 - C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
 - There is a $d \in C$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$ - Consider $\mathcal{Z}' = \{Z - \{d\} : Z \in \mathcal{Z}, d \in Z\}.$

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - \mathcal{Z}' has more than $M' \stackrel{\Delta}{=} (p-1)^{\ell-1} (\ell-1)!$ sets.
 - -M' is just M with ℓ replaced with $\ell 1$.
 - \mathcal{Z}' contains a sunflower by induction, say

$$\{P_1, P_2, \ldots, P_p\}.$$

– Now,

 $\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}\$ is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower means replacing the sets in the sunflower by its core.
- By *repeatedly* finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If Z is a family of sets, the above result is denoted by pluck(Z).
- $pluck(\mathcal{Z})$ is not unique.^a

^aIt depends on the sequence of sunflowers one plucks. Fortunately, this issue is not material to the proof.

An Example of Plucking

• Recall the sunflower on p. 814:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \\\{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

 $\operatorname{pluck}(\mathcal{Z}) = \{\{1, 2\}\}.$

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University

Razborov's Theorem

Theorem 87 (Razborov, 1985) There is a constant csuch that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that^a

$$2\binom{\ell}{2} \le k - 1. \tag{24}$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p-1)^{\ell} \ell!$.

– Recall the Erdős-Rado lemma (p. 815).

^aCorrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, \ldots, X_m)$, where:
 - $-X_i \subseteq V.$
 - $-|X_i| \le \ell.$
 - $-m \leq M.$
- It answers true if and only if at least one X_i is a clique.
- We shall show how to approximate any monotone circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i, j\})$.

The Proof (continued)

- A monotone circuit is the OR or AND of two subcircuits.
- We will build approximators of the overall circuit from the approximators of the two subcircuits.
 - Start with two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We will construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - For any node set $\mathcal{C}, \mathcal{C} \in \mathcal{X} \cup \mathcal{Y}$ if and only if $\mathcal{C} \in \mathcal{X}$ or $\mathcal{C} \in \mathcal{Y}$.
 - Hence $\mathcal{X} \cup \mathcal{Y}$ contains a clique if and only if \mathcal{X} or \mathcal{Y} contains a clique.
- Problem with $CC(\mathcal{X} \cup \mathcal{Y})$ occurs when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations are eliminated by using

 $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$

as the final approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

The Proof: OR (continued)

- If $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true.
 - Each plucking replaces sets by their *common* core.
 - Let $Y \in \mathcal{Z}$ be a clique.
 - A subset of Y must also be a clique.
 - So pluck(\mathcal{Z}) must contain a clique.

The Proof: OR (concluded)

- $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ return true.
- CC(pluck(X ∪ Y)) introduces a false negative if a positive example makes either CC(X) or CC(Y) return true but makes CC(pluck(X ∪ Y)) return false.
- We next count the number of false positives and false negatives introduced^a by $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$.
- Let us work on false negatives for OR first.

^aCompared with $CC(\mathcal{X} \cup \mathcal{Y})$ of course.

The Number of False Negatives $^{\rm a}$

Lemma 88 $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces sets in a crude circuit by their common subset.
- This makes the test for cliqueness less stringent.^b

^aRecall that $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ return false.

^bThe new crude circuit is at least as positive as the original one (p. 826).

The Number of False Positives

Lemma 89 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{2M}{p-1} 2^{-p} (k-1)^n$ false positives.

- Each plucking operation replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its common core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in *each* petal Z_i (and so $CC(Z_1, Z_2, ..., Z_p)$ returns false).
 - But the core contains distinctly colored nodes (thus forming a clique).
 - This implies at least one node from each identical-color pair was plucked away.

Proof of Lemma 89 (continued)

- We now count the number of such colorings.
- Color nodes in V at random with k-1 colors.
- Let R(X) denote the event that there are repeated colors in set X.

- $\leq \operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) | \neg R(Z)]$
- $= \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)]$ $\leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. \qquad (26)$
- Equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as core Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in a subset, Z.

Now

(25)

Proof of Lemma 89 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is

$$\frac{1}{k-1}$$

• Now

$$\operatorname{prob}[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}$$
(27)

by inequality (24) on p. 822.

• So the probability^a that a random coloring yields a *new* false positive is at most 2^{-p} by inequality (26) on p. 833.

^aProportion, if you so prefer.

Proof of Lemma 89 (continued)

- As there are $(k-1)^n$ different colorings, *each* plucking introduces at most $2^{-p}(k-1)^n$ false positives.
- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- When the procedure $pluck(\mathcal{X} \cup \mathcal{Y})$ ends, the set system contains $\leq M$ sets.

Proof of Lemma 89 (concluded)

- Each plucking reduces the number of sets by p-1.
- Hence at most 2M/(p-1) pluckings occur in $pluck(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{2M}{p-1} \, 2^{-p} (k-1)^n$$

false positives are introduced.^a

^aNote that the numbers of errors are added not multiplied. Recall that we count how many *new* errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

 $CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$

• We need to count the number of errors this approximate AND introduces on the positive and negative examples.

The Proof: AND (continued)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- As we count only new errors, we ignore scenarios where the AND of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is already wrong.

The Proof: AND (continued)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives over our negative examples.^a
 - Suppose $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ returns true.
 - Then some $X_i \cup Y_j$ is a clique.
 - Thus $X_i \in \mathcal{X}$ and $Y_j \in \mathcal{Y}$ are cliques, making both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ return true.
 - So CC({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}$ }) introduces no false positives.

^aUnlike the OR case on p. 825, we are not claiming that $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ is equivalent to the AND of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$. Equivalence is more than we need here.

The Proof: AND (concluded)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives over our positive examples.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a *single* clique C of size k.
 - This clique \mathcal{C} must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 - As this clique C also contains $X_i \cup Y_j$ (see next page), the new circuit returns true.
 - $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
- We next bound the number of false positives and false negatives introduced^a by the approximate AND.

^aCompared with CC({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}$ }) of course.

The Number of False Positives

Lemma 90 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- We prove this claim in stages.
- CC({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}$ }) introduces no false positives.^a
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces no *additional* false positives because we are testing potentially *fewer* sets for cliqueness.

^aRecall p. 839.

Proof of Lemma 90 (concluded)

- $| \{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, | X_i \cup Y_j | \le \ell \} | \le M^2.$
- Each plucking reduces the number of sets by p-1.
- So pluck({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell$ }) involves $\le M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 89 (p. 830).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p} (k-1)^n \le M^2 2^{-p} (k-1)^n.$$

The Number of False Negatives

Lemma 91 The approximate AND introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.^a

^aRecall p. 839.

Proof of Lemma 91 (continued)

- CC({ $X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell$ }) introduces $\le M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z \stackrel{\Delta}{=} X_i \cup Y_j$ larger than ℓ introduces false negatives only if Z is part of a clique.

- There are
$$\binom{n-|Z|}{k-|Z|}$$
 such cliques.

* It is the number of positive examples whose clique contains Z.

$$- \binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| > \ell.$$

- There are at most
$$M^2$$
 such Zs.

Proof of Lemma 91 (concluded)

- Plucking introduces no false negatives.
 - Recall that if $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true.^a

^aRecall p. 826.

Two Summarizing Lemmas

From Lemmas 89 (p. 830) and 90 (p. 842), we have:

Lemma 92 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 88 (p. 829) and 91 (p. 844), we have:

Lemma 93 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- So each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 94 Every final crude circuit is:

- 1. Identically false—thus wrong on all positive examples.
- 2. Or outputs true on at least half of the negative examples.
- Suppose it is not identically false.
- Then it accepts at least those graphs that have a clique on some set X of nodes, with

$$|X| \le \ell = n^{1/8} < n^{1/4} = k.$$

Proof of Lemma 94 (concluded)

- Inequality (27) (p. 834) says that at least half of the colorings assign different colors to nodes in X.
- So at least half of the colorings thus negative examples have a clique in X and are accepted.

The Proof (continued)

• Recall the constants on p. 822:

$$k \stackrel{\Delta}{=} n^{1/4},$$

$$\ell \stackrel{\Delta}{=} n^{1/8},$$

$$p \stackrel{\Delta}{=} n^{1/8} \log n,$$

$$M \stackrel{\Delta}{=} (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}} \text{ for large } n.$$

The Proof (continued)

- Suppose the final crude circuit is identically false.
 - By Lemma 93 (p. 847), each approximation step introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2\binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^\ell \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 94 (p. 849) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 92 (p. 847), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

Alexander Razborov (1963–)

$P \neq NP$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

Computation That Counts

And though the holes were rather small, they had to count them all. — The Beatles, A Day in the Life (1967)

Counting Problems

- Counting problems are concerned with the number of solutions.
 - #SAT: the number of satisfying truth assignments to a boolean formula.
 - #HAMILTONIAN PATH: the number of Hamiltonian paths in a graph.
- They cannot be easier than their decision versions.
 - The decision problem has a solution if and only if the solution count is at least 1.
- But they can be harder than their decision versions.

Decision and Counting Problems

• FP is the set of polynomial-time computable functions $f: \{0,1\}^* \to \mathbb{Z}.$

- GCD, LCM, matrix-matrix multiplication, etc.

- If #SAT \in FP, then P = NP.
 - Given boolean formula ϕ , calculate its number of satisfying truth assignments, k, in polynomial time.

- Declare " $\phi \in SAT$ " if and only if $k \ge 1$.

• The validity of the reverse direction is open.

A Counting Problem Harder than Its Decision Version

- CYCLE asks if a directed graph contains a cycle.^a
- #CYCLE counts the number of cycles in a directed graph.
- CYCLE is in P by a simple greedy algorithm.
- But #CYCLE is hard unless P = NP.

^aA cycle has no repeated nodes.

Hardness of #CYCLE

Theorem 95 (Arora, 2006) If $\#CYCLE \in FP$, then P = NP.

- It suffices to reduce the NP-complete HAMILTONIAN CYCLE to #CYCLE.
- Consider a *directed* graph G with n nodes.
- Define $N \equiv \lfloor n \log_2(n+1) \rfloor$.
- Replace each edge $(u, v) \in G$ with this subgraph:

The Proof (continued)

- This subgraph has N + 1 levels.
- There are now 2^N paths from u to v.
- Call the resulting digraph G'.
- Recall that a Hamiltonian cycle on G contains n edges.
- To each Hamiltonian cycle on G, there correspond $(2^N)^n = 2^{nN}$ cycles (not necessarily Hamiltonian) on G'.
- So if G contains a Hamiltonian cycle, then G' contains at least 2^{nN} cycles.

The Proof (continued)

- Now suppose G contains no Hamiltonian cycles.
- Then every cycle on G contains at most n-1 nodes.
- There are hence at most n^{n-1} cycles on G.
- Each k-node cycle on G induces $(2^N)^k$ cycles on G'.
- So G' contains at most $n^{n-1}(2^N)^{n-1}$ cycles.
- As $n \ge 1$,

$$n^{n-1} (2^N)^{n-1} = 2^{nN} \frac{n^{n-1}}{2^N} \le 2^{nN} \frac{n^{n-1}}{2^{n\log_2(n+1)-1}}$$
$$= 2^{nN} \frac{2n^{n-1}}{(n+1)^n} \le 2^{nN} \frac{2}{n+1} \left(\frac{n}{n+1}\right)^{n-1} < 2^{nN}.$$

The Proof (concluded)

- In summary, $G \in$ HAMILTONIAN CYCLE if and only if G' contains at least 2^{nN} cycles.
- G' contains at most $n^n 2^{nN}$ cycles.
 - Every k-cycle on G induces $(2^N)^k \leq 2^{nN}$ cycles on G'.
 - There are at most n^n cycles in G.
 - Every cycle on G' is associated with a unique cycle on G.
- #CYCLE has a polynomial length $O(n^2 \log n)$.
- Hence Hamiltonian cycle $\in P$.

Counting Class #P

A function f is in #P (or $f \in \#P$) if

- There exists a polynomial-time NTM M.
- M(x) has f(x) accepting paths for all inputs x.

Some *#P* Problems

- $f(\phi) =$ number of satisfying truth assignments to ϕ .
 - The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
 - Hence $f \in \#P$.
 - -f is also called #SAT.
- #HAMILTONIAN PATH.
- #3-COLORING.

#P Completeness

- Function f is #P-complete if
 - $-f \in \#\mathbf{P}.$
 - $\# \mathbf{P} \subseteq \mathbf{F} \mathbf{P}^f.$
 - * Every function in #P can be computed in polynomial time with access to a black box^a for f.
 - · It said to be polynomial-time Turing-reducible to f.
 - · Oracle f can be accessed only a polynomial number of times.

^aThink of it as a subroutine. It is also called an **oracle**.

$\# {\rm SAT}$ Is $\# P\text{-Complete}^{\rm a}$

- First, it is in #P (p. 866).
- Let $f \in \#P$ be the number of accepting paths of a polynomial-time NTM M.
- Cook's theorem uses a **parsimonious** reduction from M on input x to an instance ϕ of SAT.
 - That is, M(x)'s number of accepting paths equals ϕ 's number of satisfying truth assignments.
- Call the oracle #SAT with ϕ to obtain the desired answer regarding f(x).

^aValiant (1979); in fact, #2SAT is also #P-complete.

Leslie G. Valiant^a (1949–)

Avi Wigderson (2009), "Les Valiant singlehandedly created, or completely transformed, several fundamental research areas of computer science. [...] We all became addicted to this remarkable throughput, and expect more."

^aTuring Award (2010).

