
Sunflowers

• Fix p ∈ Z
+ and � ∈ Z

+.

• A sunflower is a family of p sets {P1, P2, . . . , Pp },
called petals, each of cardinality at most �.

• Furthermore, all pairs of sets in the family must have

the same intersection (called the corea of the sunflower).

����

aA core can be an empty set.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 813

A Sample Sunflower

{{ 1, 2, 3, 5 }, { 1, 2, 6, 9 }, { 0, 1, 2, 11 },
{ 1, 2, 12, 13 }, { 1, 2, 8, 10 }, { 1, 2, 4, 7 }}.

�� �

�� �

�� �

�� �	

� �

	� ��

��� ��

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 814

The Erdős-Rado Lemma

Lemma 86 Let Z be a family of more than M
Δ
= (p− 1)��!

nonempty sets, each of cardinality � or less. Then Z must

contain a sunflower (with p petals).

• Induction on �.

• For � = 1, p different singletons form a sunflower (with

an empty core).

• Suppose � > 1.

• Consider a maximal subset D ⊆ Z of disjoint sets.

– Every set in Z −D intersects some set in D.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 815

The Proof of the Erdős-Rado Lemma (continued)

For example,

Z = {{ 1, 2, 3, 5 }, { 1, 3, 6, 9 }, { 0, 4, 8, 11 },
{ 4, 5, 6, 7 }, { 5, 8, 9, 10 }, { 6, 7, 9, 11 }},

D = {{ 1, 2, 3, 5 }, { 0, 4, 8, 11 }}.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 816

The Proof of the Erdős-Rado Lemma (continued)

• Suppose D contains at least p sets.

– D constitutes a sunflower with an empty core.

• Suppose D contains fewer than p sets.

– Let C be the union of all sets in D.

– |C | ≤ (p− 1)�.

– C intersects every set in Z by D’s maximality.

– There is a d ∈ C that intersects more than
M

(p−1)� = (p− 1)�−1(�− 1)! sets in Z .

– Consider Z ′ = {Z − { d } : Z ∈ Z , d ∈ Z }.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 817

The Proof of the Erdős-Rado Lemma (concluded)

• (continued)

– Z ′ has more than M ′ Δ
= (p− 1)�−1(�− 1)! sets.

– M ′ is just M with � replaced with �− 1.

– Z ′ contains a sunflower by induction, say

{P1, P2, . . . , Pp }.

– Now,

{P1 ∪ { d }, P2 ∪ { d }, . . . , Pp ∪ { d } }

is a sunflower in Z .

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 818

Comments on the Erdős-Rado Lemma

• A family of more than M sets must contain a sunflower.

• Plucking a sunflower means replacing the sets in the

sunflower by its core.

• By repeatedly finding a sunflower and plucking it, we can

reduce a family with more than M sets to a family with

at most M sets.

• If Z is a family of sets, the above result is denoted by

pluck(Z).

• pluck(Z) is not unique.a

aIt depends on the sequence of sunflowers one plucks. Fortunately,

this issue is not material to the proof.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 819

An Example of Plucking

• Recall the sunflower on p. 814:

Z = {{ 1, 2, 3, 5 }, { 1, 2, 6, 9 }, { 0, 1, 2, 11 },
{ 1, 2, 12, 13 }, { 1, 2, 8, 10 }, { 1, 2, 4, 7 }}

• Then

pluck(Z) = {{ 1, 2 }}.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 820

Razborov’s Theorem

Theorem 87 (Razborov, 1985) There is a constant c

such that for large enough n, all monotone circuits for

cliquen,k with k = n1/4 have size at least ncn1/8

.

• We shall approximate any monotone circuit for

cliquen,k by a restricted kind of crude circuit.

• The approximation will proceed in steps: one step for

each gate of the monotone circuit.

• Each step introduces few errors (false positives and false

negatives).

• Yet, the final crude circuit has exponentially many

errors.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 821

The Proof

• Fix k = n1/4.

• Fix � = n1/8.

• Note thata

2

(
�

2

)
≤ k − 1. (24)

• p will be fixed later to be n1/8 logn.

• Fix M = (p− 1)��!.

– Recall the Erdős-Rado lemma (p. 815).

aCorrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 822

The Proof (continued)

• Each crude circuit used in the approximation process is

of the form CC(X1, X2, . . . , Xm), where:

– Xi ⊆ V .

– |Xi | ≤ �.

– m ≤ M .

• It answers true if and only if at least one Xi is a clique.

• We shall show how to approximate any monotone circuit

for cliquen,k by such a crude circuit, inductively.

• The induction basis is straightforward:

– Input gate gij is the crude circuit CC({i, j}).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 823

The Proof (continued)

• A monotone circuit is the or or and of two subcircuits.

• We will build approximators of the overall circuit from

the approximators of the two subcircuits.

– Start with two crude circuits CC(X) and CC(Y).
– X and Y are two families of at most M sets of nodes,

each set containing at most � nodes.

– We will construct the approximate or and the

approximate and of these subcircuits.

– Then show both approximations introduce few errors.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 824

The Proof: or

• CC(X ∪Y) is equivalent to the or of CC(X) and CC(Y).
– For any node set C, C ∈ X ∪ Y if and only if C ∈ X or

C ∈ Y.
– Hence X ∪ Y contains a clique if and only if X or Y

contains a clique.

• Problem with CC(X ∪ Y) occurs when | X ∪ Y | > M .

• Such violations are eliminated by using

CC(pluck(X ∪ Y))

as the final approximate or of CC(X) and CC(Y).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 825

The Proof: or (continued)

• If CC(Z) is true, then CC(pluck(Z)) must be true.

– Each plucking replaces sets by their common core.

– Let Y ∈ Z be a clique.

– A subset of Y must also be a clique.

– So pluck(Z) must contain a clique.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 826

The Proof: or (continued)

Y

X

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 827

The Proof: or (concluded)

• CC(pluck(X ∪ Y)) introduces a false positive if a

negative example makes both CC(X) and CC(Y) return
false but makes CC(pluck(X ∪ Y)) return true.

• CC(pluck(X ∪ Y)) introduces a false negative if a

positive example makes either CC(X) or CC(Y) return
true but makes CC(pluck(X ∪ Y)) return false.

• We next count the number of false positives and false

negatives introduceda by CC(pluck(X ∪ Y)).
• Let us work on false negatives for or first.

aCompared with CC(X ∪ Y) of course.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 828

The Number of False Negativesa

Lemma 88 CC(pluck(X ∪Y)) introduces no false negatives.

• Each plucking replaces sets in a crude circuit by their

common subset.

• This makes the test for cliqueness less stringent.b

aRecall that CC(pluck(X ∪ Y)) introduces a false negative if a pos-

itive example makes either CC(X) or CC(Y) return true but makes

CC(pluck(X ∪ Y)) return false.
bThe new crude circuit is at least as positive as the original one (p.

826).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 829

The Number of False Positives

Lemma 89 CC(pluck(X ∪ Y)) introduces at most
2M
p−1 2

−p(k − 1)n false positives.

• Each plucking operation replaces the sunflower

{Z1, Z2, . . . , Zp } with its common core Z.

• A false positive is necessarily a coloring such that:

– There is a pair of identically colored nodes in each

petal Zi (and so CC(Z1, Z2, . . . , Zp) returns false).

– But the core contains distinctly colored nodes (thus

forming a clique).

– This implies at least one node from each

identical-color pair was plucked away.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 830

Proof of Lemma 89 (continued)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 831

Proof of Lemma 89 (continued)

• We now count the number of such colorings.

• Color nodes in V at random with k − 1 colors.

• Let R(X) denote the event that there are repeated

colors in set X .

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 832

Proof of Lemma 89 (continued)

• Now

prob[R(Z1) ∧ · · · ∧R(Zp) ∧ ¬R(Z)] (25)

≤ prob[R(Z1) ∧ · · · ∧R(Zp) | ¬R(Z)]

=

p∏
i=1

prob[R(Zi) | ¬R(Z)]

≤
p∏

i=1

prob[R(Zi)]. (26)

– Equality holds because R(Zi) are independent given

¬R(Z) as core Z contains their only common nodes.

– Last inequality holds as the likelihood of repetitions

in Zi decreases given no repetitions in a subset, Z.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 833

Proof of Lemma 89 (continued)

• Consider two nodes in Zi.

• The probability that they have identical color is

1

k − 1
.

• Now

prob[R(Zi)] ≤
(|Zi|

2

)
k − 1

≤
(
�
2

)
k − 1

≤ 1

2
(27)

by inequality (24) on p. 822.

• So the probabilitya that a random coloring yields a new

false positive is at most 2−p by inequality (26) on p. 833.

aProportion, if you so prefer.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 834

Proof of Lemma 89 (continued)

• As there are (k − 1)n different colorings, each plucking

introduces at most 2−p(k − 1)n false positives.

• Recall that | X ∪ Y | ≤ 2M .

• When the procedure pluck(X ∪ Y) ends, the set system

contains ≤ M sets.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 835

Proof of Lemma 89 (concluded)

• Each plucking reduces the number of sets by p− 1.

• Hence at most 2M/(p− 1) pluckings occur in

pluck(X ∪ Y).
• At most

2M

p− 1
2−p(k − 1)n

false positives are introduced.a

aNote that the numbers of errors are added not multiplied. Recall that

we count how many new errors are introduced by each approximation

step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 836

The Proof: and

• The approximate and of crude circuits CC(X) and

CC(Y) is
CC(pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })).

• We need to count the number of errors this approximate

and introduces on the positive and negative examples.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 837

The Proof: and (continued)

• The approximate and introduces a false positive if a

negative example makes either CC(X) or CC(Y) return
false but makes the approximate and return true.

• The approximate and introduces a false negative if a

positive example makes both CC(X) and CC(Y) return
true but makes the approximate and return false.

• As we count only new errors, we ignore scenarios where

the and of CC(X) and CC(Y) is already wrong.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 838

The Proof: and (continued)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false

positives over our negative examples.a

– Suppose CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) returns
true.

– Then some Xi ∪ Yj is a clique.

– Thus Xi ∈ X and Yj ∈ Y are cliques, making both

CC(X) and CC(Y) return true.

– So CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no
false positives.

aUnlike the or case on p. 825, we are not claiming that CC({Xi ∪
Yj : Xi ∈ X , Yj ∈ Y }) is equivalent to the and of CC(X) and CC(Y).

Equivalence is more than we need here.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 839

The Proof: and (concluded)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false

negatives over our positive examples.

– Suppose both CC(X) and CC(Y) accept a positive

example with a single clique C of size k.

– This clique C must contain an Xi ∈ X and a Yj ∈ Y.
– As this clique C also contains Xi ∪ Yj (see next page),

the new circuit returns true.

– CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false

negatives.

• We next bound the number of false positives and false

negatives introduceda by the approximate and.
aCompared with CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) of course.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 840

Yj Xi

Clique of size k

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 841

The Number of False Positives

Lemma 90 The approximate and introduces at most

M22−p(k − 1)n false positives.

• We prove this claim in stages.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false

positives.a

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })
introduces no additional false positives because we are

testing potentially fewer sets for cliqueness.

aRecall p. 839.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 842

Proof of Lemma 90 (concluded)

• | {Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � } | ≤ M2.

• Each plucking reduces the number of sets by p− 1.

• So pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })
involves ≤ M2/(p− 1) pluckings.

• Each plucking introduces at most 2−p(k − 1)n false

positives by the proof of Lemma 89 (p. 830).

• The desired upper bound is

[M2/(p− 1)] 2−p(k − 1)n ≤ M22−p(k − 1)n.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 843

The Number of False Negatives

Lemma 91 The approximate and introduces at most

M2
(
n−�−1
k−�−1

)
false negatives.

• We again prove this claim in stages.

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false

negatives.a

aRecall p. 839.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 844

Proof of Lemma 91 (continued)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })
introduces ≤ M2

(
n−�−1
k−�−1

)
false negatives.

– Deletion of set Z
Δ
= Xi ∪ Yj larger than � introduces

false negatives only if Z is part of a clique.

– There are
(n−|Z |
k−|Z |

)
such cliques.

∗ It is the number of positive examples whose clique

contains Z.

–
(n−|Z |
k−|Z |

) ≤ (
n−�−1
k−�−1

)
as |Z | > �.

– There are at most M2 such Zs.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 845

Proof of Lemma 91 (concluded)

• Plucking introduces no false negatives.

– Recall that if CC(Z) is true, then CC(pluck(Z))

must be true.a

aRecall p. 826.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 846

Two Summarizing Lemmas

From Lemmas 89 (p. 830) and 90 (p. 842), we have:

Lemma 92 Each approximation step introduces at most

M22−p(k − 1)n false positives.

From Lemmas 88 (p. 829) and 91 (p. 844), we have:

Lemma 93 Each approximation step introduces at most

M2
(
n−�−1
k−�−1

)
false negatives.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 847

The Proof (continued)

• So each approximation step introduces “few” false

positives and false negatives.

• We next show that the resulting crude circuit has “a

lot” of false positives or false negatives.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 848

The Final Crude Circuit

Lemma 94 Every final crude circuit is:

1. Identically false—thus wrong on all positive examples.

2. Or outputs true on at least half of the negative examples.

• Suppose it is not identically false.

• Then it accepts at least those graphs that have a clique

on some set X of nodes, with

|X | ≤ � = n1/8 < n1/4 = k.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 849

Proof of Lemma 94 (concluded)

• Inequality (27) (p. 834) says that at least half of the

colorings assign different colors to nodes in X .

• So at least half of the colorings — thus negative

examples — have a clique in X and are accepted.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 850

The Proof (continued)

• Recall the constants on p. 822:

k
Δ
= n1/4,

�
Δ
= n1/8,

p
Δ
= n1/8 logn,

M
Δ
= (p− 1)��! < n(1/3)n1/8

for large n.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 851

The Proof (continued)

• Suppose the final crude circuit is identically false.

– By Lemma 93 (p. 847), each approximation step

introduces at most M2
(
n−�−1
k−�−1

)
false negatives.

– There are
(
n
k

)
positive examples.

– The original monotone circuit for cliquen,k has at

least (
n
k

)
M2

(
n−�−1
k−�−1

) ≥ 1

M2

(
n− �

k

)�

≥ n(1/12)n1/8

gates for large n.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 852

The Proof (concluded)

• Suppose the final crude circuit is not identically false.

– Lemma 94 (p. 849) says that there are at least

(k − 1)n/2 false positives.

– By Lemma 92 (p. 847), each approximation step

introduces at most M22−p(k − 1)n false positives

– The original monotone circuit for cliquen,k has at

least

(k − 1)n/2

M22−p(k − 1)n
=

2p−1

M2
≥ n(1/3)n1/8

gates.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 853

Alexander Razborov (1963–)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 854

P 	= NP Proved?

• Razborov’s theorem says that there is a monotone

language in NP that has no polynomial monotone

circuits.

• If we can prove that all monotone languages in P have

polynomial monotone circuits, then P 	= NP.

• But Razborov proved in 1985 that some monotone

languages in P have no polynomial monotone circuits!

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 855

Computation That Counts

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 856

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 857

Counting Problems

• Counting problems are concerned with the number of

solutions.

– #sat: the number of satisfying truth assignments to

a boolean formula.

– #hamiltonian path: the number of Hamiltonian

paths in a graph.

• They cannot be easier than their decision versions.

– The decision problem has a solution if and only if the

solution count is at least 1.

• But they can be harder than their decision versions.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 858

Decision and Counting Problems

• FP is the set of polynomial-time computable functions

f : { 0, 1 }∗ → Z.

– GCD, LCM, matrix-matrix multiplication, etc.

• If #sat ∈ FP, then P = NP.

– Given boolean formula φ, calculate its number of

satisfying truth assignments, k, in polynomial time.

– Declare “φ ∈ sat” if and only if k ≥ 1.

• The validity of the reverse direction is open.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 859

A Counting Problem Harder than Its Decision Version

• cycle asks if a directed graph contains a cycle.a

• #cycle counts the number of cycles in a directed

graph.

• cycle is in P by a simple greedy algorithm.

• But #cycle is hard unless P = NP.

aA cycle has no repeated nodes.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 860

Hardness of #cycle

Theorem 95 (Arora, 2006) If #cycle ∈ FP, then

P = NP.

• It suffices to reduce the NP-complete hamiltonian

cycle to #cycle.

• Consider a directed graph G with n nodes.

• Define N ≡ �n log2(n+ 1)
.
• Replace each edge (u, v) ∈ G with this subgraph:

u v

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 861

The Proof (continued)

• This subgraph has N + 1 levels.

• There are now 2N paths from u to v.

• Call the resulting digraph G′.

• Recall that a Hamiltonian cycle on G contains n edges.

• To each Hamiltonian cycle on G, there correspond

(2N)n = 2nN cycles (not necessarily Hamiltonian) on G′.

• So if G contains a Hamiltonian cycle, then G′ contains
at least 2nN cycles.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 862

The Proof (continued)

• Now suppose G contains no Hamiltonian cycles.

• Then every cycle on G contains at most n− 1 nodes.

• There are hence at most nn−1 cycles on G.

• Each k-node cycle on G induces (2N)k cycles on G′.

• So G′ contains at most nn−1(2N)n−1 cycles.

• As n ≥ 1,

nn−1(2N)n−1 = 2nN nn−1

2N
≤ 2nN nn−1

2n log2(n+1)−1

= 2nN 2nn−1

(n+ 1)n
≤ 2nN 2

n+ 1

(
n

n+ 1

)n−1

< 2nN .

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 863

The Proof (concluded)

• In summary, G ∈ hamiltonian cycle if and only if G′

contains at least 2nN cycles.

• G′ contains at most nn 2nN cycles.

– Every k-cycle on G induces (2N)k ≤ 2nN cycles on

G′.

– There are at most nn cycles in G.

– Every cycle on G′ is associated with a unique cycle

on G.

• #cycle has a polynomial length O(n2 logn).

• Hence hamiltonian cycle ∈ P.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 864

Counting Class #P

A function f is in #P (or f ∈ #P) if

• There exists a polynomial-time NTM M .

• M(x) has f(x) accepting paths for all inputs x.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 865

Some #P Problems

• f(φ) = number of satisfying truth assignments to φ.

– The desired NTM guesses a truth assignment T and

accepts φ if and only if T |= φ.

– Hence f ∈ #P.

– f is also called #sat.

• #hamiltonian path.

• #3-coloring.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 866

#P Completeness

• Function f is #P-complete if

– f ∈ #P.

– #P ⊆ FPf .

∗ Every function in #P can be computed in

polynomial time with access to a black boxa for f .

· It said to be polynomial-time Turing-reducible

to f .

· Oracle f can be accessed only a polynomial

number of times.

aThink of it as a subroutine. It is also called an oracle.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 867

#sat Is #P-Completea

• First, it is in #P (p. 866).

• Let f ∈ #P be the number of accepting paths of a

polynomial-time NTM M .

• Cook’s theorem uses a parsimonious reduction from M

on input x to an instance φ of sat.

– That is, M(x)’s number of accepting paths equals φ’s

number of satisfying truth assignments.

• Call the oracle #sat with φ to obtain the desired

answer regarding f(x).

aValiant (1979); in fact, #2sat is also #P-complete.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 868

Leslie G. Valianta (1949–)

Avi Wigderson (2009), “Les Valiant

singlehandedly created, or com-

pletely transformed, several funda-

mental research areas of computer

science. [. . .] We all became ad-

dicted to this remarkable through-

put, and expect more.”

aTuring Award (2010).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 869

Finis

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 909

