Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets $\{P_1, P_2, \ldots, P_p\}$, called petals, each of cardinality at most ℓ.
- Furthermore, all pairs of sets in the family must have the same intersection (called the core\(^a\) of the sunflower).

\[\text{core}\]

\(^a\)A core can be an empty set.
A Sample Sunflower

\[\{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}.\]
The Erdős-Rado Lemma

Lemma 86 Let \mathcal{Z} be a family of more than $M \triangleq (p - 1)^\ell \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ.
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} - \mathcal{D}$ intersects some set in \mathcal{D}.
The Proof of the Erdős-Rado Lemma (continued)

For example,

\[Z = \begin{align*}
&= \{ \{1, 2, 3, 5\}, \{1, 3, 6, 9\}, \{0, 4, 8, 11\}, \\
&\quad \{4, 5, 6, 7\}, \{5, 8, 9, 10\}, \{6, 7, 9, 11\} \}, \\
D &= \{ \{1, 2, 3, 5\}, \{0, 4, 8, 11\} \}.
\]
The Proof of the Erdős-Rado Lemma (continued)

• Suppose \mathcal{D} contains at least p sets.
 - \mathcal{D} constitutes a sunflower with an empty core.

• Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D}.
 - $|C| \leq (p - 1)\ell$.
 - C intersects every set in \mathcal{Z} by \mathcal{D}’s maximality.
 - There is a $d \in C$ that intersects more than
 \[
 \frac{M}{(p-1)\ell} = (p - 1)^{\ell-1}(\ell - 1)! \text{ sets in } \mathcal{Z}.
 \]
 - Consider $\mathcal{Z}' = \{Z - \{d\} : Z \in \mathcal{Z}, d \in Z \}$.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University
The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - Z' has more than $M' \triangleq (p - 1)^{\ell - 1}(\ell - 1)!$ sets.
 - M' is just M with ℓ replaced with $\ell - 1$.
 - Z' contains a sunflower by induction, say $\{ P_1, P_2, \ldots, P_p \}$.
 - Now,
 \[
 \{ P_1 \cup \{ d \}, P_2 \cup \{ d \}, \ldots, P_p \cup \{ d \} \}
 \]
 is a sunflower in Z.

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.

- **Plucking** a sunflower means replacing the sets in the sunflower by its core.

- By *repeatedly* finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.

- If \mathcal{Z} is a family of sets, the above result is denoted by $\text{pluck}(\mathcal{Z})$.

- $\text{pluck}(\mathcal{Z})$ is not unique.\(^a\)

\(^a\)It depends on the sequence of sunflowers one plucks. Fortunately, this issue is not material to the proof.
An Example of Plucking

• Recall the sunflower on p. 814:

\[Z = \{ \{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\} \} \]

• Then

\[\text{pluck}(Z) = \{\{1, 2\}\}. \]
Razborov’s Theorem

Theorem 87 (Razborov, 1985) *There is a constant c such that for large enough n, all monotone circuits for CLIQUE\(_{n,k}\) with \(k = n^{1/4}\) have size at least \(n^{cn^{1/8}}\).*

- We shall approximate any monotone circuit for CLIQUE\(_{n,k}\) by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.
The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that\(^{a}\)

$$2 \binom{\ell}{2} \leq k - 1. \quad (24)$$

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p - 1)^{\ell} \ell!$.
 - Recall the Erdős-Rado lemma (p. 815).

\(^{a}\)Corrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.
The Proof (continued)

- Each crude circuit used in the approximation process is of the form $\text{CC}(X_1, X_2, \ldots, X_m)$, where:
 - $X_i \subseteq V$.
 - $|X_i| \leq \ell$.
 - $m \leq M$.

- It answers true if and only if at least one X_i is a clique.

- We shall show how to approximate any monotone circuit for $\text{CLIQUE}_{n,k}$ by such a crude circuit, inductively.

- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $\text{CC}({i, j})$.
The Proof (continued)

- A monotone circuit is the OR or AND of two subcircuits.
- We will build approximators of the overall circuit from the approximators of the two subcircuits.
 - Start with two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We will construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.
The Proof: OR

- CC(\(\mathcal{X} \cup \mathcal{Y}\)) is equivalent to the OR of CC(\(\mathcal{X}\)) and CC(\(\mathcal{Y}\)).
 - For any node set \(C\), \(C \in \mathcal{X} \cup \mathcal{Y}\) if and only if \(C \in \mathcal{X}\) or \(C \in \mathcal{Y}\).
 - Hence \(\mathcal{X} \cup \mathcal{Y}\) contains a clique if and only if \(\mathcal{X}\) or \(\mathcal{Y}\) contains a clique.

- Problem with CC(\(\mathcal{X} \cup \mathcal{Y}\)) occurs when \(|\mathcal{X} \cup \mathcal{Y}| > M\).

- Such violations are eliminated by using

\[
CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))
\]

as the final approximate OR of CC(\(\mathcal{X}\)) and CC(\(\mathcal{Y}\)).
The Proof: OR (continued)

• If \(\text{CC}(Z) \) is true, then \(\text{CC}(\text{pluck}(Z)) \) must be true.
 - Each plucking replaces sets by their *common* core.
 - Let \(Y \in Z \) be a clique.
 - A subset of \(Y \) must also be a clique.
 - So \(\text{pluck}(Z) \) must contain a clique.
The Proof: OR (continued)
The Proof: OR (concluded)

- $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ *introduces a false positive* if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.

- $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ *introduces a false negative* if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.

- We next count the number of false positives and false negatives introduced\(^a\) by $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$.

- Let us work on false negatives for OR first.

\(^a\)Compared with $CC(\mathcal{X} \cup \mathcal{Y})$ of course.
The Number of False Negativesa

\textbf{Lemma 88} \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) \textit{introduces no false negatives.}\n
- Each plucking replaces sets in a crude circuit by their common subset.

- This makes the test for cliqueness less stringent.b

aRecall that \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) introduces a false negative if a positive example makes either \(\text{CC}(\mathcal{X}) \) or \(\text{CC}(\mathcal{Y}) \) return true but makes \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) return false.

bThe new crude circuit is at least as positive as the original one (p. 826).
The Number of False Positives

Lemma 89 \(CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) introduces at most \(\frac{2^M}{p-1} 2^{-p} (k - 1)^n \) false positives.

- Each plucking operation replaces the sunflower \(\{Z_1, Z_2, \ldots, Z_p\} \) with its common core \(Z \).

- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in *each* petal \(Z_i \) (and so \(CC(Z_1, Z_2, \ldots, Z_p) \) returns false).
 - But the core contains distinctly colored nodes (thus forming a clique).
 - This implies at least one node from each identical-color pair was plucked away.
Proof of Lemma 89 (continued)
Proof of Lemma 89 (continued)

- We now count the number of such colorings.
- Color nodes in \(V \) at random with \(k - 1 \) colors.
- Let \(R(X) \) denote the event that there are repeated colors in set \(X \).
Proof of Lemma 89 (continued)

- Now

\[
\begin{align*}
\text{prob}[R(Z_1) \land \cdots \land R(Z_p) \land \neg R(Z)] & \quad (25) \\
\leq \text{prob}[R(Z_1) \land \cdots \land R(Z_p) | \neg R(Z)] \\
= \prod_{i=1}^{p} \text{prob}[R(Z_i) | \neg R(Z)] \\
\leq \prod_{i=1}^{p} \text{prob}[R(Z_i)]. \\
\end{align*}
\]

- Equality holds because \(R(Z_i) \) are independent given \(\neg R(Z) \) as core \(Z \) contains their only common nodes.

- Last inequality holds as the likelihood of repetitions in \(Z_i \) decreases given no repetitions in a subset, \(Z \).
Proof of Lemma 89 (continued)

• Consider two nodes in Z_i.

• The probability that they have identical color is

$$\frac{1}{k - 1}.$$

• Now

$$\text{prob}[R(Z_i)] \leq \frac{|Z_i|}{k - 1} \leq \frac{\ell}{k - 1} \leq \frac{1}{2} \quad (27)$$

by inequality (24) on p. 822.

• So the probability\(^a\) that a random coloring yields a new false positive is at most 2^{-p} by inequality (26) on p. 833.

\(^a\)Proportion, if you so prefer.
Proof of Lemma 89 (continued)

• As there are \((k - 1)^n\) different colorings, each plucking introduces at most \(2^{-p}(k - 1)^n\) false positives.

• Recall that \(|\mathcal{X} \cup \mathcal{Y}| \leq 2M\).

• When the procedure \(pluck(\mathcal{X} \cup \mathcal{Y})\) ends, the set system contains \(\leq M\) sets.
Proof of Lemma 89 (concluded)

- Each plucking reduces the number of sets by $p - 1$.
- Hence at most $2M/(p - 1)$ pluckings occur in $\text{pluck}(\mathcal{X} \cup \mathcal{Y})$.
- At most
 \[
 \frac{2M}{p - 1} \cdot 2^{-p(k - 1)n}
 \]
 false positives are introduced.\(^a\)

\(^a\)Note that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.
The Proof: AND

- The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is
 $$CC(\text{pluck}({X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell})).$$

- We need to count the number of errors this approximate AND introduces on the positive and negative examples.
The Proof: AND (continued)

- The approximate AND introduces a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.

- The approximate AND introduces a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.

- As we count only new errors, we ignore scenarios where the AND of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is already wrong.
The Proof: AND (continued)

- CC(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}) introduces no false positives over our negative examples.\(^a\)
 - Suppose \(\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}) \) returns true.
 - Then some \(X_i \cup Y_j \) is a clique.
 - Thus \(X_i \in \mathcal{X} \) and \(Y_j \in \mathcal{Y} \) are cliques, making both \(\text{CC}(\mathcal{X}) \) and \(\text{CC}(\mathcal{Y}) \) return true.
 - So \(\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}) \) introduces no false positives.

\(^a\)Unlike the \text{or} case on p. 825, we are not claiming that \(\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}) \) is \textit{equivalent to} the \text{and} of \(\text{CC}(\mathcal{X}) \) and \(\text{CC}(\mathcal{Y}) \). Equivalence is more than we need here.
The Proof: AND (concluded)

• CC(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}) introduces no false negatives over our positive examples.
 – Suppose both \(CC(\mathcal{X}) \) and \(CC(\mathcal{Y}) \) accept a positive example with a \textit{single} clique \(C \) of size \(k \).
 – This clique \(C \) must contain an \(X_i \in \mathcal{X} \) and a \(Y_j \in \mathcal{Y} \).
 – As this clique \(C \) also contains \(X_i \cup Y_j \) (see next page), the new circuit returns true.
 – \(CC(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}) \) introduces no false negatives.

• We next bound the number of false positives and false negatives introduced\(^{a}\) by the approximate AND.

\(^{a}\)Compared with \(CC(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}) \) of course.
Clique of size k
The Number of False Positives

Lemma 90 The approximate AND introduces at most
$M^22^{-p}(k - 1)^n$ false positives.

- We prove this claim in stages.
- $\text{CC} (\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \})$ introduces no false positives.a
- $\text{CC} (\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell \})$ introduces no additional false positives because we are testing potentially fewer sets for cliqueness.

aRecall p. 839.
Proof of Lemma 90 (concluded)

• $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\}| \leq M^2$.

• Each plucking reduces the number of sets by $p - 1$.

• So $\text{pluck}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ involves $\leq \frac{M^2}{(p - 1)}$ pluckings.

• Each plucking introduces at most $2^{-p}(k - 1)^n$ false positives by the proof of Lemma 89 (p. 830).

• The desired upper bound is

$$\left\lceil \frac{M^2}{(p - 1)} \right\rceil 2^{-p}(k - 1)^n \leq M^2 2^{-p}(k - 1)^n.$$
The Number of False Negatives

Lemma 91 The approximate AND introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- CC($\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \}$) introduces no false negatives.a

aRecall p. 839.
Proof of Lemma 91 (continued)

- \(\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell \}) \)
 introduces \(\leq M^2 \binom{n-\ell-1}{k-\ell-1} \) false negatives.

 - Deletion of set \(Z \triangleq X_i \cup Y_j \) larger than \(\ell \) introduces false negatives only if \(Z \) is part of a clique.

 - There are \(\binom{n-|Z|}{k-|Z|} \) such cliques.

 * It is the number of positive examples whose clique contains \(Z \).

 - \(\binom{n-|Z|}{k-|Z|} \leq \binom{n-\ell-1}{k-\ell-1} \) as \(|Z| > \ell \).

 - There are at most \(M^2 \) such \(Z \)s.
Proof of Lemma 91 (concluded)

• Plucking introduces no false negatives.
 – Recall that if $CC(\mathcal{Z})$ is true, then $CC(\text{pluck}(\mathcal{Z}))$ must be true.\(^a\)

\(^a\)Recall p. 826.
Two Summarizing Lemmas

From Lemmas 89 (p. 830) and 90 (p. 842), we have:

Lemma 92 Each approximation step introduces at most $M^22^{-p}(k - 1)^n$ false positives.

From Lemmas 88 (p. 829) and 91 (p. 844), we have:

Lemma 93 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
The Proof (continued)

- So each approximation step introduces “few” false positives and false negatives.

- We next show that the resulting crude circuit has “a lot” of false positives or false negatives.
The Final Crude Circuit

Lemma 94 Every final crude circuit is:

1. *Identically false—thus wrong on all positive examples.*
2. *Or outputs true on at least half of the negative examples.*

- Suppose it is not identically false.
- Then it accepts at least those graphs that have a clique on some set X of nodes, with

$$|X| \leq \ell = n^{1/8} < n^{1/4} = k.$$
Proof of Lemma 94 (concluded)

- Inequality (27) (p. 834) says that at least half of the colorings assign different colors to nodes in X.
- So at least half of the colorings — thus negative examples — have a clique in X and are accepted.
The Proof (continued)

- Recall the constants on p. 822:

 \[k \triangleq n^{1/4}, \]
 \[\ell \triangleq n^{1/8}, \]
 \[p \triangleq n^{1/8} \log n, \]
 \[M \triangleq (p - 1)^\ell \ell! < n^{(1/3)n^{1/8}} \text{ for large } n. \]
The Proof (continued)

• Suppose the final crude circuit is identically false.
 - By Lemma 93 (p. 847), each approximation step introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original monotone circuit for $\text{CLIQUE}_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2 \binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^2} \left(\frac{n-\ell}{k} \right)^\ell \geq n^{(1/12)n^{1/8}}$$

 gates for large n.
The Proof (concluded)

• Suppose the final crude circuit is not identically false.
 – Lemma 94 (p. 849) says that there are at least \((k - 1)^n/2\) false positives.
 – By Lemma 92 (p. 847), each approximation step introduces at most \(M^22^{-p}(k - 1)^n\) false positives.
 – The original monotone circuit for \(\text{CLIQUE}_{n,k}\) has at least

\[
\frac{(k - 1)^n/2}{M^22^{-p}(k - 1)^n} = \frac{2^{p-1}}{M^2} \geq n^{(1/3)n^{1/8}}
\]

gates.
Alexander Razborov (1963–)
P \neq NP Proved?

- Razborov’s theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then P \neq NP.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!
Computation That Counts
And though the holes were rather small, they had to count them all.
Counting Problems

• Counting problems are concerned with the number of solutions.
 – \#SAT: the number of satisfying truth assignments to a boolean formula.
 – \#HAMILTONIAN PATH: the number of Hamiltonian paths in a graph.

• They cannot be easier than their decision versions.
 – The decision problem has a solution if and only if the solution count is at least 1.

• But they can be harder than their decision versions.
Decision and Counting Problems

- FP is the set of polynomial-time computable functions $f : \{0, 1\}^* \rightarrow \mathbb{Z}$.
 - GCD, LCM, matrix-matrix multiplication, etc.

- If $\#\text{sat} \in \text{FP}$, then $P = \text{NP}$.
 - Given boolean formula ϕ, calculate its number of satisfying truth assignments, k, in polynomial time.
 - Declare “$\phi \in \text{SAT}$” if and only if $k \geq 1$.

- The validity of the reverse direction is open.
A Counting Problem Harder than Its Decision Version

- CYCLE asks if a directed graph contains a cycle.\(^a\)
- \#CYCLE counts the number of cycles in a directed graph.
- CYCLE is in P by a simple greedy algorithm.
- But \#CYCLE is hard unless P = NP.

\(^a\)A cycle has no repeated nodes.
Hardness of \(\#\text{CYCLE} \)

Theorem 95 (Arora, 2006) If \(\#\text{CYCLE} \in FP \), then \(P = NP \).

- It suffices to reduce the NP-complete HAMILTONIAN CYCLE to \(\#\text{CYCLE} \).
- Consider a *directed* graph \(G \) with \(n \) nodes.
- Define \(N \equiv \lfloor n \log_2 (n + 1) \rfloor \).
- Replace each edge \((u, v) \in G \) with this subgraph:
The Proof (continued)

- This subgraph has $N + 1$ levels.
- There are now 2^N paths from u to v.
- Call the resulting digraph G'.
- Recall that a Hamiltonian cycle on G contains n edges.
- To each Hamiltonian cycle on G, there correspond $(2^N)^n = 2^{nN}$ cycles (not necessarily Hamiltonian) on G'.
- So if G contains a Hamiltonian cycle, then G' contains at least 2^{nN} cycles.
The Proof (continued)

- Now suppose G contains no Hamiltonian cycles.
- Then every cycle on G contains at most $n - 1$ nodes.
- There are hence at most n^{n-1} cycles on G.
- Each k-node cycle on G induces $(2^N)^k$ cycles on G'.
- So G' contains at most $n^{n-1}(2^N)^{n-1}$ cycles.
- As $n \geq 1$,

\[
\begin{align*}
 n^{n-1}(2^N)^{n-1} &= 2^{nN} \frac{n^{n-1}}{2N} \\
 &= 2^{nN} \frac{2^{n-1}}{(n+1)^n} \leq 2^{nN} \frac{2}{n+1} \left(\frac{n}{n+1} \right)^{n-1} < 2^{nN}.
\end{align*}
\]
The Proof (concluded)

• In summary, $G \in \text{HAMILTONIAN CYCLE}$ if and only if G' contains at least 2^{nN} cycles.

• G' contains at most $n^2 2^{nN}$ cycles.
 – Every k-cycle on G induces $(2^N)^k \leq 2^{nN}$ cycles on G'.
 – There are at most n^n cycles in G.
 – Every cycle on G' is associated with a unique cycle on G.

• $\#\text{CYCLE}$ has a polynomial length $O(n^2 \log n)$.

• Hence HAMILTONIAN CYCLE $\in P$.
Counting Class \#P

A function f is in \#P (or $f \in \#P$) if

- There exists a polynomial-time NTM M.
- $M(x)$ has $f(x)$ accepting paths for all inputs x.
Some \#P Problems

- $f(\phi) =$ number of satisfying truth assignments to ϕ.
 - The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
 - Hence $f \in \#P$.
 - f is also called \#SAT.

- \#HAMiltonian Path.

- \#3-COLORING.
#P Completeness

- Function f is #P-complete if
 - $f \in \#P$.
 - $\#P \subseteq FP^f$.
 * Every function in #P can be computed in polynomial time with access to a black box\(^a\) for f.
 - It said to be polynomial-time Turing-reducible to f.
 - Oracle f can be accessed only a polynomial number of times.

\(^a\)Think of it as a subroutine. It is also called an oracle.
#SAT is #P-Completea

- First, it is in \#P (p. 866).

- Let $f \in \#P$ be the number of accepting paths of a polynomial-time NTM M.

- Cook’s theorem uses a \textit{parsimonious} reduction from M on input x to an instance ϕ of SAT.
 - That is, $M(x)$’s number of accepting paths equals ϕ’s number of satisfying truth assignments.

- Call the oracle \#SAT with ϕ to obtain the desired answer regarding $f(x)$.

aValiant (1979); in fact, \#2SAT is also \#P-complete.
Leslie G. Valianta (1949–)

Avi Wigderson (2009), “Les Valiant singlehandedly created, or completely transformed, several fundamental research areas of computer science. [...] We all became addicted to this remarkable throughput, and expect more.”

aTuring Award (2010).