NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph G = (V, E) such that for each edge in E, at least one of its endpoints is in C.
- A heuristic to obtain a good node cover is to iteratively move a node with the *highest degree* to the cover.
- This turns out to produce an approximation ratio of^a

$$\frac{c(M(x))}{\operatorname{OPT}(x)} = \Theta(\log n).$$

• So it is not an ϵ -approximation algorithm for any constant $\epsilon < 1$ (see p. 754).

^aChvátal (1979).

A 0.5-Approximation Algorithm $^{\rm a}$

1: $C := \emptyset;$

- 2: while $E \neq \emptyset$ do
- 3: Delete an arbitrary edge [u, v] from E;
- 4: Add u and v to C; {Add 2 nodes to C each time.}
- 5: Delete edges incident with u or v from E;
- 6: end while

7: return C;

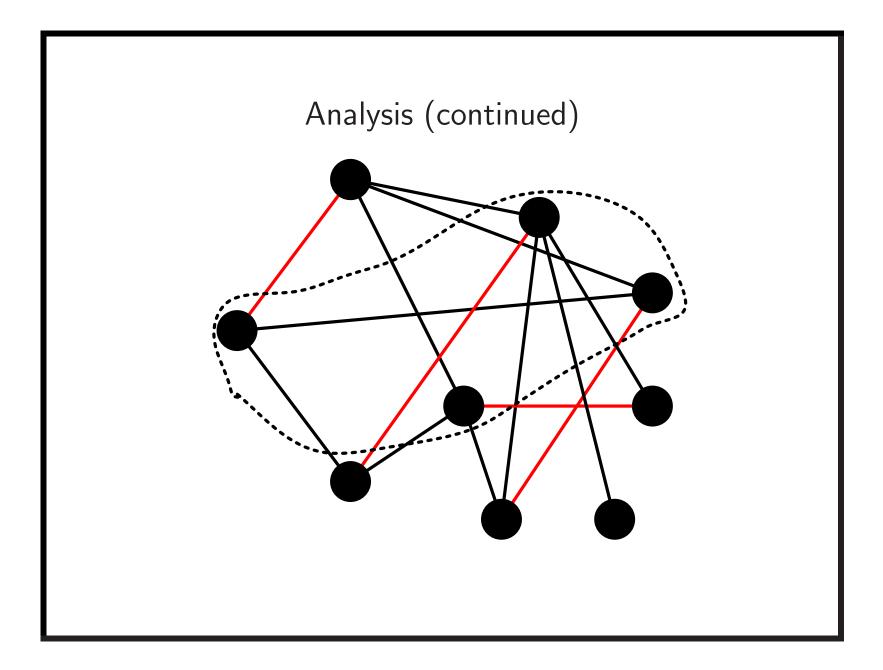
^aGavril (1974).

Analysis

- It is easy to see that C is a node cover.
- C contains |C|/2 edges.^a
- No two edges of C share a node.^b
- Any node cover C' must contain at least one node from each of the edges of C.
 - If there is an edge in C both of whose ends are outside C', then C' is not a cover.

^aThe edges deleted in Line 3.

^bIn fact, C as a set of edges is a *maximal* matching.



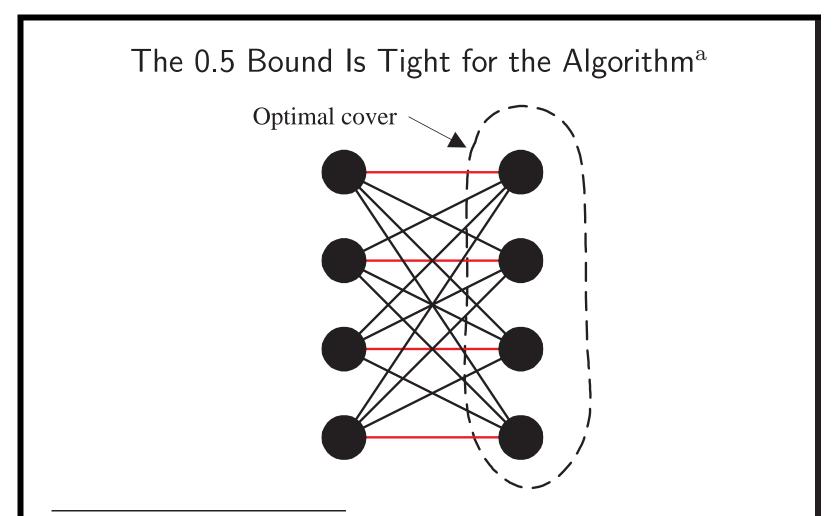
Analysis (concluded)

- This means that $OPT(G) \ge |C|/2$.
- The approximation ratio is hence

$$\frac{|C|}{\operatorname{OPT}(G)} \le 2.$$

- So we have a 0.5-approximation algorithm.^a
- And the approximation threshold is therefore ≤ 0.5 .

^aRecall p. 754.



^aContributed by Mr. Jenq-Chung Li (R92922087) on December 20, 2003. König's theorem says the size of a *maximum* matching equals that of a *minimum* node cover in a bipartite graph.

Remarks

• The approximation threshold is at least^a

$$1 - \left(10\sqrt{5} - 21\right)^{-1} \approx 0.2651.$$

- The approximation threshold is 0.5 if one assumes the **unique games conjecture** (UGC).^b
- This ratio 0.5 is also the lower bound for any "greedy" algorithms.^c

^aDinur & Safra (2002). ^bKhot & Regev (2008). ^cDavis & Impagliazzo (2004).

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most simultaneously.
- MAX2SAT is already NP-complete (p. 365), so MAXSAT is NP-complete.
- Consider the more general k-MAXGSAT for constant k.
 - Let $\Phi = \{ \phi_1, \phi_2, \dots, \phi_m \}$ be a set of boolean expressions in *n* variables.
 - Each ϕ_i is a *general* expression involving up to k variables.
 - k-MAXGSAT seeks the truth assignment that satisfies the most expressions simultaneously.

A Probabilistic Interpretation of an Algorithm

- Let ϕ_i involve $k_i \leq k$ variables and be satisfied by s_i of the 2^{k_i} truth assignments.
- A random truth assignment $\in \{0, 1\}^n$ satisfies ϕ_i with probability $p(\phi_i) = s_i/2^{k_i}$.

 $-p(\phi_i)$ is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

$$p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$$

expressions ϕ_i .

The Search Procedure

• Clearly

$$p(\Phi) = \frac{p(\Phi[x_1 = \texttt{true}]) + p(\Phi[x_1 = \texttt{false}])}{2}.$$

- Select the t₁ ∈ { true, false } such that p(Φ[x₁ = t₁]) is the larger one.
- Note that $p(\Phi[x_1 = t_1]) \ge p(\Phi)$.
- Repeat the procedure with expression $\Phi[x_1 = t_1]$ until all variables x_i have been given truth values t_i and all ϕ_i are either true or false.

The Search Procedure (continued)

• By our hill-climbing procedure,

 $p(\Phi) \le p(\Phi[x_1 = t_1]) \le p(\Phi[x_1 = t_1, x_2 = t_2]) \le \cdots \le p(\Phi[x_1 = t_1, x_2 = t_2, \dots, x_n = t_n]).$

• So at least $p(\Phi)$ expressions are satisfied by truth assignment (t_1, t_2, \ldots, t_n) .

The Search Procedure (concluded)

- Note that the algorithm is *deterministic*!
- It is called **the method of conditional** expectations.^a

^aErdős & Selfridge (1973); Spencer (1987).

Approximation Analysis

- The optimum is at most the number of satisfiable ϕ_i s—i.e., those with $p(\phi_i) > 0$.
- The ratio of algorithm's output vs. the optimum is^a

$$\geq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \geq \min_{p(\phi_i)>0} p(\phi_i).$$

- This is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - \min_{p(\phi_i) > 0} p(\phi_i)$ by Eq. (21) on p. 754.
- Because $p(\phi_i) \ge 2^{-k}$ for a satisfiable ϕ_i , the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - 2^{-k}$.

^aBecause $\sum_i a_i / \sum_i b_i \ge \min_i (a_i / b_i)$.

Back to $\ensuremath{\mathsf{MAXSAT}}$

- In MAXSAT, the ϕ_i 's are clauses (like $x \lor y \lor \neg z$).
- Hence $p(\phi_i) \ge 1/2$ (why?).
- The heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.^a
- Suppose we set each boolean variable to true with probability $(\sqrt{5} 1)/2$, the golden ratio.
- Then follow through the method of conditional expectations to **derandomize** it.

^aJohnson (1974).

Back to MAXSAT (concluded)

• We will obtain a $[(3 - \sqrt{5})]/2$ -approximation algorithm.^a

- Note $[(3 - \sqrt{5})]/2 \approx 0.382.$

• If the clauses have at least k distinct literals,

$$p(\phi_i) \ge 1 - 2^{-k}.$$

• The heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.

- This is the best possible for $k \ge 3$ unless $P = NP.^{b}$

• All the results hold even if clauses are weighted.

```
<sup>a</sup>Lieberherr & Specker (1981).
<sup>b</sup>Håstad (2001).
```

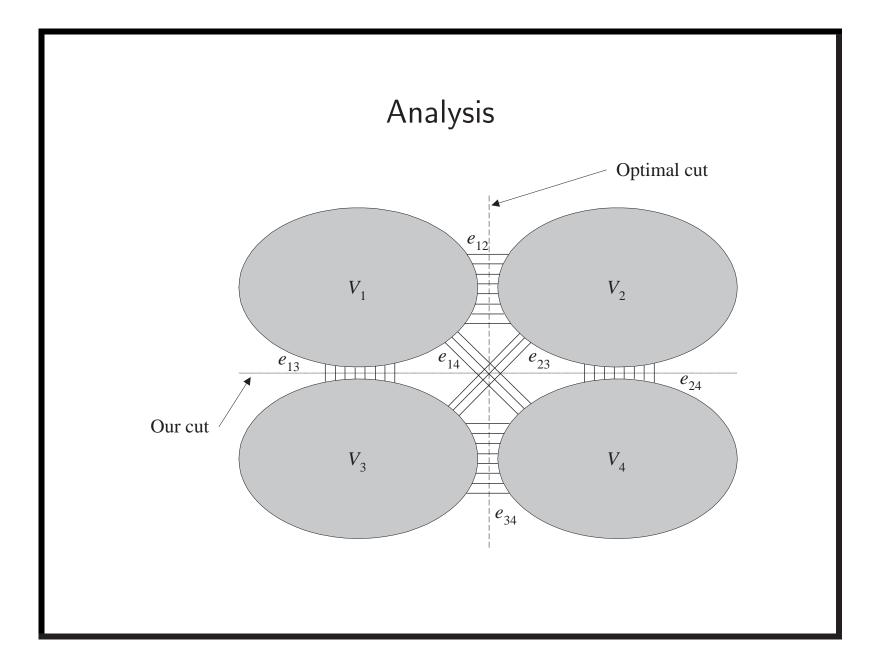
MAX CUT Revisited

- MAX CUT seeks to partition the nodes of graph G = (V, E) into (S, V S) so that there are as many edges as possible between S and V S.
- It is NP-complete.^a
- Local search starts from a feasible solution and performs "local" improvements until none are possible.
- Next we present a local-search algorithm for MAX CUT.

^aRecall p. 400.

A 0.5-Approximation Algorithm for MAX CUT

- 1: $S := \emptyset;$
- 2: while $\exists v \in V$ whose switching sides results in a larger cut **do**
- 3: Switch the side of v;
- 4: end while
- 5: return S;



Analysis (continued)

- Partition $V = V_1 \cup V_2 \cup V_3 \cup V_4$, where
 - Our algorithm returns $(V_1 \cup V_2, V_3 \cup V_4)$.
 - The optimum cut is $(V_1 \cup V_3, V_2 \cup V_4)$.
- Let e_{ij} be the number of edges between V_i and V_j .
- Our algorithm returns a cut of size

$$e_{13} + e_{14} + e_{23} + e_{24}.$$

• The optimum cut size is

$$e_{12} + e_{34} + e_{14} + e_{23}.$$

Analysis (continued)

- For each node $v \in V_1$, its edges to $V_3 \cup V_4$ cannot be outnumbered by those to $V_1 \cup V_2$.
 - Otherwise, v would have been moved to $V_3 \cup V_4$ to improve the cut.
- Considering all nodes in V_1 together, we have

 $2e_{11} + e_{12} \le e_{13} + e_{14}.$

- $-2e_{11}$, because each edge in V_1 is counted twice.
- The above inequality implies

$$e_{12} \le e_{13} + e_{14}.$$

Analysis (concluded)

• Similarly,

 $e_{12} \leq e_{23} + e_{24}$ $e_{34} \leq e_{23} + e_{13}$ $e_{34} \leq e_{14} + e_{24}$

• Add all four inequalities, divide both sides by 2, and add the inequality $e_{14} + e_{23} \le e_{14} + e_{23} + e_{13} + e_{24}$ to obtain

 $OPT = e_{12} + e_{34} + e_{14} + e_{23} \le 2(e_{13} + e_{14} + e_{23} + e_{24}).$

• The above says our solution is at least half the optimum.^a

 $^{\rm a}{\rm Corrected}$ by Mr. Huan-Wen Hsiao (B90902081, D08922001) on January 14, 2021.

Remarks

- A 0.12-approximation algorithm exists.^a
- 0.059-approximation algorithms do not exist unless NP = ZPP.^b

```
<sup>a</sup>Goemans & Williamson (1995).
<sup>b</sup>Håstad (1997).
```

Approximability, Unapproximability, and Between

- Some problems have approximation thresholds less than 1.
 - KNAPSACK has a threshold of 0 (p. 792).
 - NODE COVER (p. 759), BIN PACKING, and MAXSAT^a have a threshold larger than 0.
- The situation is maximally pessimistic for TSP (p. 778) and INDEPENDENT SET,^b which cannot be approximated

– Their approximation threshold is 1.

^aWilliamson & Shmoys (2011). ^bSee the textbook.

Unapproximability of ${\rm TSP}^{\rm a}$

Theorem 84 The approximation threshold of TSP is 1 unless P = NP.

- Suppose there is a polynomial-time ϵ -approximation algorithm for TSP for some $\epsilon < 1$.
- We shall construct a polynomial-time algorithm to solve the NP-complete HAMILTONIAN CYCLE.
- Given any graph G = (V, E), construct a TSP with |V| cities with distances

$$d_{ij} = \begin{cases} 1, & \text{if } [i,j] \in E, \\ \frac{|V|}{1-\epsilon}, & \text{otherwise.} \end{cases}$$

^aSahni & Gonzales (1976).

The Proof (continued)

- Run the alleged approximation algorithm on this TSP instance.
- Note that if a tour includes edges of length $|V|/(1-\epsilon)$, then the tour costs more than |V|.
- Note also that no tour has a cost less than |V|.
- Suppose a tour of cost |V| is returned.
 - Then every edge on the tour exists in the *original* graph G.
 - So this tour is a Hamiltonian cycle on G.

The Proof (concluded)

- Suppose a tour that includes an edge of length $|V|/(1-\epsilon)$ is returned.
 - The total length of this tour exceeds $|V|/(1-\epsilon)$.^a
 - Because the algorithm is ϵ -approximate, the optimum is at least 1ϵ times the returned tour's length.
 - The optimum tour has a cost exceeding |V|.
 - Hence G has no Hamiltonian cycles.

^aSo this reduction is **gap introducing**.

METRIC TSP

- METRIC TSP is similar to TSP.
- But the distances must satisfy the triangular inequality:

$$d_{ij} \le d_{ik} + d_{kj}$$

for all i, j, k.

• Inductively,

$$d_{ij} \le d_{ik} + d_{kl} + \dots + d_{zj}.$$

A 0.5-Approximation Algorithm for $\ensuremath{\operatorname{METRIC}}\xspace$ $\ensuremath{\operatorname{TSP}}\xspace^a$

• It suffices to present an algorithm with the approximation ratio of

$$\frac{c(M(x))}{\operatorname{OPT}(x)} \le 2$$

(see p. 754).

^aChoukhmane (1978); Iwainsky, Canuto, Taraszow, & Villa (1986); Kou, Markowsky, & Berman (1981); Plesník (1981).

A 0.5-Approximation Algorithm for METRIC TSP (concluded)

- 1: T := a minimum spanning tree of G;
- 2: T' := duplicate the edges of T plus their cost; {Note: T' is an Eulerian *multigraph*.}
- 3: C := an Euler cycle of T';
- 4: Remove repeated nodes of C; {"Shortcutting."}
- 5: return C;

Analysis

- Let C_{opt} be an optimal TSP tour.
- Note first that

$$c(T) \le c(C_{\text{opt}}). \tag{22}$$

 $-C_{\text{opt}}$ is a spanning tree after the removal of one edge.

- But T is a *minimum* spanning tree.
- Because T' doubles the edges of T,

$$c(T') = 2c(T).$$

Analysis (concluded)

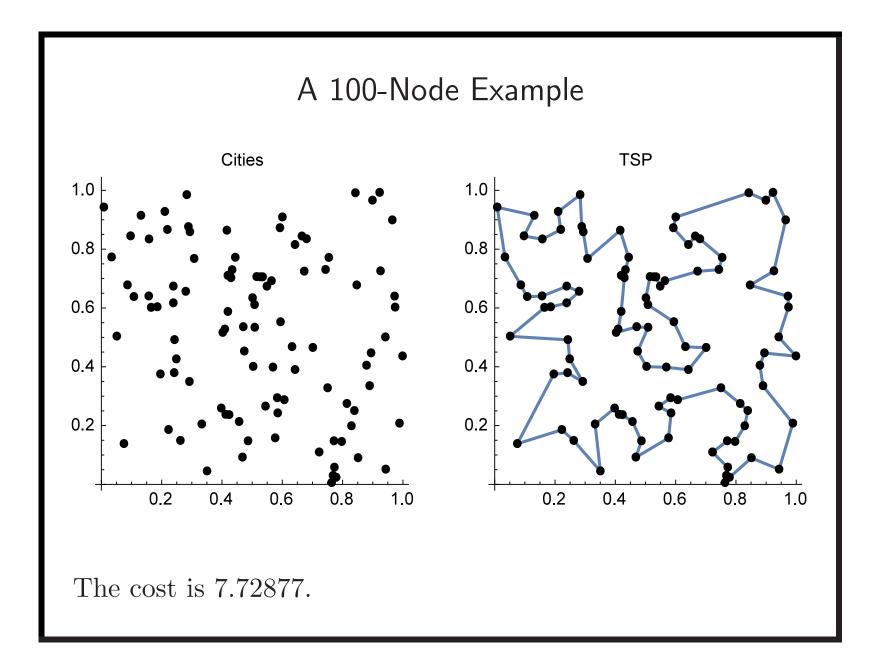
- Because of the triangular inequality, "shortcutting" does not increase the cost.
 - (1, 2, 3, 2, 1, 4, ...) → (1, 2, 3, 4, ...), a Hamiltonian cycle.
- Thus

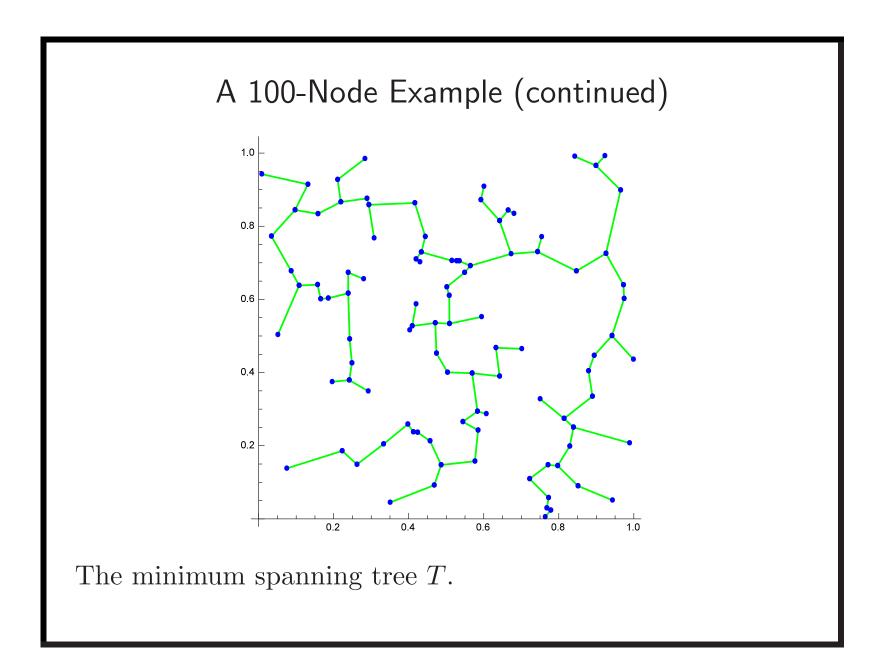
$$c(C) \le c(T').$$

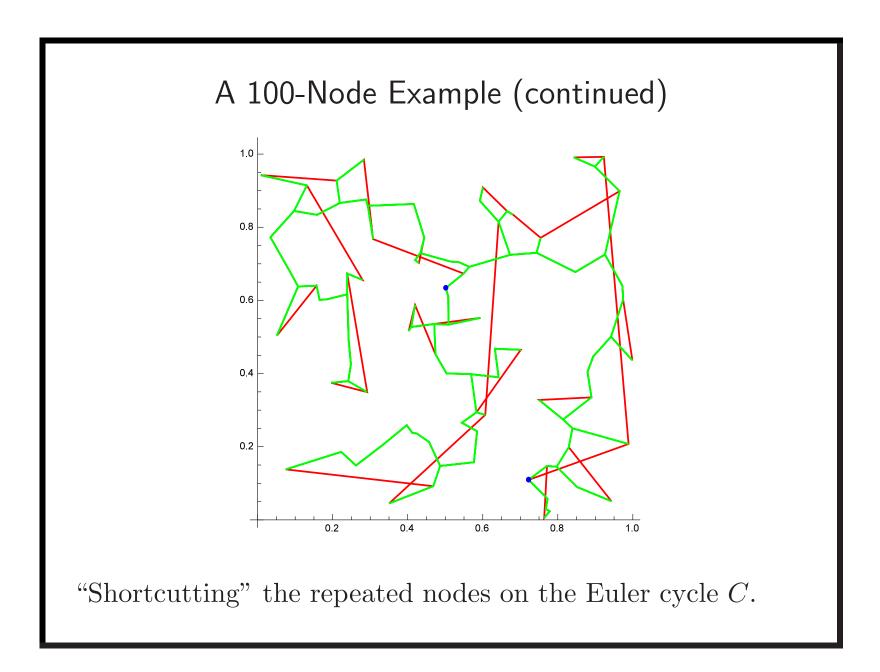
• Combine all the inequalities to yield

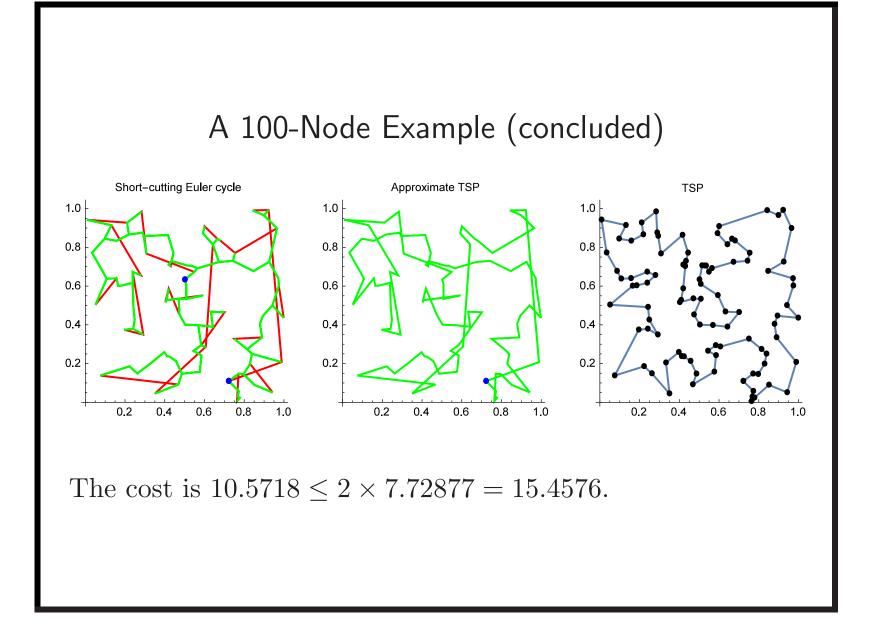
$$c(C) \le c(T') = 2c(T) \le 2c(C_{\text{opt}}),$$

as desired.









A (1/3)-Approximation Algorithm for ${\rm METRIC}\ {\rm TSP}^{\rm a}$

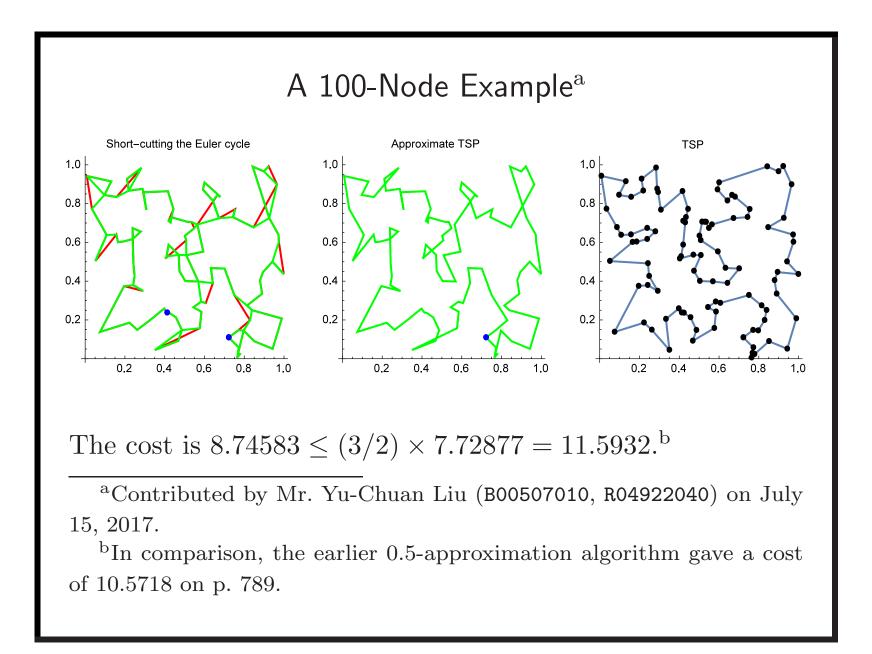
• It suffices to present an algorithm with the approximation ratio of

$$\frac{c(M(x))}{\operatorname{OPT}(x)} \le \frac{3}{2}$$

(see p. 754).

• This is the best approximation ratio for METRIC TSP as of 2016!

^aChristofides (1976).



${\rm KNAPSACK}$ Has an Approximation Threshold of Zero^a

Theorem 85 For any ϵ , there is a polynomial-time ϵ -approximation algorithm for KNAPSACK.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$.^b
- We must find an $I \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} v_i$ is the largest possible.

^aIbarra & Kim (1975). This algorithm can be used to derive good approximation algorithms for some NP-complete scheduling problems (Bansal & Sviridenko, 2006).

^bIf the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.

• Let

$$V \stackrel{\Delta}{=} \max\{v_1, v_2, \dots, v_n\}.$$

- Clearly, $\sum_{i \in I} v_i \leq nV$.
- Let $0 \le i \le n$ and $0 \le v \le nV$.
- W(i, v) is the minimum weight attainable by selecting only from the *first i* items^a and with a total value of v.
 It is an (n + 1) × (nV + 1) table.

^aThat is, items $1, 2, \ldots, i$.

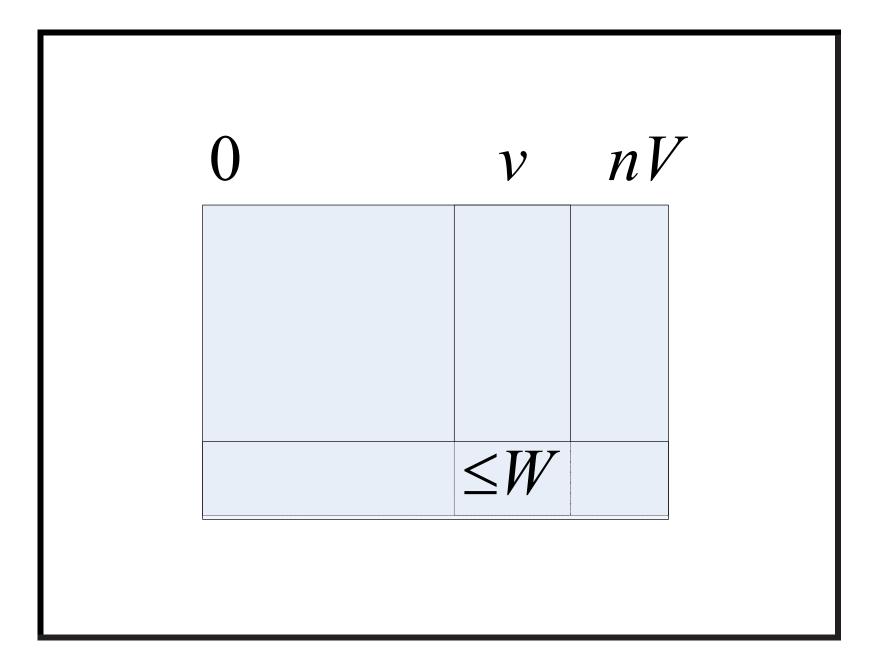
- Set $W(0, v) = \infty$ for $v \in \{1, 2, ..., nV\}$ and W(i, 0) = 0for i = 0, 1, ..., n.^a
- Then, for $0 \le i < n$ and $1 \le v \le nV$,^b

$$W(i+1,v) = \begin{cases} \min\{W(i,v), W(i,v-v_{i+1}) + w_{i+1}\}, & \text{if } v_{i+1} \le v, \\ W(i,v), & \text{otherwise.} \end{cases}$$

• Finally, pick the largest v such that $W(n, v) \leq W$.^c

^aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

^bThe textbook's formula has an error here. ^cLawler (1979).



With 6 items, values (4, 3, 3, 3, 2, 3), weights (3, 3, 1, 3, 2, 1), and W = 12, the maximum total value 16 is achieved with $I = \{1, 2, 3, 4, 6\}$; *I*'s weight is 11.

0	∞																	
0	∞	∞	8	3	∞	8	∞	∞	∞	∞	∞							
0	∞	∞	3	3	∞	∞	6	∞	∞	∞	∞	∞	8	8	∞	∞	∞	∞
0	8	8	1	3	8	4	4	8	8	7	8	8	8	8	8	∞	8	∞
0	8	8	1	3	∞	4	4	8	7	7	8	8	10	8	8	∞	8	8
0	∞	2	1	3	3	4	4	6	6	7	9	9	10	8	12	∞	∞	8
0	∞	2	1	3	3	2	4	4	5	5	7	7	8	10	10	11	∞	13

- The running time $O(n^2 V)$ is not polynomial.
- Call the problem instance

$$x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n).$$

- Additional idea: Limit the number of precision bits.
- Define

$$v_i' = \left\lfloor \frac{v_i}{2^b} \right\rfloor.$$

• Note that

$$v_i - 2^b < 2^b v'_i \le v_i.$$
 (23)

• Call the approximate instance

$$x' = (w_1, \ldots, w_n, W, v'_1, \ldots, v'_n).$$

- Solving x' takes time $O(n^2 V/2^b)$.
 - Use $v'_i = \lfloor v_i/2^b \rfloor$ and $V' = \max(v'_1, v'_2, \dots, v'_n)$ in the dynamic programming.

– It is now an $(n+1) \times (n\lfloor V/2^b \rfloor + 1)$ table.

- The selection I' is optimal for x'.
- But I' may not be optimal for x, although it still satisfies the weight budget W.

With the same parameters as p. 796 and b = 1: Values are (2, 1, 1, 1, 1, 1) and the optimal selection $I' = \{1, 2, 3, 5, 6\}$ for x' has a *smaller* maximum value 4 + 3 + 3 + 2 + 3 = 15 for x than I's 16; its weight is 10 < W = 12.^a

0	∞	∞	∞	∞	∞	∞	8
0	8	3	∞	∞	∞	∞	8
0	3	3	6	∞	8	8	8
0	1	3	4	7	8	8	8
0	1	3	4	7	10	8	8
0	1	3	4	6	9	12	8
0	1	2	4	5	7	10	13

^aThe *original* optimal $I = \{1, 2, 3, 4, 6\}$ on p. 796 has the same value 6 and but higher weight 11 for x'.

• The value of I' for x is close to that of the optimal I as

$$\sum_{i \in I'} v_i$$

$$\geq \sum_{i \in I'} 2^b v'_i \quad \text{by inequalities (23) on p. 797}$$

$$= 2^b \sum_{i \in I'} v'_i \geq 2^b \sum_{i \in I} v'_i = \sum_{i \in I} 2^b v'_i$$

$$\geq \sum_{i \in I} (v_i - 2^b) \quad \text{by inequalities (23)}$$

$$\geq \left(\sum_{i \in I} v_i\right) - n2^b.$$

• In summary,

$$\sum_{i \in I'} v_i \ge \left(\sum_{i \in I} v_i\right) - n2^b.$$

- Without loss of generality, assume $w_i \leq W$ for all i.
 - Otherwise, item i is redundant and can be removed early on.
- V is a lower bound on OPT.^a
 - Picking one single item with value V is a legitimate choice.

^aRecall that $V = \max\{v_1, v_2, \dots, v_n\}$ (p. 793).

The Proof (concluded)

• The relative error from the optimum is:

$$\frac{\sum_{i\in I} v_i - \sum_{i\in I'} v_i}{\sum_{i\in I} v_i} \le \frac{n2^b}{V}.$$

- Suppose we pick $b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor$.
- The algorithm becomes ϵ -approximate.^a
- The running time is then $O(n^2 V/2^b) = O(n^3/\epsilon)$, a polynomial in n and $1/\epsilon$.^b

^aSee Eq. (18) on p. 748.

^bIt hence depends on the *value* of $1/\epsilon$. Thanks to a lively class discussion on December 20, 2006. If we fix ϵ and let the problem size increase, then the complexity is cubic. Contributed by Mr. Ren-Shan Luoh (D97922014) on December 23, 2008.

Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 46, p. 391).
- NODE COVER has an approximation threshold at most 0.5 (p. 761).
- But INDEPENDENT SET is unapproximable (see the textbook).
- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-degree independent set.
- *k*-DEGREE INDEPENDENT SET is approximable (see the textbook).

On P vs. NP

If 50 million people believe a foolish thing, it's still a foolish thing. — George Bernard Shaw (1856–1950) Exponential Circuit Complexity for NP-Complete Problems

• We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.

– Monotone circuits are circuits without \neg gates.^a

• Note that this result does *not* settle the P vs. NP problem.

^aRecall p. 329.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem: MONOTONE CIRCUIT VALUE (p. 330).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$CLIQUE_{n,k}$

- $CLIQUE_{n,k}$ is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- $CLIQUE_{n,k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- Of course, this does not rule out that *non*monotone circuits for $CLIQUE_{n,k}$ may use *fewer* gates.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a circuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if there is an $X_i \subseteq V$ that forms a clique.^a

- The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

^aConsider the empty set a clique.

The Proof: Positive Examples

- Analysis will be applied to only the following **positive examples** and **negative examples** as input graphs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- $CLIQUE_{n,k}$ should output true on them.

The Proof: Negative Examples

- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- $CLIQUE_{n,k}$ should output false on them.
 - Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.

