
node cover

• node cover seeks the smallest C ⊆ V in graph

G = (V,E) such that for each edge in E, at least one of

its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

• This turns out to produce an approximation ratio ofa

c(M(x))

opt(x)
= Θ(logn).

• So it is not an ε-approximation algorithm for any

constant ε < 1 (see p. 754).

aChvátal (1979).
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A 0.5-Approximation Algorithma

1: C := ∅;
2: while E �= ∅ do

3: Delete an arbitrary edge [u, v ] from E;

4: Add u and v to C; {Add 2 nodes to C each time.}
5: Delete edges incident with u or v from E;

6: end while

7: return C;

aGavril (1974).
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Analysis

• It is easy to see that C is a node cover.

• C contains |C |/2 edges.a

• No two edges of C share a node.b

• Any node cover C ′ must contain at least one node from

each of the edges of C.

– If there is an edge in C both of whose ends are

outside C ′, then C ′ is not a cover.

aThe edges deleted in Line 3.
bIn fact, C as a set of edges is a maximal matching.
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Analysis (continued)
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Analysis (concluded)

• This means that opt(G) ≥ |C |/2.
• The approximation ratio is hence

|C |
opt(G)

≤ 2.

• So we have a 0.5-approximation algorithm.a

• And the approximation threshold is therefore ≤ 0.5.

aRecall p. 754.
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The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003. König’s theorem says the size of a maximum matching equals

that of a minimum node cover in a bipartite graph.
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Remarks

• The approximation threshold is at leasta

1−
(
10
√
5− 21

)−1

≈ 0.2651.

• The approximation threshold is 0.5 if one assumes the

unique games conjecture (ugc).b

• This ratio 0.5 is also the lower bound for any “greedy”

algorithms.c

aDinur & Safra (2002).
bKhot & Regev (2008).
cDavis & Impagliazzo (2004).
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Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth

assignment that satisfies the most simultaneously.

• max2sat is already NP-complete (p. 365), so maxsat is

NP-complete.

• Consider the more general k-maxgsat for constant k.

– Let Φ = {φ1, φ2, . . . , φm } be a set of boolean

expressions in n variables.

– Each φi is a general expression involving up to k

variables.

– k-maxgsat seeks the truth assignment that satisfies

the most expressions simultaneously.
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A Probabilistic Interpretation of an Algorithm

• Let φi involve ki ≤ k variables and be satisfied by si of

the 2ki truth assignments.

• A random truth assignment ∈ { 0, 1 }n satisfies φi with

probability p(φi) = si/2
ki .

– p(φi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an average of

p(Φ) =
m∑
i=1

p(φi)

expressions φi.
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The Search Procedure

• Clearly

p(Φ) =
p(Φ[x1 = true ]) + p(Φ[x1 = false ])

2
.

• Select the t1 ∈ { true, false } such that p(Φ[x1 = t1 ]) is

the larger one.

• Note that p(Φ[x1 = t1 ]) ≥ p(Φ).

• Repeat the procedure with expression Φ[x1 = t1 ] until

all variables xi have been given truth values ti and all φi

are either true or false.
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The Search Procedure (continued)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[x1 = t1 ])

≤ p(Φ[x1 = t1, x2 = t2 ])

≤ · · ·
≤ p(Φ[x1 = t1, x2 = t2, . . . , xn = tn ]).

• So at least p(Φ) expressions are satisfied by truth

assignment (t1, t2, . . . , tn).
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The Search Procedure (concluded)

• Note that the algorithm is deterministic!

• It is called the method of conditional

expectations.a

aErdős & Selfridge (1973); Spencer (1987).
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Approximation Analysis

• The optimum is at most the number of satisfiable

φis—i.e., those with p(φi) > 0.

• The ratio of algorithm’s output vs. the optimum isa

≥ p(Φ)∑
p(φi)>0 1

=

∑
i p(φi)∑

p(φi)>0 1
≥ min

p(φi)>0
p(φi).

• This is a polynomial-time ε-approximation algorithm

with ε = 1−minp(φi)>0 p(φi) by Eq. (21) on p. 754.

• Because p(φi) ≥ 2−k for a satisfiable φi, the heuristic is

a polynomial-time ε-approximation algorithm with

ε = 1− 2−k.

aBecause
∑

i ai/
∑

i bi ≥ mini(ai/bi).
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Back to maxsat

• In maxsat, the φi’s are clauses (like x ∨ y ∨ ¬z).
• Hence p(φi) ≥ 1/2 (why?).

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 1/2.a

• Suppose we set each boolean variable to true with

probability (
√
5 − 1)/2, the golden ratio.

• Then follow through the method of conditional

expectations to derandomize it.

aJohnson (1974).
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Back to maxsat (concluded)

• We will obtain a [ (3−√
5 ) ]/2-approximation

algorithm.a

– Note [ (3−√
5 ) ]/2 ≈ 0.382.

• If the clauses have at least k distinct literals,

p(φi) ≥ 1− 2−k.

• The heuristic becomes a polynomial-time

ε-approximation algorithm with ε = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.b

• All the results hold even if clauses are weighted.
aLieberherr & Specker (1981).
bH̊astad (2001).
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max cut Revisited

• max cut seeks to partition the nodes of graph

G = (V,E) into (S, V − S) so that there are as many

edges as possible between S and V − S.

• It is NP-complete.a

• Local search starts from a feasible solution and

performs “local” improvements until none are possible.

• Next we present a local-search algorithm for max cut.

aRecall p. 400.
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A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do

3: Switch the side of v;

4: end while

5: return S;
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Analysis

V3 V4

V2V1

Optimal cut

Our cut

e12

e13
e24

e34

e14 e23
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Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• Our algorithm returns a cut of size

e13 + e14 + e23 + e24.

• The optimum cut size is

e12 + e34 + e14 + e23.
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Analysis (continued)

• For each node v ∈ V1, its edges to V3 ∪ V4 cannot be

outnumbered by those to V1 ∪ V2.

– Otherwise, v would have been moved to V3 ∪ V4 to

improve the cut.

• Considering all nodes in V1 together, we have

2e11 + e12 ≤ e13 + e14.

– 2e11, because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.
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Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

opt = e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the

optimum.a

aCorrected by Mr. Huan-Wen Hsiao (B90902081, D08922001) on Jan-

uary 14, 2021.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 775



Remarks

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless

NP = ZPP.b

aGoemans & Williamson (1995).
bH̊astad (1997).
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Approximability, Unapproximability, and Between

• Some problems have approximation thresholds less than

1.

– knapsack has a threshold of 0 (p. 792).

– node cover (p. 759), bin packing, and maxsata

have a threshold larger than 0.

• The situation is maximally pessimistic for tsp (p. 778)

and independent set,b which cannot be approximated

– Their approximation threshold is 1.

aWilliamson & Shmoys (2011).
bSee the textbook.
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Unapproximability of tspa

Theorem 84 The approximation threshold of tsp is 1

unless P = NP.

• Suppose there is a polynomial-time ε-approximation

algorithm for tsp for some ε < 1.

• We shall construct a polynomial-time algorithm to solve

the NP-complete hamiltonian cycle.

• Given any graph G = (V,E), construct a tsp with |V |
cities with distances

dij =

⎧⎨
⎩ 1, if [ i, j ] ∈ E,

|V |
1−ε , otherwise.

aSahni & Gonzales (1976).
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The Proof (continued)

• Run the alleged approximation algorithm on this tsp

instance.

• Note that if a tour includes edges of length |V |/(1− ε),

then the tour costs more than |V |.
• Note also that no tour has a cost less than |V |.
• Suppose a tour of cost |V | is returned.

– Then every edge on the tour exists in the original

graph G.

– So this tour is a Hamiltonian cycle on G.
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The Proof (concluded)

• Suppose a tour that includes an edge of length

|V |/(1− ε) is returned.

– The total length of this tour exceeds |V |/(1− ε).a

– Because the algorithm is ε-approximate, the optimum

is at least 1− ε times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.

aSo this reduction is gap introducing.
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metric tsp

• metric tsp is similar to tsp.

• But the distances must satisfy the triangular inequality:

dij ≤ dik + dkj

for all i, j, k.

• Inductively,

dij ≤ dik + dkl + · · ·+ dzj .
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A 0.5-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 2

(see p. 754).

aChoukhmane (1978); Iwainsky, Canuto, Taraszow, & Villa (1986);

Kou, Markowsky, & Berman (1981); Plesńık (1981).
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A 0.5-Approximation Algorithm for metric tsp
(concluded)

1: T := a minimum spanning tree of G;

2: T ′ := duplicate the edges of T plus their cost; {Note: T ′

is an Eulerian multigraph.}
3: C := an Euler cycle of T ′;
4: Remove repeated nodes of C; {“Shortcutting.”}
5: return C;
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Analysis

• Let Copt be an optimal tsp tour.

• Note first that

c(T ) ≤ c(Copt). (22)

– Copt is a spanning tree after the removal of one edge.

– But T is a minimum spanning tree.

• Because T ′ doubles the edges of T ,

c(T ′) = 2c(T ).
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Analysis (concluded)

• Because of the triangular inequality, “shortcutting” does

not increase the cost.

– (1, 2, 3, 2, 1, 4, . . .) → (1, 2, 3, 4, . . .), a Hamiltonian

cycle.

• Thus

c(C) ≤ c(T ′).

• Combine all the inequalities to yield

c(C) ≤ c(T ′) = 2c(T ) ≤ 2c(Copt),

as desired.
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A 100-Node Example

The cost is 7.72877.
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A 100-Node Example (continued)

The minimum spanning tree T .
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A 100-Node Example (continued)

“Shortcutting” the repeated nodes on the Euler cycle C.
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A 100-Node Example (concluded)

The cost is 10.5718 ≤ 2× 7.72877 = 15.4576.
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A (1/3)-Approximation Algorithm for metric tspa

• It suffices to present an algorithm with the

approximation ratio of

c(M(x))

opt(x)
≤ 3

2

(see p. 754).

• This is the best approximation ratio for metric tsp as

of 2016!

aChristofides (1976).
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A 100-Node Examplea

The cost is 8.74583 ≤ (3/2)× 7.72877 = 11.5932.b

aContributed by Mr. Yu-Chuan Liu (B00507010, R04922040) on July

15, 2017.
bIn comparison, the earlier 0.5-approximation algorithm gave a cost

of 10.5718 on p. 789.
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knapsack Has an Approximation Threshold of Zeroa

Theorem 85 For any ε, there is a polynomial-time

ε-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z
+, a weight limit

W , and n values v1, v2, . . . , vn ∈ Z
+.b

• We must find an I ⊆ { 1, 2, . . . , n } such that∑
i∈I wi ≤ W and

∑
i∈I vi is the largest possible.

aIbarra & Kim (1975). This algorithm can be used to derive good

approximation algorithms for some NP-complete scheduling problems

(Bansal & Sviridenko, 2006).
bIf the values are fractional, the result is slightly messier, but the main

conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011,

R93922045) on December 29, 2004.
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The Proof (continued)

• Let

V
Δ
= max{ v1, v2, . . . , vn }.

• Clearly,
∑

i∈I vi ≤ nV .

• Let 0 ≤ i ≤ n and 0 ≤ v ≤ nV .

• W (i, v) is the minimum weight attainable by selecting

only from the first i itemsa and with a total value of v.

– It is an (n+ 1)× (nV + 1) table.

aThat is, items 1, 2, . . . , i.
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The Proof (continued)

• Set W (0, v) = ∞ for v ∈ { 1, 2, . . . , nV } and W (i, 0) = 0

for i = 0, 1, . . . , n.a

• Then, for 0 ≤ i < n and 1 ≤ v ≤ nV ,b

W (i+ 1, v)

=

⎧⎨
⎩ min{W (i, v),W (i, v − vi+1) + wi+1 }, if vi+1 ≤ v,

W (i, v), otherwise.

• Finally, pick the largest v such that W (n, v) ≤ W .c

aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.
bThe textbook’s formula has an error here.
cLawler (1979).
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v0 nV

W≤
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The Proof (continued)

With 6 items, values (4, 3, 3, 3, 2, 3), weights (3, 3, 1, 3, 2, 1),

and W = 12, the maximum total value 16 is achieved with

I = { 1, 2, 3, 4, 6 }; I ’s weight is 11.
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The Proof (continued)

• The running time O(n2V ) is not polynomial.

• Call the problem instance

x = (w1, . . . , wn,W, v1, . . . , vn).

• Additional idea: Limit the number of precision bits.

• Define

v′i =
⌊ vi
2b

⌋
.

• Note that

vi − 2b < 2bv′i ≤ vi. (23)
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The Proof (continued)

• Call the approximate instance

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n).

• Solving x′ takes time O(n2V/2b).

– Use v′i = �vi/2b� and V ′ = max(v′1, v
′
2, . . . , v

′
n) in the

dynamic programming.

– It is now an (n+ 1)× (n�V/2b�+ 1) table.

• The selection I ′ is optimal for x′.

• But I ′ may not be optimal for x, although it still

satisfies the weight budget W .
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The Proof (continued)

With the same parameters as p. 796 and b = 1: Values are

(2, 1, 1, 1, 1, 1) and the optimal selection I ′ = { 1, 2, 3, 5, 6 }
for x′ has a smaller maximum value 4 + 3 + 3 + 2 + 3 = 15

for x than I ’s 16; its weight is 10 < W = 12.a

aThe original optimal I = { 1, 2, 3, 4, 6 } on p. 796 has the same value

6 and but higher weight 11 for x′.
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The Proof (continued)

• The value of I ′ for x is close to that of the optimal I as

∑
i∈I′

vi

≥
∑
i∈I′

2bv′i by inequalities (23) on p. 797

= 2b
∑
i∈I′

v′i ≥ 2b
∑
i∈I

v′i =
∑
i∈I

2bv′i

≥
∑
i∈I

(
vi − 2b

)
by inequalities (23)

≥
(∑

i∈I

vi

)
− n2b.
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The Proof (continued)

• In summary,

∑
i∈I′

vi ≥
(∑

i∈I

vi

)
− n2b.

• Without loss of generality, assume wi ≤ W for all i.

– Otherwise, item i is redundant and can be removed

early on.

• V is a lower bound on opt.a

– Picking one single item with value V is a legitimate

choice.

aRecall that V = max{ v1, v2, . . . , vn } (p. 793).
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The Proof (concluded)

• The relative error from the optimum is:∑
i∈I vi −

∑
i∈I′ vi∑

i∈I vi
≤ n2b

V
.

• Suppose we pick b = �log2 εV
n �.

• The algorithm becomes ε-approximate.a

• The running time is then O(n2V/2b) = O(n3/ε), a

polynomial in n and 1/ε.b

aSee Eq. (18) on p. 748.
bIt hence depends on the value of 1/ε. Thanks to a lively class dis-

cussion on December 20, 2006. If we fix ε and let the problem size

increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Luoh (D97922014) on December 23, 2008.
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Comments

• independent set and node cover are reducible to

each other (Corollary 46, p. 391).

• node cover has an approximation threshold at most

0.5 (p. 761).

• But independent set is unapproximable (see the

textbook).

• independent set limited to graphs with degree ≤ k is

called k-degree independent set.

• k-degree independent set is approximable (see the

textbook).
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On P vs. NP
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If 50 million people believe a foolish thing,

it’s still a foolish thing.

— George Bernard Shaw (1856–1950)
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Exponential Circuit Complexity for NP-Complete Problems

• We shall prove exponential lower bounds for

NP-complete problems using monotone circuits.

– Monotone circuits are circuits without ¬ gates.a

• Note that this result does not settle the P vs. NP

problem.

aRecall p. 329.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 806



The Power of Monotone Circuits

• Monotone circuits can only compute monotone boolean

functions.

• They are powerful enough to solve a P-complete

problem: monotone circuit value (p. 330).

• There are NP-complete problems that are not monotone;

they cannot be computed by monotone circuits at all.

• There are NP-complete problems that are monotone;

they can be computed by monotone circuits.

– hamiltonian path and clique.
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cliquen,k

• cliquen,k is the boolean function deciding whether a

graph G = (V,E) with n nodes has a clique of size k.

• The input gates are the
(
n
2

)
entries of the adjacency

matrix of G.

– Gate gij is set to true if the associated undirected

edge { i, j } exists.

• cliquen,k is a monotone function.

• Thus it can be computed by a monotone circuit.

• Of course, this does not rule out that nonmonotone

circuits for cliquen,k may use fewer gates.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 808



Crude Circuits

• One possible circuit for cliquen,k does the following.

1. For each S ⊆ V with |S | = k, there is a circuit with

O(k2) ∧-gates testing whether S forms a clique.

2. We then take an or of the outcomes of all the
(
n
k

)
subsets S1, S2, . . . , S(nk)

.

• This is a monotone circuit with O(k2
(
n
k

)
) gates, which is

exponentially large unless k or n− k is a constant.

• A crude circuit CC(X1, X2, . . . , Xm) tests if there is

an Xi ⊆ V that forms a clique.a

– The above-mentioned circuit is CC(S1, S2, . . . , S(nk)
).

aConsider the empty set a clique.
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The Proof: Positive Examples

• Analysis will be applied to only the following positive

examples and negative examples as input graphs.

• A positive example is a graph that has
(
k
2

)
edges

connecting k nodes in all possible ways.

• There are
(
n
k

)
such graphs.

• cliquen,k should output true on them.
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The Proof: Negative Examples

• Color the nodes with k − 1 different colors and join by

an edge any two nodes that are colored differently.

• There are (k − 1)n such graphs.

• cliquen,k should output false on them.

– Each set of k nodes must have 2 identically colored

nodes; hence there is no edge between them.
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Positive and Negative Examples with k = 5
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