One-Way Functions

A function f is a one-way function if the following hold. ${ }^{\text {a }}$

1. f is one-to-one.
2. For all $x \in \Sigma^{*},|x|^{1 / k} \leq|f(x)| \leq|x|^{k}$ for some $k>0$.

- f is said to be honest.

3. f can be computed in polynomial time.
4. f^{-1} cannot be computed in polynomial time.

- Exhaustive search works, but it must be slow.
${ }^{\text {a }}$ Diffie \& Hellman (1976); Boppana \& Lagarias (1986); Grollmann \& Selman (1988); Ko (1985); Ko, Long, \& Du (1986); Watanabe (1985); Young (1983).

Existence of One-Way Functions (OWFs)

- Even if $\mathrm{P} \neq \mathrm{NP}$, there is no guarantee that one-way functions exist.
- No functions have been proved to be one-way.
- Is breaking glass a one-way function?

Candidates of One-Way Functions

- Modular exponentiation $f(x)=g^{x} \bmod p$, where g is a primitive root of p.
- Discrete logarithm is hard. ${ }^{\text {a }}$
- The RSA ${ }^{\mathrm{b}}$ function $f(x)=x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- Breaking the RSA function is hard.

[^0]
Candidates of One-Way Functions (concluded)

- Modular squaring $f(x)=x^{2} \bmod p q$.
- Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard- the quadratic residuacity assumption (QRA). ${ }^{\text {a }}$
- Breaking it is as hard as factorization when $p \equiv q \equiv 3 \bmod 4 .{ }^{\mathrm{b}}$

[^1]
The Secret-Key Agreement Problem

- Exchanging messages securely using a private-key cryptosystem requires Alice and Bob have the same key. ${ }^{\text {a }}$
- An example is the r in the one-time pad. ${ }^{\text {b }}$
- How can they agree on the same secret key when the channel is insecure?
- This is called the secret-key agreement problem.
- It was solved by Diffie and Hellman (1976) using one-way functions.

[^2]
The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive root g of $p ;\{p$ and g are public. $\}$
2: Alice chooses a large number a at random;
3: Alice computes $\alpha=g^{a} \bmod p$;
4: Bob chooses a large number b at random;
5: Bob computes $\beta=g^{b} \bmod p$;
6: Alice sends α to Bob, and Bob sends β to Alice;
7: Alice computes her key $\beta^{a} \bmod p$;
8: Bob computes his key $\alpha^{b} \bmod p$;

Analysis

- The keys computed by Alice and Bob are identical as

$$
\beta^{a}=g^{b a}=g^{a b}=\alpha^{b} \bmod p
$$

- To compute the common key from p, g, α, β is known as the Diffie-Hellman problem.
- It is conjectured to be hard. ${ }^{\text {a }}$
- If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
- Because a and b can then be obtained by Eve.
- But the other direction is still open.
${ }^{\text {a }}$ This is the computational Diffie-Hellman assumption (CDH).

The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^{e} \bmod p q$ for an odd e relatively prime to $\phi(p q)$.
- By Lemma 59 (p. 501),

$$
\begin{equation*}
\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q-p-q+1 \tag{16}
\end{equation*}
$$

- As $\operatorname{gcd}(e, \phi(p q))=1$, there is a d such that

$$
e d \equiv 1 \bmod \phi(p q)
$$

which can be found by the Euclidean algorithm. ${ }^{\text {a }}$
${ }^{\text {a }}$ One can think of d as e^{-1}.

A Public-Key Cryptosystem Based on RSA

- Bob generates p and q.
- Bob publishes $p q$ and the encryption key e, a number relatively prime to $\phi(p q)$.
- The encryption function is

$$
y=x^{e} \bmod p q
$$

- Bob calculates $\phi(p q)$ by Eq. (16) (p. 676).
- Bob then calculates d such that $e d=1+k \phi(p q)$ for some $k \in \mathbb{Z}$.

A Public-Key Cryptosystem Based on RSA (continued)

- The decryption function is

$$
y^{d} \bmod p q .
$$

- It works because

$$
y^{d}=x^{e d}=x^{1+k \phi(p q)}=x \bmod p q
$$

by the Fermat-Euler theorem when $\operatorname{gcd}(x, p q)=1$
(p. 506).

A Public-Key Cryptosystem Based on RSA (continued)

- What if x is not relatively prime to $p q$? ${ }^{\text {a }}$
- As $\phi(p q)=(p-1)(q-1)$,

$$
e d=1+k(p-1)(q-1) .
$$

- Say $x \equiv 0 \bmod p$.
- Then

$$
y^{d} \equiv x^{e d} \equiv 0 \equiv x \bmod p .
$$

${ }^{\mathrm{a}}$ Of course, one would be unlucky here.

A Public-Key Cryptosystem Based on RSA (continued)

- Either $x \not \equiv 0 \bmod q$ or $x \equiv 0 \bmod q$.
- If $x \not \equiv 0 \bmod q$, then

$$
\begin{aligned}
y^{d} & \equiv x^{e d} \equiv x^{e d-1} x \equiv x^{k(p-1)(q-1)} x \equiv\left(x^{q-1}\right)^{k(p-1)} x \\
& \equiv x \bmod q
\end{aligned}
$$

by Fermat's "little" theorem (p. 504).

- If $x \equiv 0 \bmod q$, then

$$
y^{d} \equiv x^{e d} \equiv 0 \equiv x \bmod q
$$

A Public-Key Cryptosystem Based on RSA (concluded)

- By the Chinese remainder theorem (p. 503),

$$
y^{d} \equiv x^{e d} \equiv 0 \equiv x \bmod p q
$$

even when x is not relatively prime to p.

- When x is not relatively prime to q, the same conclusion holds.

The "Security" of the RSA Function

- Factoring $p q$ or calculating d from $(e, p q)$ seems hard.
- Breaking the last bit of RSA is as hard as breaking the RSA. ${ }^{\text {a }}$
- Recommended RSA key sizes: ${ }^{\text {b }}$
- 1024 bits up to 2010 .
- 2048 bits up to 2030 .
- 3072 bits up to 2031 and beyond.

[^3]
The "Security" of the RSA Function (continued)

- Recall that problem A is "harder than" problem B if solving A results in solving B.
- Factorization is "harder than" breaking the RSA.
- It is not hard to show that calculating Euler's phi function ${ }^{\text {a }}$ is "harder than" breaking the RSA.
- Factorization is "harder than" calculating Euler's phi function (see Lemma 59 on p. 501).
- So factorization is harder than calculating Euler's phi function, which is harder than breaking the RSA.

[^4]
The "Security" of the RSA Function (concluded)

- Factorization cannot be NP-hard unless NP = coNP. ${ }^{\text {a }}$
- So breaking the RSA is unlikely to imply $\mathrm{P}=\mathrm{NP}$.
- But numbers can be factorized efficiently by quantum computers. ${ }^{\text {b }}$
- RSA was alleged to have received 10 million US dollars from the government to promote unsecure p and q. ${ }^{\text {c }}$

[^5]
Adi Shamir, Ron Rivest, and Leonard Adleman

Ron Rivest ${ }^{\text {a }}$ (1947-)

${ }^{\text {a }}$ Turing Award (2002).

Adi Shamir ${ }^{\text {a }}$ (1952-)

${ }^{\text {a }}$ Turing Award (2002).

A Parallel History

- Diffie and Hellman's solution to the secret-key agreement problem led to public-key cryptography.
- In 1973, the RSA public-key cryptosystem was invented in Britain before the Diffie-Hellman secret-key agreement scheme. ${ }^{\text {a }}$

[^6]Is a forged signature the same sort of thing as a genuine signature, or is it a different sort of thing?

- Gilbert Ryle (1900-1976), The Concept of Mind (1949)
"Katherine, I gave him the code. He verified the code."
"But did you verify him?"
- The Numbers Station (2013)

Digital Signatures ${ }^{\text {a }}$

- Alice wants to send Bob a signed document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys

$$
e_{\text {Alice }}, e_{\text {Bob }}, d_{\text {Alice }}, d_{\text {Bob }}
$$

- Every cryptosystem guarantees $D(d, E(e, x))=x$.
- Assume the cryptosystem also satisfies the commutative property

$$
\begin{equation*}
E(e, D(d, x))=D(d, E(e, x)) \tag{17}
\end{equation*}
$$

- E.g., the RSA system satisfies it as $\left(x^{d}\right)^{e}=\left(x^{e}\right)^{d}$.

[^7]
Digital Signatures Based on Public-Key Systems

- Alice signs x as

$$
\left(x, D\left(d_{\text {Alice }}, x\right)\right) .
$$

- Bob receives (x, y) and verifies the signature by checking

$$
E\left(e_{\text {Alice }}, y\right)=E\left(e_{\text {Alice }}, D\left(d_{\text {Alice }}, x\right)\right)=x
$$

based on Eq. (17).

- The claim of authenticity is founded on the difficulty of inverting $E_{\text {Alice }}$ without knowing the key $d_{\text {Alice }}$.

Blind Signatures ${ }^{\text {a }}$

- There are applications where the document author (Alice) and the signer (Bob) are different parties.
- Sender privacy: We do not want Bob to see the document.
- Anonymous electronic voting systems, digital cash schemes, anonymous payments, etc.
- Idea: The document is blinded by Alice before it is signed by Bob.
- The resulting blind signature can be publicly verified against the original, unblinded document x as before.

[^8]
Blind Signatures Based on RSA

Blinding by Alice:
1: Pick $r \in Z_{n}^{*}$ randomly;
2: Send

$$
x^{\prime}=x r^{e} \bmod n
$$

to Bob using his public encryption key $e ;\{x$ is blinded by r^{e}.\}

- Note that $r \rightarrow r^{e} \bmod n$ is a one-to-one correspondence.
- Hence $r^{e} \bmod n$ is a random number, too.
- As a result, x^{\prime} is random and leaks no information, even if x has any structure.

Blind Signatures Based on RSA (continued)

Signing by Bob with his private decryption key d:
1: Send the blinded signature

$$
s^{\prime}=\left(x^{\prime}\right)^{d} \bmod n
$$

to Alice;

Blind Signatures Based on RSA (continued)

The RSA signature of Alice:
1: Alice obtains the signature $s=s^{\prime} r^{-1} \bmod n$;

- This works because
$s \equiv s^{\prime} r^{-1} \equiv\left(x^{\prime}\right)^{d} r^{-1} \equiv\left(x r^{e}\right)^{d} r^{-1} \equiv x^{d} r^{e d-1} \equiv x^{d} \bmod n$
by the properties of the RSA function.
- Note that only Alice knows r.

Blind Signatures Based on RSA (concluded)

- Anyone can verify the document was signed by Bob by checking with Bob's encryption key e the following:

$$
s^{e} \equiv x \bmod n
$$

- This works because

$$
s^{e} \equiv\left(x^{d}\right)^{e} \equiv x \bmod n
$$

- But Bob does not know s is related to x^{\prime} (thus Alice).

Probabilistic Encryptiona

- A deterministic cryptosystem can be broken if the plaintext has a distribution that favors the "easy" cases.
- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- A scheme may also "leak" partial information.
- Parity of the plaintext, e.g.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.

[^9]
Shafi Goldwasser ${ }^{\text {a }}$ (1958-)

[^10]Silvio Micalia (1954-)

${ }^{\text {a }}$ Turing Award (2013).

Goldwasser and Micali

A Useful Lemma

Lemma 82 Let $n=p q$ be a product of two distinct primes. Then a number $y \in Z_{n}^{*}$ is a quadratic residue modulo n if and only if $(y \mid p)=(y \mid q)=1$.

- The "only if" part:
- Let x be a solution to $x^{2}=y \bmod p q$.
- Then $x^{2}=y \bmod p$ and $x^{2}=y \bmod q$ also hold.
- Hence y is a quadratic modulo p and a quadratic residue modulo q.

The Proof (concluded)

- The "if" part:
- Let $a_{1}^{2}=y \bmod p$ and $a_{2}^{2}=y \bmod q$.
- Solve

$$
\begin{aligned}
x & =a_{1} \bmod p \\
x & =a_{2} \bmod q
\end{aligned}
$$

for x with the Chinese remainder theorem (p. 503).

- As $x^{2}=y \bmod p, x^{2}=y \bmod q$, and $\operatorname{gcd}(p, q)=1$, we must have $x^{2}=y \bmod p q$.

The Jacobi Symbol and Quadratic Residuacity Test

- The Legendre symbol can be used as a test for quadratic residuacity by Lemma 69 (p. 573).
- Lemma 82 (p. 701) says this is not the case with the Jacobi symbol in general.
- Suppose $n=p q$ is a product of two distinct primes.
- A number $y \in Z_{n}^{*}$ with Jacobi symbol $(y \mid p q)=1$ is a quadratic nonresidue modulo n when

$$
\begin{aligned}
& \qquad(y \mid p)=(y \mid q)=-1, \\
& \text { because }(y \mid p q)=(y \mid p)(y \mid q)
\end{aligned}
$$

The Setup

- Bob publishes $n=p q$, a product of two distinct primes, and a quadratic nonresidue y with Jacobi symbol 1.
- Bob keeps secret the factorization of n.
- Alice wants to send bit string $b_{1} b_{2} \cdots b_{k}$ to Bob.
- Alice encrypts the bits by choosing a random quadratic residue modulo n if b_{i} is 1 and a random quadratic nonresidue (with Jacobi symbol 1) otherwise.
- So a sequence of residues and nonresidues are sent.
- Knowing the factorization of n, Bob can efficiently test quadratic residuacity and thus read the message.

The Protocol for Alice

1: for $i=1,2, \ldots, k$ do
2: \quad Pick $r \in Z_{n}^{*}$ randomly;
3: if $b_{i}=1$ then
4: \quad Send $r^{2} \bmod n ;\{$ Jacobi symbol is 1.$\}$
5: else
6: \quad Send $r^{2} y \bmod n ;\{$ Jacobi symbol is still 1.\}
7: end if
8: end for

The Protocol for Bob
1: for $i=1,2, \ldots, k$ do
2: Receive r;
3: \quad if $(r \mid p)=1$ and $(r \mid q)=1$ then
4: $\quad b_{i}:=1$;
5: else
6: $\quad b_{i}:=0 ;$
7: end if
8: end for

Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
- Encryption is a one-to-many mapping.
- This scheme is both polynomially secure and semantically secure.

What then do you call proof?
 - Henry James (1843-1916), The Wings of the Dove (1902)
 Leibniz knew what a proof is. Descartes did not.
 - Ian Hacking (1973)

What Is a Proof?

- A proof convinces a party of a certain claim.
- " $x^{n}+y^{n} \neq z^{n}$ for all $x, y, z \in \mathbb{Z}^{+}$and $n>2$."
- "Graph G is Hamiltonian."
- " $x^{p}=x \bmod p$ for prime p and $p \nmid x$."
- In mathematics, a proof is a fixed sequence of theorems.
- Think of it as a written examination.
- We will extend a proof to cover a proof process by which the validity of the assertion is established.
- Recall a job interview or an oral examination.

Prover and Verifier

- There are two parties to a proof.
- The prover (Peggy).
- The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (completeness).
- The verifier's objective is to accept only correct assertions (soundness).
- The verifier usually has an easier job than the prover.
- The setup is similar to the Turing test. ${ }^{\text {a }}$
${ }^{\text {a }}$ Turing (1950).

Interactive Proof Systems

- An interactive proof for a language L is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm. ${ }^{\text {a }}$
- If the prover is not more powerful than the verifier, no interaction is needed!

[^11]
Interactive Proof Systems (concluded)

- The system decides L if the following two conditions hold for any common input x.
- If $x \in L$, then the probability that x is accepted by the verifier is at least $1-2^{-|x|}$.
- If $x \notin L$, then the probability that x is accepted by the verifier with any prover replacing the original prover is at most $2^{-|x|}$.
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial of $|x|$.

IP ("Interactive Polynomial Time") ${ }^{\text {a }}$

- IP is the class of all languages decided by an interactive proof system.
- When $x \in L$, the completeness condition can be modified to require that the verifier accept with certainty without affecting IP. ${ }^{\text {b }}$
- Similar things cannot be said of the soundness condition when $x \notin L$.
- Verifier's coin flips can be public (called Arthur-Merlin games).c

[^12]
The Relations of IP with Other Classes

- NP $\subseteq I P$.
- IP becomes NP when the verifier is deterministic and there is only one round of interaction. ${ }^{\text {a }}$
- $\mathrm{BPP} \subseteq \mathrm{IP}$.
- IP becomes BPP when the verifier ignores the prover's messages.
- $\mathrm{IP}=$ PSPACE $^{\text {b }}$

[^13]
Graph Isomorphism

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a permutation π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \cong G_{2}$.
- No known polynomial-time algorithms. ${ }^{\text {a }}$
- The problem is in NP (hence IP).
- It is not likely to be NP-complete. ${ }^{\text {b }}$

[^14]
GRAPH NONISOMORPHISM

- $V_{1}=V_{2}=\{1,2, \ldots, n\}$.
- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are nonisomorphic if there exist no permutations π on $\{1,2, \ldots, n\}$ so that $(u, v) \in E_{1} \Leftrightarrow(\pi(u), \pi(v)) \in E_{2}$.
- The task is to answer if $G_{1} \not \neq G_{2}$.
- Again, no known polynomial-time algorithms.
- It is in coNP, but how about NP or BPP?
- It is not likely to be coNP-complete. ${ }^{\text {a }}$
- Surprisingly, GRAPH NONISOMORPHISM \in IP. ${ }^{\text {b }}$

> a Schöning (1987).
${ }^{\mathrm{b}}$ Goldreich, Micali, \& Wigderson (1986).

A 2-Round Algorithm

1: Victor selects a random $i \in\{1,2\}$;
2: Victor selects a random permutation π on $\{1,2, \ldots, n\}$;
3: Victor applies π on graph G_{i} to obtain graph H;
4: Victor sends $\left(G_{1}, H\right)$ to Peggy;
5: if $G_{1} \cong H$ then
6: Peggy sends $j=1$ to Victor;
7: else
8: Peggy sends $j=2$ to Victor;
9: end if
10: if $j=i$ then
11: Victor accepts; $\left\{G_{1} \not \neq G_{2}.\right\}$
12: else
13: Victor rejects; $\left\{G_{1} \cong G_{2}.\right\}$
14: end if

Analysis

- Victor runs in probabilistic polynomial time.
- Suppose $G_{1} \not \not 二 G_{2}$.
- Peggy is able to tell which G_{i} is isomorphic to H, so $j=i$.
- So Victor always accepts.
- Suppose $G_{1} \cong G_{2}$.
- No matter which i is picked by Victor, Peggy or any prover sees 2 identical copies.
- Peggy or any prover with exponential power has only probability one half of guessing i correctly.
- So Victor erroneously accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Knowledge in Proofs

- Suppose I know a satisfying assignment to a satisfiable boolean expression.
- I can convince Alice of this by giving her the assignment.
- But then I give her more knowledge than is necessary.
- Alice can claim that she found the assignment!
- Login authentication faces essentially the same issue.
- See
www.wired.com/wired/archive/1.05/atm_pr.html for a famous ATM fraud in the U.S.

Knowledge in Proofs (concluded)

- Suppose I always give Alice random bits.
- Alice extracts no knowledge from me by any measure, but I prove nothing.
- Question 1: Can we design a protocol to convince Alice (the knowledge) of a secret without revealing anything extra?
- Question 2: How to define this idea rigorously?

Zero Knowledge Proofs ${ }^{\text {a }}$

An interactive proof protocol (P, V) for language L has the perfect zero-knowledge property if:

- For every verifier V^{\prime}, there is an algorithm M with expected polynomial running time.
- M on any input $x \in L$ generates the same probability distribution as the one that can be observed on the communication channel of $\left(P, V^{\prime}\right)$ on input x.

[^15]
Comments

- Zero knowledge is a property of the prover.
- It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
- The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
- A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
- The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (continued)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier.
- But the fact that this conversation was held "on line."
- Computational zero-knowledge proofs are based on complexity assumptions.
- M only needs to generate a distribution that is computationally indistinguishable from the verifier's view of the interaction.

Comments (concluded)

- If one-way functions exist, then zero-knowledge proofs exist for every problem in NP. ${ }^{\text {a }}$
- If one-way functions exist, then zero-knowledge proofs exist for every problem in PSPACE. ${ }^{\text {b }}$
- The verifier can be restricted to the honest one (i.e., it follows the protocol). ${ }^{\text {c }}$
- The coins can be public. ${ }^{\text {d }}$
- The digital money Zcash (2016) is based on zero-knowledge proofs.

[^16]
Quadratic Residuacity (QR)

- Let n be a product of two distinct primes.
- Assume extracting the square root of a quadratic residue modulo n is hard without knowing the factors.
- QR asks if $x \in Z_{n}^{*}$ is a quadratic residues modulo n.

A Useful Corollary of Lemma 82 (p. 701)

Corollary 83 Let $n=p q$ be a product of two distinct primes. (1) If x and y are both quadratic residues modulo n, then $x y \in Z_{n}^{*}$ is a quadratic residue modulo n. (2) If x is a quadratic residue modulo n and y is a quadratic nonresidue modulo n, then $x y \in Z_{n}^{*}$ is a quadratic nonresidue modulo n.

- Suppose x and y are both quadratic residues modulo n.
- Let $x \equiv a^{2} \bmod n$ and $y \equiv b^{2} \bmod n$.
- Now $x y$ is a quadratic residue as $x y \equiv(a b)^{2} \bmod n$.

The Proof (concluded)

- Suppose x is a quadratic residue modulo n and y is a quadratic nonresidue modulo n.
- By Lemma 82 (p. 701), $(x \mid p)=(x \mid q)=1$ but, say, $(y \mid p)=-1$.
- Now $x y$ is a quadratic nonresidue as $(x y \mid p)=-1$, again by Lemma 82 (p. 701).

Zero-Knowledge Proof of $\mathrm{QR}^{\text {a }}$

Below is a zero-knowledge proof for $x \in Z_{n}^{*}$ being a quadratic residue.
1: for $m=1,2, \ldots, \log _{2} n$ do
2: \quad Peggy chooses a random $v \in Z_{n}^{*}$ and sends $y=v^{2} \bmod n$ to Victor;
3: Victor chooses a random bit i and sends it to Peggy;
4: Peggy sends $z=u^{i} v \bmod n$, where u is a square root of $x ;\left\{\right.$ So $u^{2} \equiv x \bmod n$. $\}$
5: \quad Victor checks if $z^{2} \equiv x^{i} y \bmod n$;
6: end for
7: Victor accepts x if Line 5 is confirmed every time;

[^17]
Analysis

- Suppose x is a quadratic residue.
- Then x 's square root u can be computed by Peggy.
- Peggy can answer all challenges.
- Now,

$$
z^{2} \equiv\left(u^{i}\right)^{2} v^{2} \equiv\left(u^{2}\right)^{i} v^{2} \equiv x^{i} y \bmod n .
$$

- So Victor will accept x.

Analysis (continued)

- Suppose x is a quadratic nonresidue.
- Corollary 83 (p. 728) says if a is a quadratic residue, then $x a$ is a quadratic nonresidue.
- As y is a quadratic residue, $x^{i} y$ can be a quadratic residue (see Line 5) only when $i=0$.
- Peggy can answer only one of the two possible challenges, when $i=0 .{ }^{\text {a }}$
- So Peggy will be caught in any given round with probability one half.
${ }^{\text {a }}$ Line $5\left(z^{2} \equiv x^{i} y \bmod n\right)$ cannot equate a quadratic residue z^{2} with a quadratic nonresidue $x^{i} y$ when $i=1$.

Analysis (continued)

- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
- Here is how.
- Suppose x is a quadratic residue. ${ }^{\text {a }}$
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient Bob that generates (y, i, z) with the same probability without accessing Peggy's power.

[^18]
Analysis (concluded)

1: Bob chooses a random $z \in Z_{n}^{*}$;
2: Bob chooses a random bit i;
3: Bob calculates $y=z^{2} x^{-i} \bmod n$; ${ }^{\text {a }}$
4: Bob writes (y, i, z) into the transcript;

Comments

- Assume x is a quadratic residue.
- For $(y, i, z), y$ is a random quadratic residue, i is a random bit, and z is a random number.
- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
- Bob picks Peggy's answer z first.
- Bob then picks Victor's challenge i.
- Bob finally patches the transcript.

Comments (concluded)

- So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy.
- But we skip the details. ${ }^{\text {a }}$
- What if Victor always chooses $i=1$ in the protocol, the harder case? ${ }^{\text {b }}$

[^19]
Zero-Knowledge Proof of 3 Colorability ${ }^{\text {a }}$

1: for $i=1,2, \ldots,|E|^{2}$ do
2: \quad Peggy chooses a random permutation π of the 3-coloring ϕ;
3: Peggy samples encryption schemes randomly, commits ${ }^{\text {b }}$ them, and sends $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;
4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;
5: \quad if $e=(u, v) \in E$ then
6: Peggy reveals the colors $\pi(\phi(u))$ and $\pi(\phi(v))$ and "proves"
that they correspond to their encryptions;
7: else
8: Peggy stops;
9: end if
${ }^{\text {a }}$ Goldreich, Micali, \& Wigderson (1986).
${ }^{\mathrm{b}}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on December 22, 2009.

10: if the "proof" provided in Line 6 is not valid then
11: Victor rejects and stops;
12: end if
13:

$$
\text { if } \pi(\phi(u))=\pi(\phi(v)) \text { or } \pi(\phi(u)), \pi(\phi(v)) \notin\{1,2,3\} \text { then }
$$

14: Victor rejects and stops;
15: end if
16: end for
17: Victor accepts;

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- Suppose the graph is not 3-colorable and Victor follows the protocol.
- Let e be an edge that is not colored legally.
- Victor will pick it with probability $1 / m$ per round, where $m=|E|$.
- Then however Peggy plays, Victor will reject with probability at least $1 / \mathrm{m}$ per round.

Analysis (concluded)

- So Victor will accept with probability at most

$$
\left(1-m^{-1}\right)^{m^{2}} \leq e^{-m} .
$$

- Thus the protocol is a valid IP protocol.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to any verifier is intricate. ${ }^{\text {a }}$

[^20]
Comments

- Each $\pi(\phi(i))$ is encrypted by a different cryptosystem in Line 3 . ${ }^{\text {a }}$
- Otherwise, the coloring will be revealed in Line 6.
- Each edge e must be picked randomly. ${ }^{\text {b }}$
- Otherwise, Peggy will know Victor's game plan and plot accordingly.

[^21]

> Just because the problem is NP-complete does not mean that you should not try to solve it. - Stephen Cook (2002)

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
- We are looking for theoretically guaranteed bounds, not "empirical" bounds.
- Are there NP problems that cannot be approximated well (assuming NP $\neq \mathrm{P}$)?
- Are there NP problems that cannot be approximated at all (assuming $\mathrm{NP} \neq \mathrm{P}$)?

Some Definitions

- Given an optimization problem, each problem instance x has a set of feasible solutions $F(x)$.
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^{+}$.
- Here, cost refers to the quality of the feasible solution, not the time required to obtain it.
- It is our objective function: total distance, number of satisfied clauses, cut size, etc.

Some Definitions (concluded)

- The optimum cost is

$$
\operatorname{OPT}(x)=\min _{s \in F(x)} c(s)
$$

for a minimization problem.

- It is

$$
\operatorname{OPT}(x)=\max _{s \in F(x)} c(s)
$$

for a maximization problem.

Approximation Algorithms

- Let (polynomial-time) algorithm M on x returns a feasible solution.
- M is an ϵ-approximation algorithm, where $\epsilon \geq 0$, if for all x,

$$
\frac{|c(M(x))-\operatorname{OPT}(x)|}{\max (\operatorname{OPT}(x), c(M(x)))} \leq \epsilon
$$

- For a minimization problem,

$$
\frac{c(M(x))-\min _{s \in F(x)} c(s)}{c(M(x))} \leq \epsilon
$$

- For a maximization problem,

$$
\begin{equation*}
\frac{\max _{s \in F(x)} c(s)-c(M(x))}{\max _{s \in F(x)} c(s)} \leq \epsilon \tag{18}
\end{equation*}
$$

Lower and Upper Bounds

- For a minimization problem,

$$
\min _{s \in F(x)} c(s) \leq c(M(x)) \leq \frac{\min _{s \in F(x)} c(s)}{1-\epsilon}
$$

- For a maximization problem,

$$
\begin{equation*}
(1-\epsilon) \times \max _{s \in F(x)} c(s) \leq c(M(x)) \leq \max _{s \in F(x)} c(s) . \tag{11}
\end{equation*}
$$

Lower and Upper Bounds (concluded)

- ϵ ranges between 0 (best) and 1 (worst).
- For minimization problems, an ϵ-approximation algorithm returns solutions within

$$
\left[\mathrm{OPT}, \frac{\mathrm{OPT}}{1-\epsilon}\right]
$$

- For maximization problems, an ϵ-approximation algorithm returns solutions within

$$
[(1-\epsilon) \times \text { OPT, OPT }]
$$

Approximation Thresholds

- For each NP-complete optimization problem, we shall be interested in determining the smallest ϵ for which there is a polynomial-time ϵ-approximation algorithm.
- But sometimes ϵ has no minimum value.
- The approximation threshold is the greatest lower bound of all $\epsilon \geq 0$ such that there is a polynomial-time ϵ-approximation algorithm.
- By a standard theorem in real analysis, such a threshold exists. ${ }^{\text {a }}$

[^22]
Approximation Thresholds (concluded)

- The approximation threshold of an optimization problem is anywhere between 0 (approximation to any desired degree) and 1 (no approximation is possible).
- If $\mathrm{P}=\mathrm{NP}$, then all optimization problems in $N P$ have an approximation threshold of 0 .
- So assume $\mathrm{P} \neq \mathrm{NP}$ for the rest of the discussion.

Approximation Ratio

- ϵ-approximation algorithms can also be measured via the approximation ratio: ${ }^{\text {a }}$

$$
\frac{c(M(x))}{\operatorname{OPT}(x)}
$$

- For a minimization problem, the approximation ratio is

$$
\begin{equation*}
1 \leq \frac{c(M(x))}{\min _{s \in F(x)} c(s)} \leq \frac{1}{1-\epsilon} \tag{20}
\end{equation*}
$$

[^23]
Approximation Ratio (concluded)

- For a maximization problem, the approximation ratio is ${ }^{\text {a }}$

$$
\begin{equation*}
1-\epsilon \leq \frac{c(M(x))}{\max _{s \in F(x)} c(s)} \leq 1 . \tag{21}
\end{equation*}
$$

- Suppose there is an approximation algorithm that achieves an approximation ratio of θ.
- For a minimization problem, it implies a $\left(1-\theta^{-1}\right)$-approximation algorithm by Eq. (20).
- For a maximization problem, it implies a $(1-\theta)$-approximation algorithm by Eq. (21).

[^24]
[^0]: ${ }^{\text {a }}$ Conjectured to be $2^{n^{\epsilon}}$ for some $\epsilon>0$ in both the worst-case sense and average sense. Doable in time $n^{O(\log n)}$ for finite fields of small characteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann \& Selman, 1988).
 ${ }^{\mathrm{b}}$ Rivest, Shamir, \& Adleman (1978).

[^1]: ${ }^{\text {a }}$ Due to Gauss.
 ${ }^{\mathrm{b}}$ Rabin (1979).

[^2]: ${ }^{\text {a }}$ See p. 662 .
 ${ }^{\mathrm{b}}$ See p. 661 .

[^3]: ${ }^{\text {a }}$ Alexi, Chor, Goldreich, \& Schnorr (1988).
 ${ }^{\mathrm{b}}$ RSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US dollars.

[^4]: ${ }^{\text {a }}$ When the input is not factorized!

[^5]: ${ }^{\text {a }}$ Brassard (1979).
 ${ }^{\mathrm{b}}$ Shor (1994).
 ${ }^{\mathrm{c}}$ Menn (2013).

[^6]: ${ }^{\text {a }}$ Ellis, Cocks, and Williamson of the Communications Electronics Security Group of the British Government Communications Head Quarters (GCHQ).

[^7]: ${ }^{\text {a }}$ Diffie \& Hellman (1976).

[^8]: ${ }^{\text {a }}$ Chaum (1983).

[^9]: ${ }^{\text {a }}$ Goldwasser \& Micali (1982). This paper "laid the framework for modern cryptography" (2013).

[^10]: ${ }^{\text {a }}$ Turing Award (2013).

[^11]: ${ }^{\text {a }}$ See the problem to Note 12.3.7 on p. 296 and Proposition 19.1 on p. 475 , both of the textbook, about alternative complexity assumptions without affecting the definition. Contributed by Mr. Young-San Lin (B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.

[^12]: ${ }^{\text {a }}$ Goldwasser, Micali, \& Rackoff (1985).
 ${ }^{\text {b }}$ Goldreich, Mansour, \& Sipser (1987).
 ${ }^{\text {c Goldwasser } \& ~ S i p s e r ~(1989) . ~}$

[^13]: ${ }^{\text {a }}$ Recall Proposition 41 on p. 344.
 ${ }^{\mathrm{b}}$ Shamir (1990).

[^14]: ${ }^{\text {a }}$ The recent bound of Babai (2015) is $2^{O\left(\log ^{c} n\right)}$ for some constant c.
 bschöning (1987).

[^15]: ${ }^{\text {a }}$ Goldwasser, Micali, \& Rackoff (1985).

[^16]: ${ }^{\text {a }}$ Goldreich, Micali, \& Wigderson (1986).
 ${ }^{\text {b }}$ Ostrovsky \& Wigderson (1993).
 ${ }^{\text {c }}$ Vadhan (2006).
 ${ }^{\text {d }}$ Vadhan (2006).

[^17]: ${ }^{\text {a }}$ Goldwasser, Micali, \& Rackoff (1985).

[^18]: ${ }^{\text {a }}$ There is no zero-knowledge requirement when $x \notin L$.

[^19]: ${ }^{\text {a }}$ Or apply Vadhan (2006).
 ${ }^{\text {b }}$ Contributed by Mr. Chih-Duo Hong (R95922079) on December 13, 2006, Mr. Chin-Luei Chang (D95922007) on June 16, 2008, and Mr. HanTing Chen (R10922073) on December 30, 2021.

[^20]: ${ }^{a}$ Or simply cite Vadhan (2006).

[^21]: ${ }^{\text {a }}$ Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
 ${ }^{\text {b }}$ Contributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008

[^22]: ${ }^{\text {a }}$ Bauldry (2009).

[^23]: ${ }^{a}$ Williamson \& Shmoys (2011).

[^24]: ${ }^{\text {a }}$ Some define the ratio as $1 \leq \frac{\max _{s \in F(x)} c(s)}{c(M(x))} \leq \frac{1}{1-\epsilon}$, symmetrical to inequalities (20).

