
One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it must be slow.

aDiffie & Hellman (1976); Boppana & Lagarias (1986); Grollmann &

Selman (1988); Ko (1985); Ko, Long, & Du (1986); Watanabe (1985);

Young (1983).
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Existence of One-Way Functions (OWFs)

• Even if P �= NP, there is no guarantee that one-way

functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?
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Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a

primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to φ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2n
ε
for some ε > 0 in both the worst-case sense

and average sense. Doable in time nO(log n) for finite fields of small char-

acteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann

& Selman, 1988).
bRivest, Shamir, & Adleman (1978).
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Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a

quadratic residue is hard—the quadratic

residuacity assumption (QRA).a

– Breaking it is as hard as factorization when

p ≡ q ≡ 3 mod 4.b

aDue to Gauss.
bRabin (1979).
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The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key

cryptosystem requires Alice and Bob have the same

key.a

– An example is the r in the one-time pad.b

• How can they agree on the same secret key when the

channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using

one-way functions.

aSee p. 662.
bSee p. 661.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}
2: Alice chooses a large number a at random;

3: Alice computes α = ga mod p;

4: Bob chooses a large number b at random;

5: Bob computes β = gb mod p;

6: Alice sends α to Bob, and Bob sends β to Alice;

7: Alice computes her key βa mod p;

8: Bob computes his key αb mod p;
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Analysis

• The keys computed by Alice and Bob are identical as

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as

the Diffie-Hellman problem.

• It is conjectured to be hard.a

• If discrete logarithm is easy, then one can solve the

Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.

aThis is the computational Diffie-Hellman assumption (CDH).
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The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively

prime to φ(pq).

– By Lemma 59 (p. 501),

φ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1. (16)

• As gcd(e, φ(pq)) = 1, there is a d such that

ed ≡ 1 mod φ(pq),

which can be found by the Euclidean algorithm.a

aOne can think of d as e−1.
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A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number

relatively prime to φ(pq).

– The encryption function is

y = xe mod pq.

– Bob calculates φ(pq) by Eq. (16) (p. 676).

– Bob then calculates d such that ed = 1 + kφ(pq) for

some k ∈ Z.
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A Public-Key Cryptosystem Based on RSA
(continued)

• The decryption function is

yd mod pq.

• It works because

yd = xed = x1+kφ(pq) = x mod pq

by the Fermat-Euler theorem when gcd(x, pq) = 1

(p. 506).
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A Public-Key Cryptosystem Based on RSA
(continued)

• What if x is not relatively prime to pq?a

• As φ(pq) = (p− 1)(q − 1),

ed = 1 + k(p− 1)(q − 1).

• Say x ≡ 0 mod p.

• Then

yd ≡ xed ≡ 0 ≡ x mod p.

aOf course, one would be unlucky here.
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A Public-Key Cryptosystem Based on RSA
(continued)

• Either x �≡ 0 mod q or x ≡ 0 mod q.

• If x �≡ 0 mod q, then

yd ≡ xed ≡ xed−1x ≡ xk(p−1)(q−1)x ≡ (
xq−1

)k(p−1)
x

≡ x mod q.

by Fermat’s “little” theorem (p. 504).

• If x ≡ 0 mod q, then

yd ≡ xed ≡ 0 ≡ x mod q.
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A Public-Key Cryptosystem Based on RSA
(concluded)

• By the Chinese remainder theorem (p. 503),

yd ≡ xed ≡ 0 ≡ x mod pq,

even when x is not relatively prime to p.

• When x is not relatively prime to q, the same conclusion

holds.
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The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.

• Breaking the last bit of RSA is as hard as breaking the

RSA.a

• Recommended RSA key sizes:b

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.

aAlexi, Chor, Goldreich, & Schnorr (1988).
bRSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US

dollars.
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The “Security” of the RSA Function (continued)

• Recall that problem A is “harder than” problem B if

solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– It is not hard to show that calculating Euler’s phi

functiona is “harder than” breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi

function (see Lemma 59 on p. 501).

– So factorization is harder than calculating Euler’s phi

function, which is harder than breaking the RSA.

aWhen the input is not factorized!
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The “Security” of the RSA Function (concluded)

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.

• But numbers can be factorized efficiently by quantum

computers.b

• RSA was alleged to have received 10 million US dollars

from the government to promote unsecure p and q.c

aBrassard (1979).
bShor (1994).
cMenn (2013).
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Adi Shamir, Ron Rivest, and Leonard Adleman

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 685



Ron Rivesta (1947–)

aTuring Award (2002).
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Adi Shamira (1952–)

aTuring Award (2002).
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A Parallel History

• Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

• In 1973, the RSA public-key cryptosystem was invented

in Britain before the Diffie-Hellman secret-key

agreement scheme.a

aEllis, Cocks, and Williamson of the Communications Electronics Se-

curity Group of the British Government Communications Head Quarters

(GCHQ).
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Is a forged signature the same sort of thing

as a genuine signature,

or is it a different sort of thing?

— Gilbert Ryle (1900–1976),

The Concept of Mind (1949)

“Katherine, I gave him the code.

He verified the code.”

“But did you verify him?”

— The Numbers Station (2013)
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Digital Signaturesa

• Alice wants to send Bob a signed document x.

• The signature must unmistakably identifies the sender.

• Both Alice and Bob have public and private keys

eAlice, eBob, dAlice, dBob.

• Every cryptosystem guarantees D(d,E(e, x)) = x.

• Assume the cryptosystem also satisfies the commutative

property

E(e,D(d, x)) = D(d,E(e, x)). (17)

– E.g., the RSA system satisfies it as (xd)e = (xe)d.

aDiffie & Hellman (1976).
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Digital Signatures Based on Public-Key Systems

• Alice signs x as

(x,D(dAlice, x)).

• Bob receives (x, y) and verifies the signature by checking

E(eAlice, y) = E(eAlice, D(dAlice, x)) = x

based on Eq. (17).

• The claim of authenticity is founded on the difficulty of

inverting EAlice without knowing the key dAlice.
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Blind Signaturesa

• There are applications where the document author

(Alice) and the signer (Bob) are different parties.

• Sender privacy: We do not want Bob to see the

document.

– Anonymous electronic voting systems, digital cash

schemes, anonymous payments, etc.

• Idea: The document is blinded by Alice before it is

signed by Bob.

• The resulting blind signature can be publicly verified

against the original, unblinded document x as before.

aChaum (1983).
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Blind Signatures Based on RSA

Blinding by Alice:

1: Pick r ∈ Z∗
n randomly;

2: Send

x′ = xre mod n

to Bob using his public encryption key e; {x is blinded

by re.}
• Note that r → re mod n is a one-to-one correspondence.

• Hence re mod n is a random number, too.

• As a result, x′ is random and leaks no information, even

if x has any structure.
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Blind Signatures Based on RSA (continued)

Signing by Bob with his private decryption key d:

1: Send the blinded signature

s′ = (x′)d mod n

to Alice;
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Blind Signatures Based on RSA (continued)

The RSA signature of Alice:

1: Alice obtains the signature s = s′r−1 mod n;

• This works because

s ≡ s′r−1 ≡ (x′)dr−1 ≡ (xre)dr−1 ≡ xdred−1 ≡ xd mod n

by the properties of the RSA function.

• Note that only Alice knows r.
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Blind Signatures Based on RSA (concluded)

• Anyone can verify the document was signed by Bob by

checking with Bob’s encryption key e the following:

se ≡ x mod n.

– This works because

se ≡ (
xd

)e ≡ x mod n.

• But Bob does not know s is related to x′ (thus Alice).
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Probabilistic Encryptiona

• A deterministic cryptosystem can be broken if the

plaintext has a distribution that favors the “easy” cases.

• The ability to forge signatures on even a vanishingly

small fraction of strings of some length is a security

weakness if those strings were the probable ones!

• A scheme may also “leak” partial information.

– Parity of the plaintext, e.g.

• The first solution to the problems of skewed distribution

and partial information was based on the QRA.

aGoldwasser & Micali (1982). This paper “laid the framework for

modern cryptography” (2013).
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Shafi Goldwassera (1958–)

aTuring Award (2013).
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Silvio Micalia (1954–)

aTuring Award (2013).
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Goldwasser and Micali
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A Useful Lemma

Lemma 82 Let n = pq be a product of two distinct primes.

Then a number y ∈ Z∗
n is a quadratic residue modulo n if

and only if (y | p) = (y | q) = 1.

• The “only if” part:

– Let x be a solution to x2 = y mod pq.

– Then x2 = y mod p and x2 = y mod q also hold.

– Hence y is a quadratic modulo p and a quadratic

residue modulo q.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 701



The Proof (concluded)

• The “if” part:

– Let a21 = y mod p and a22 = y mod q.

– Solve

x = a1 mod p,

x = a2 mod q,

for x with the Chinese remainder theorem (p. 503).

– As x2 = y mod p, x2 = y mod q, and gcd(p, q) = 1,

we must have x2 = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

• The Legendre symbol can be used as a test for quadratic

residuacity by Lemma 69 (p. 573).

• Lemma 82 (p. 701) says this is not the case with the

Jacobi symbol in general.

• Suppose n = pq is a product of two distinct primes.

• A number y ∈ Z∗
n with Jacobi symbol (y | pq) = 1 is a

quadratic nonresidue modulo n when

(y | p) = (y | q) = −1,

because (y | pq) = (y | p)(y | q).
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The Setup

• Bob publishes n = pq, a product of two distinct primes,

and a quadratic nonresidue y with Jacobi symbol 1.

• Bob keeps secret the factorization of n.

• Alice wants to send bit string b1b2 · · · bk to Bob.

• Alice encrypts the bits by choosing a random quadratic

residue modulo n if bi is 1 and a random quadratic

nonresidue (with Jacobi symbol 1) otherwise.

• So a sequence of residues and nonresidues are sent.

• Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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The Protocol for Alice

1: for i = 1, 2, . . . , k do

2: Pick r ∈ Z∗
n randomly;

3: if bi = 1 then

4: Send r2 mod n; {Jacobi symbol is 1.}
5: else

6: Send r2y mod n; {Jacobi symbol is still 1.}
7: end if

8: end for
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The Protocol for Bob

1: for i = 1, 2, . . . , k do

2: Receive r;

3: if (r | p) = 1 and (r | q) = 1 then

4: bi := 1;

5: else

6: bi := 0;

7: end if

8: end for
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Semantic Security

• This encryption scheme is probabilistic.

• There are a large number of different encryptions of a

given message.

• One is chosen at random by the sender to represent the

message.

– Encryption is a one-to-many mapping.

• This scheme is both polynomially secure and

semantically secure.
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What then do you call proof?

— Henry James (1843–1916),

The Wings of the Dove (1902)

Leibniz knew what a proof is.

Descartes did not.

— Ian Hacking (1973)
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What Is a Proof?

• A proof convinces a party of a certain claim.

– “xn + yn �= zn for all x, y, z ∈ Z
+ and n > 2.”

– “Graph G is Hamiltonian.”

– “xp = x mod p for prime p and p � |x.”
• In mathematics, a proof is a fixed sequence of theorems.

– Think of it as a written examination.

• We will extend a proof to cover a proof process by which

the validity of the assertion is established.

– Recall a job interview or an oral examination.
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Prover and Verifier

• There are two parties to a proof.

– The prover (Peggy).

– The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

• The verifier’s objective is to accept only correct

assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is similar to the Turing test.a

aTuring (1950).
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Interactive Proof Systems

• An interactive proof for a language L is a sequence of

questions and answers between the two parties.

• At the end of the interaction, the verifier decides

whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time

algorithm.

• The prover runs an exponential-time algorithm.a

– If the prover is not more powerful than the verifier,

no interaction is needed!
aSee the problem to Note 12.3.7 on p. 296 and Proposition 19.1 on

p. 475, both of the textbook, about alternative complexity assumptions

without affecting the definition. Contributed by Mr. Young-San Lin

(B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.
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Interactive Proof Systems (concluded)

• The system decides L if the following two conditions

hold for any common input x.

– If x ∈ L, then the probability that x is accepted by

the verifier is at least 1− 2−|x |.

– If x �∈ L, then the probability that x is accepted by

the verifier with any prover replacing the original

prover is at most 2−|x |.

• Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |x |.
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An Interactive Proof
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IP (“Interactive Polynomial Time”)a

• IP is the class of all languages decided by an interactive

proof system.

• When x ∈ L, the completeness condition can be

modified to require that the verifier accept with

certainty without affecting IP.b

• Similar things cannot be said of the soundness condition

when x �∈ L.

• Verifier’s coin flips can be public (called

Arthur-Merlin games).c

aGoldwasser, Micali, & Rackoff (1985).
bGoldreich, Mansour, & Sipser (1987).
cGoldwasser & Sipser (1989).
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The Relations of IP with Other Classes

• NP ⊆ IP.

– IP becomes NP when the verifier is deterministic and

there is only one round of interaction.a

• BPP ⊆ IP.

– IP becomes BPP when the verifier ignores the

prover’s messages.

• IP = PSPACE.b

aRecall Proposition 41 on p. 344.
bShamir (1990).
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Graph Isomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2.

• No known polynomial-time algorithms.a

• The problem is in NP (hence IP).

• It is not likely to be NP-complete.b

aThe recent bound of Babai (2015) is 2O(logc n) for some constant c.
bSchöning (1987).
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graph nonisomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 �∼= G2.

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.a

• Surprisingly, graph nonisomorphism ∈ IP.b

aSchöning (1987).
bGoldreich, Micali, & Wigderson (1986).
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A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };
2: Victor selects a random permutation π on { 1, 2, . . . , n };
3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts; {G1 �∼= G2.}
12: else

13: Victor rejects; {G1
∼= G2.}

14: end if

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 718



Analysis

• Victor runs in probabilistic polynomial time.

• Suppose G1 �∼= G2.

– Peggy is able to tell which Gi is isomorphic to H, so j = i.

– So Victor always accepts.

• Suppose G1
∼= G2.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical copies.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable

boolean expression.

• I can convince Alice of this by giving her the assignment.

• But then I give her more knowledge than is necessary.

– Alice can claim that she found the assignment!

– Login authentication faces essentially the same issue.

– See

www.wired.com/wired/archive/1.05/atm pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

• Suppose I always give Alice random bits.

• Alice extracts no knowledge from me by any measure,

but I prove nothing.

• Question 1: Can we design a protocol to convince Alice

(the knowledge) of a secret without revealing anything

extra?

• Question 2: How to define this idea rigorously?
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Zero Knowledge Proofsa

An interactive proof protocol (P, V ) for language L has the

perfect zero-knowledge property if:

• For every verifier V ′, there is an algorithm M with

expected polynomial running time.

• M on any input x ∈ L generates the same probability

distribution as the one that can be observed on the

communication channel of (P, V ′) on input x.

aGoldwasser, Micali, & Rackoff (1985).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 722



Comments

• Zero knowledge is a property of the prover.

– It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

– The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

– A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim.

– The proof is hence not transferable.
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Comments (continued)

• Whatever a verifier can “learn” from the specified prover

P via the communication channel could as well be

computed from the verifier alone.

• The verifier does not learn anything except “x ∈ L.”

• Zero-knowledge proofs yield no knowledge in the sense

that they can be constructed by the verifier who believes

the statement, and yet these proofs do convince him.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 724



Comments (continued)

• The “paradox” is resolved by noting that it is not the

transcript of the conversation that convinces the verifier.

• But the fact that this conversation was held “on line.”

• Computational zero-knowledge proofs are based on

complexity assumptions.

– M only needs to generate a distribution that is

computationally indistinguishable from the verifier’s

view of the interaction.
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Comments (concluded)

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in NP.a

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in PSPACE.b

• The verifier can be restricted to the honest one (i.e., it

follows the protocol).c

• The coins can be public.d

• The digital money Zcash (2016) is based on

zero-knowledge proofs.
aGoldreich, Micali, & Wigderson (1986).
bOstrovsky & Wigderson (1993).
cVadhan (2006).
dVadhan (2006).
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Quadratic Residuacity (qr)

• Let n be a product of two distinct primes.

• Assume extracting the square root of a quadratic residue

modulo n is hard without knowing the factors.

• qr asks if x ∈ Z∗
n is a quadratic residues modulo n.
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A Useful Corollary of Lemma 82 (p. 701)

Corollary 83 Let n = pq be a product of two distinct

primes. (1) If x and y are both quadratic residues modulo n,

then xy ∈ Z∗
n is a quadratic residue modulo n. (2) If x is a

quadratic residue modulo n and y is a quadratic nonresidue

modulo n, then xy ∈ Z∗
n is a quadratic nonresidue modulo n.

• Suppose x and y are both quadratic residues modulo n.

• Let x ≡ a2 mod n and y ≡ b2 mod n.

• Now xy is a quadratic residue as xy ≡ (ab)2 mod n.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 728



The Proof (concluded)

• Suppose x is a quadratic residue modulo n and y is a

quadratic nonresidue modulo n.

• By Lemma 82 (p. 701), (x | p) = (x | q) = 1 but, say,

(y | p) = −1.

• Now xy is a quadratic nonresidue as (xy | p) = −1, again

by Lemma 82 (p. 701).
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Zero-Knowledge Proof of qra

Below is a zero-knowledge proof for x ∈ Z∗
n being a

quadratic residue.

1: for m = 1, 2, . . . , log2 n do

2: Peggy chooses a random v ∈ Z∗
n and sends

y = v2 mod n to Victor;

3: Victor chooses a random bit i and sends it to Peggy;

4: Peggy sends z = uiv mod n, where u is a square root

of x; {So u2 ≡ x mod n.}
5: Victor checks if z2 ≡ xiy mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;

aGoldwasser, Micali, & Rackoff (1985).
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Analysis

• Suppose x is a quadratic residue.

– Then x’s square root u can be computed by Peggy.

– Peggy can answer all challenges.

– Now,

z2 ≡ (
ui
)2

v2 ≡ (
u2

)i
v2 ≡ xiy mod n.

– So Victor will accept x.
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Analysis (continued)

• Suppose x is a quadratic nonresidue.

– Corollary 83 (p. 728) says if a is a quadratic residue,

then xa is a quadratic nonresidue.

– As y is a quadratic residue, xiy can be a quadratic

residue (see Line 5) only when i = 0.

– Peggy can answer only one of the two possible

challenges, when i = 0.a

– So Peggy will be caught in any given round with

probability one half.

aLine 5 (z2 ≡ xiy mod n) cannot equate a quadratic residue z2 with

a quadratic nonresidue xiy when i = 1.
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Analysis (continued)

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!

• Here is how.

• Suppose x is a quadratic residue.a

• In each round of interaction with Peggy, the transcript is

a triplet (y, i, z).

• We present an efficient Bob that generates (y, i, z) with

the same probability without accessing Peggy’s power.

aThere is no zero-knowledge requirement when x �∈ L.
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Analysis (concluded)

1: Bob chooses a random z ∈ Z∗
n;

2: Bob chooses a random bit i;

3: Bob calculates y = z2x−i mod n;a

4: Bob writes (y, i, z) into the transcript;

aRecall Line 5 on p. 730: Victor checks if z2 ≡ xiy mod n.
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Comments

• Assume x is a quadratic residue.

• For (y, i, z), y is a random quadratic residue, i is a

random bit, and z is a random number.

• Bob cheats because (y, i, z) is not generated in the same

order as in the original transcript.

– Bob picks Peggy’s answer z first.

– Bob then picks Victor’s challenge i.

– Bob finally patches the transcript.
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Comments (concluded)

• So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

• The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

• But we skip the details.a

• What if Victor always chooses i = 1 in the protocol, the

harder case?b

aOr apply Vadhan (2006).
bContributed by Mr. Chih-Duo Hong (R95922079) on December 13,

2006, Mr. Chin-Luei Chang (D95922007) on June 16, 2008, and Mr. Han-

Ting Chen (R10922073) on December 30, 2021.
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Zero-Knowledge Proof of 3 Colorabilitya

1: for i = 1, 2, . . . , |E |2 do

2: Peggy chooses a random permutation π of the 3-coloring φ;

3: Peggy samples encryption schemes randomly, commitsb them,

and sends π(φ(1)), π(φ(2)), . . . , π(φ(|V |)) encrypted to Victor;

4: Victor chooses at random an edge e ∈ E and sends it to Peggy

for the coloring of the endpoints of e;

5: if e = (u, v) ∈ E then

6: Peggy reveals the colors π(φ(u)) and π(φ(v)) and “proves”

that they correspond to their encryptions;

7: else

8: Peggy stops;

9: end if

aGoldreich, Micali, & Wigderson (1986).
bContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 737



10: if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if π(φ(u)) = π(φ(v)) or π(φ(u)), π(φ(v)) �∈ { 1, 2, 3 } then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;
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Analysis

• If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

• Suppose the graph is not 3-colorable and Victor follows

the protocol.

• Let e be an edge that is not colored legally.

• Victor will pick it with probability 1/m per round,

where m = |E |.
• Then however Peggy plays, Victor will reject with

probability at least 1/m per round.
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Analysis (concluded)

• So Victor will accept with probability at most

(
1−m−1

)m2

≤ e−m.

• Thus the protocol is a valid IP protocol.

• This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

• The proof that the protocol is zero-knowledge to any

verifier is intricate.a

aOr simply cite Vadhan (2006).
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Comments

• Each π(φ(i)) is encrypted by a different cryptosystem in

Line 3.a

– Otherwise, the coloring will be revealed in Line 6.

• Each edge e must be picked randomly.b

– Otherwise, Peggy will know Victor’s game plan and

plot accordingly.

aContributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
bContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approximability
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All science is dominated by

the idea of approximation.

— Bertrand Russell (1872–1970)
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Just because the problem is NP-complete

does not mean that

you should not try to solve it.

— Stephen Cook (2002)
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Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

• Are there NP problems that cannot be approximated

well (assuming NP �= P)?

• Are there NP problems that cannot be approximated at

all (assuming NP �= P)?
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Some Definitions

• Given an optimization problem, each problem

instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z
+.

– Here, cost refers to the quality of the feasible

solution, not the time required to obtain it.

– It is our objective function: total distance, number

of satisfied clauses, cut size, etc.
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Some Definitions (concluded)

• The optimum cost is

opt(x) = min
s∈F (x)

c(s)

for a minimization problem.

• It is

opt(x) = max
s∈F (x)

c(s)

for a maximization problem.
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Approximation Algorithms

• Let (polynomial-time) algorithm M on x returns a

feasible solution.

• M is an ε-approximation algorithm, where ε ≥ 0, if

for all x,
| c(M(x))− opt(x) |
max(opt(x), c(M(x)))

≤ ε.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)

c(M(x))
≤ ε.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))

maxs∈F (x) c(s)
≤ ε. (18)
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Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤ mins∈F (x) c(s)

1− ε
.

• For a maximization problem,

(1− ε)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (19)
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Lower and Upper Bounds (concluded)

• ε ranges between 0 (best) and 1 (worst).

• For minimization problems, an ε-approximation

algorithm returns solutions within[
opt,

opt

1− ε

]
.

• For maximization problems, an ε-approximation

algorithm returns solutions within

[ (1− ε)× opt,opt ].
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Approximation Thresholds

• For each NP-complete optimization problem, we shall be

interested in determining the smallest ε for which there

is a polynomial-time ε-approximation algorithm.

• But sometimes ε has no minimum value.

• The approximation threshold is the greatest lower

bound of all ε ≥ 0 such that there is a polynomial-time

ε-approximation algorithm.

• By a standard theorem in real analysis, such a threshold

exists.a

aBauldry (2009).
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Approximation Thresholds (concluded)

• The approximation threshold of an optimization

problem is anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

• So assume P �= NP for the rest of the discussion.
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Approximation Ratio

• ε-approximation algorithms can also be measured via

the approximation ratio:a

c(M(x))

opt(x)
.

• For a minimization problem, the approximation ratio is

1 ≤ c(M(x))

mins∈F (x) c(s)
≤ 1

1− ε
. (20)

aWilliamson & Shmoys (2011).
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Approximation Ratio (concluded)

• For a maximization problem, the approximation ratio isa

1− ε ≤ c(M(x))

maxs∈F (x) c(s)
≤ 1. (21)

• Suppose there is an approximation algorithm that

achieves an approximation ratio of θ.

– For a minimization problem, it implies a

(1− θ−1)-approximation algorithm by Eq. (20).

– For a maximization problem, it implies a

(1− θ)-approximation algorithm by Eq. (21).

aSome define the ratio as 1 ≤ maxs∈F (x) c(s)

c(M(x))
≤ 1

1−ε
, symmetrical to

inequalities (20).
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