
The Jacobi Symbola

• The Legendre symbol only works for odd prime moduli.

• The Jacobi symbol (a |m) extends it to cases where m

is not prime.

– a is sometimes called the numerator and m the

denominator.

• Trivially, (1 |m) = 1.

• Define (a | 1) = 1.

aCarl Jacobi (1804–1851).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 591



The Jacobi Symbol (concluded)

• Let m = p1p2 · · · pk be the prime factorization of m.

• When m > 1 is odd and gcd(a,m) = 1, then

(a |m)
Δ
=

k∏
i=1

(a | pi).

– Note that the Jacobi symbol equals ±1.

– It reduces to the Legendre symbol when m is a prime.
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is

defined.

1. (ab |m) = (a |m)(b |m).

2. (a |m1m2) = (a |m1)(a |m2).

3. If a ≡ b mod m, then (a |m) = (b |m).

4. (−1 |m) = (−1)(m−1)/2 (by Lemma 70 on p. 581).

5. (2 |m) = (−1)(m
2−1)/8.a

6. If a and m are both odd, then

(a |m)(m | a) = (−1)(a−1)(m−1)/4.

aBy Lemma 70 (p. 581) and some parity arguments.
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Properties of the Jacobi Symbol (concluded)

• Properties 3–6 allow us to calculate the Jacobi symbol

without factorization.

– It will also yield the same result as Euler’s testa

when m is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that (a |m) = 1/(a |m) because (a |m) = ±1.b

aRecall p. 573.
bContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on

December 6, 2011.
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Calculation of (2200 | 999)
(2200 | 999) = (202 | 999)

= (2 | 999)(101 | 999)
= (−1)(999

2−1)/8(101 | 999)
= (−1)124750(101 | 999) = (101 | 999)
= (−1)(100)(998)/4(999 | 101) = (−1)24950(999 | 101)
= (999 | 101) = (90 | 101) = (−1)(101

2−1)/8(45 | 101)
= (−1)1275(45 | 101) = −(45 | 101)
= −(−1)(44)(100)/4(101 | 45) = −(101 | 45) = −(11 | 45)
= −(−1)(10)(44)/4(45 | 11) = −(45 | 11)
= −(1 | 11) = −1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 72 The group of set Φ(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,

pk, or 2pk for some nonnegative integer k and an odd prime

p.

This result is essential in the proof of the next lemma.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 596



The Jacobi Symbol and Primality Testa

Lemma 73 If (M |N) ≡ M (N−1)/2 mod N for all

M ∈ Φ(N), then N is a prime. (Assume N is odd.)

• Assume N = mp, where p is an odd prime, gcd(m, p) = 1,

and m > 1 (not necessarily prime).

• Let r ∈ Φ(p) such that (r | p) = −1.

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod p,

M = 1 mod m.

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the text-

book’s proof for Lemma 11.8 is incorrect in January 1999 while he was

a senior.
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The Proof (continued)

• By the hypothesis,

M (N−1)/2 = (M |N) = (M | p)(M |m) = −1 mod N.

• Hence

M (N−1)/2 = −1 mod m.

• But because M = 1 mod m,

M (N−1)/2 = 1 mod m,

a contradiction.
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The Proof (continued)

• Second, assume that N = pa, where p is an odd prime

and a ≥ 2.

• By Theorem 72 (p. 596), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2
= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• As r ∈ Φ(N) (prove it), we have

rN−1 = 1 mod N.

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) | (N − 1),

which implies that p | (N − 1).a

• But this is impossible given that p |N .

aFor p− 1 divides N − 1 = pa − 1.
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The Proof (continued)

• Third, assume that N = mpa, where p is an odd prime,

gcd(m, p) = 1, m > 1 (not necessarily prime), and a is

even.

• The proof mimics that of the second case.

• By Theorem 72 (p. 596), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2
= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• In particular,

MN−1 = 1 mod pa (15)

for all M ∈ Φ(N).

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod pa,

M = 1 mod m.

• Because M = r mod pa and Eq. (15),

rN−1 = 1 mod pa.
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The Proof (concluded)

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) | (N − 1),

which implies that p | (N − 1).

• But this is impossible given that p |N .
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The Number of Witnesses to Compositeness

Theorem 74 (Solovay & Strassen, 1977) If N is an

odd composite, then (M |N) ≡ M (N−1)/2 mod N for at most

half of M ∈ Φ(N).

• By Lemma 73 (p. 597) there is at least one a ∈ Φ(N)

such that (a |N) �≡ a(N−1)/2 mod N .

• Let B
Δ
= { b1, b2, . . . , bk } ⊆ Φ(N) be the set of all

distinct residues such that (bi |N) ≡ b
(N−1)/2
i mod N .

• Let aB
Δ
= { abi mod N : i = 1, 2, . . . , k }.

• Clearly, aB ⊆ Φ(N), too.
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The Proof (concluded)

• | aB | = k.

– abi ≡ abj mod N implies N | a(bi − bj), which is

impossible because gcd(a,N) = 1 and N > | bi − bj |.
• aB ∩ B = ∅ because

(abi)
(N−1)/2 mod 2 = a(N−1)/2b

(N−1)/2
i mod 2

�= (a |N)(bi |N) = (abi |N).

• Combining the above two results, we know

|B |
φ(N)

≤ |B |
|B ∪ aB | = 0.5.
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1: if N is even but N �= 2 then

2: return “N is composite”;

3: else if N = 2 then

4: return “N is a prime”;

5: end if

6: Pick M ∈ { 2, 3, . . . , N − 1 } randomly;

7: if gcd(M,N) > 1 then

8: return “N is composite”;

9: else

10: if (M |N) ≡ M (N−1)/2 mod N then

11: return “N is (probably) a prime”;

12: else

13: return “N is composite”;

14: end if

15: end if
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Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for compositeness).

– When the algorithm says the number is composite, it

is always correct.
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Analysis (concluded)

• The probability of a false negative (again, for

compositeness) is at most one half.

– Suppose the input is composite.

– By Theorem 74 (p. 604),

prob[ algorithm answers “no” |N is composite ] ≤ 0.5.

– Note that we are not referring to the probability that

N is composite when the algorithm says “no.”

• So it is a Monte Carlo algorithm for compositenessa

by the definition on p. 551.

aNot primes.
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The Improved Density Attack for compositeness

All numbers < N

Witnesses to
compositeness of

N via Jacobi

Witnesses to
compositeness of

N via common
factor
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Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in

time p(n) and has 2 nondeterministic choices at each

step.

• N is a polynomial Monte Carlo Turing machine

for a language L if the following conditions hold:

– If x ∈ L, then at least half of the 2p(n) computation

paths of N on x halt with “yes” where n = |x |.
– If x �∈ L, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo

TMs is denoted RP (randomized polynomial time).a

aAdleman & Manders (1977).
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Comments on RP

• In analogy to Proposition 41 (p. 344), a “yes” instance

of an RP problem has many certificates (witnesses).

• There are no false positives.

• If we associate nondeterministic steps with flipping fair

coins, then we can phrase RP in the language of

probability.

– If x ∈ L, then N(x) halts with “yes” with probability

at least 0.5.

– If x �∈ L, then N(x) halts with “no.”
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Comments on RP (concluded)

• The probability of false negatives is ≤ 0.5.

• But any constant ε between 0 and 1 can replace 0.5.

– Repeat the algorithm

k
Δ
=

⌈
− 1

log2 ε

⌉

times.

– Answer “no” only if all the runs answer “no.”

– The probability of false negatives becomes εk ≤ 0.5.
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Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except

that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with more demands

on the number of accepting paths.

• compositeness ∈ RP;a primes ∈ coRP;

primes ∈ RP.b

– In fact, primes ∈ P.c

• RP ∪ coRP is an alternative “plausible” notion of

efficient computation.
aRabin (1976); Solovay & Strassen (1977).
bAdleman & Huang (1987).
cAgrawal, Kayal, & Saxena (2002).
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ZPPa (Zero Probabilistic Polynomial)

• The class ZPP is defined as RP ∩ coRP.

• A language in ZPP has two Monte Carlo algorithms, one

with no false positives (RP) and the other with no false

negatives (coRP).

• If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

– A positive answer from the one without false

positives.

– A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L ∈ ZPP.}
2: {N1 has no false positives, and N2 has no false

negatives.}
3: while true do

4: if N1(x) = “yes” then

5: return “yes”;

6: end if

7: if N2(x) = “no” then

8: return “no”;

9: end if

10: end while
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ZPP (concluded)

• The expected running time for the correct answer to

emerge is polynomial.

– The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5 (why?).

– Let p(n) be the running time of each run of the

while-loop.

– The expected running time for a definite answer is

∞∑
i=1

0.5iip(n) = 2p(n).

• Essentially, ZPP is the class of problems that can be

solved, without errors, in expected polynomial time.
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Large Deviations

• Suppose you have a biased coin.

• One side has probability 0.5 + ε to appear and the other

0.5− ε, for some 0 < ε < 0.5.

• But you do not know which is which.

• How to decide which side is the more likely side—with

high confidence?

• Answer: Flip the coin many times and pick the side that

appeared the most times.

• Question: Can you quantify your confidence?
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The (Improved) Chernoff Bounda

Theorem 75 (Chernoff, 1952) Suppose x1, x2, . . . , xn are

independent random variables taking the values 1 and 0 with

probabilities p and 1− p, respectively. Let X =
∑n

i=1 xi.

Then for any constant 0 ≤ θ ≤ 1,

prob[X ≥ (1 + θ) pn ] ≤ e−θ2pn/3.

• The probability that the deviate of a binomial

random variable from its expected value

E[X ] = E [
∑n

i=1 xi ] = pn decreases exponentially with

the deviation.

aHerman Chernoff (1923–). This bound is asymptotically optimal.

The original bound is e−2θ2p2n (McDiarmid, 1998).
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The Proof

• Let t be any positive real number.

• Then

prob[X ≥ (1 + θ) pn ] = prob[ etX ≥ et(1+θ) pn ].

• Markov’s inequality (p. 554) generalized to real-valued

random variables says that

prob
[
etX ≥ kE[ etX ]

] ≤ 1/k.

• With k = et(1+θ) pn/E[ etX ], we havea

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ)pnE[ etX ].

aNote that X does not appear in k. Contributed by Mr. Ao Sun

(R05922147) on December 20, 2016.
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The Proof (continued)

• Because X =
∑n

i=1 xi and xi’s are independent,

E[ etX ] = (E[ etx1 ])n = [ 1 + p(et − 1) ]n.

• Substituting, we obtain

prob[X ≥ (1 + θ) pn ] ≤ e−t(1+θ) pn[ 1 + p(et − 1) ]n

≤ e−t(1+θ) pnepn(e
t−1)

as (1 + a)n ≤ ean for all a > 0.
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The Proof (concluded)

• With the choice of t = ln(1 + θ), the above becomes

prob[X ≥ (1 + θ) pn ] ≤ epn[ θ−(1+θ) ln(1+θ) ].

• The exponent expands toa

−θ2

2
+

θ3

6
− θ4

12
+ · · ·

for 0 ≤ θ ≤ 1.

• But it is less than

−θ2

2
+

θ3

6
≤ θ2

(
−1

2
+

θ

6

)
≤ θ2

(
−1

2
+

1

6

)
= −θ2

3
.

aOr McDiarmid (1998): x− (1 + x) ln(1 + x) ≤ −3x2/(6 + 2x) for all

x ≥ 0.
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How Good Is the Bound?
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Other Variations of the Chernoff Bound

The following can be proved similarly (prove it).

Theorem 76 Given the same terms as Theorem 75

(p. 618),

prob[X ≤ (1− θ) pn ] ≤ e−θ2pn/2.

The following slightly looser inequalities achieve symmetry.

Theorem 77 (Karp, Luby, & Madras, 1989) Given the

same terms as Theorem 75 (p. 618) except with 0 ≤ θ ≤ 2,

prob[X ≥ (1 + θ) pn ] ≤ e−θ2pn/4,

prob[X ≤ (1− θ) pn ] ≤ e−θ2pn/4.
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Power of the Majority Rule

The next result follows from Theorem 76 (p. 623).

Corollary 78 If p = (1/2) + ε for some 0 ≤ ε ≤ 1/2, then

prob

[
n∑

i=1

xi ≤ n/2

]
≤ e−ε2n/2.

• The textbook’s corollary to Lemma 11.9 seems too

loose, at e−ε2n/6.a

• Our original problem (p. 617) hence demands, e.g.,

n ≈ 1.4k/ε2 independent coin flips to guarantee making

an error with probability ≤ 2−k with the majority rule.

aSee Dubhashi & Panconesi (2012) for many Chernoff-type bounds.
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BPPa (Bounded Probabilistic Polynomial)

• The class BPP contains all languages L for which there

is a precise polynomial-time NTM N such that:

– If x ∈ L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

– If x �∈ L, then at least 3/4 of the computation paths

of N on x lead to “no.”

• So N accepts or rejects by a clear majority.

aGill (1977).
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Magic 3/4?

• The number 3/4 bounds the probability (ratio) of a

right answer away from 1/2.

• Any constant strictly between 1/2 and 1 can be used

without affecting the class BPP.

• In fact, as with RP,

1

2
+

1

q(n)

for any polynomial q(n) can replace 3/4.

• The next algorithm shows why.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + ε.

1: for i = 1, 2, . . . , 2k + 1 do

2: Run N on input x;

3: end for

4: if “yes” is the majority answer then

5: “yes”;

6: else

7: “no”;

8: end if
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Analysis

• By Corollary 78 (p. 624), the probability of a false

answer is at most e−ε2k.

• By taking k = � 2/ε2 , the error probability is at most

e−2 < 1/4.

• Even if ε is any inverse polynomial, k remains a

polynomial in n.

• The running time remains polynomial: 2k + 1 times N ’s

running time.
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Aspects of BPP

• BPP is the most comprehensive yet plausible notion of

efficient computation.

– If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.

– In this aspect, BPP has effectively replaced P.

• (RP ∪ coRP) ⊆ (NP ∪ coNP).

• (RP ∪ coRP) ⊆ BPP.

• Whether BPP ⊆ (NP ∪ coNP) is unknown.

• But it is unlikely that NP ⊆ BPP.a

aSee p. 641.
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coBPP

• The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

• An algorithm for L ∈ BPP becomes one for L̄ by

reversing the answer.

• So L̄ ∈ BPP and BPP ⊆ coBPP.

• Similarly coBPP ⊆ BPP.

• Hence BPP = coBPP.

• This approach does not work for RP.a

aIt did not work for NP either.
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BPP and coBPP

����� ���� ���� �����
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“The Good, the Bad, and the Ugly”

BPPP

ZPP

RPcoRP

NPcoNP

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 632



Circuit Complexity

• Circuit complexity is based on boolean circuits instead

of Turing machines.

• A boolean circuit with n inputs computes a boolean

function of n variables.

• Now, identify true/1 with “yes” and false/0 with “no.”

• Then a boolean circuit with n inputs accepts certain

strings in { 0, 1 }n.
• To relate circuits with an arbitrary language, we need

one circuit for each possible input length n.
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Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence

C = (C0, C1, . . .) of boolean circuits, where Cn has n

boolean inputs.

• For input x ∈ { 0, 1 }∗, C|x | outputs 1 if and only if

x ∈ L.

• In other words,

Cn accepts L ∩ { 0, 1 }n.
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Formal Definitions (concluded)

• L ⊆ { 0, 1 }∗ has polynomial circuits if there is a

family of circuits C such that:

– The size of Cn is at most p(n) for some fixed

polynomial p.

– Cn accepts L ∩ { 0, 1 }n.
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Exponential Circuits Suffice for All Languages

• Theorem 16 (p. 219) implies that there are languages

that cannot be solved by circuits of size 2n/(2n).

• But surprisingly, circuits of size 2n+2 can solve all

problems, decidable or otherwise!
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Exponential Circuits Suffice for All Languages
(continued)

Proposition 79 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2n+2 and depth

2n.

• We will show that for any language L ⊆ { 0, 1 }∗,
L ∩ { 0, 1 }n can be decided by a circuit of size 2n+2.

• Define boolean function f : { 0, 1 }n → { 0, 1 }, where

f(x1x2 · · ·xn) =

⎧⎨
⎩ 1, x1x2 · · ·xn ∈ L,

0, x1x2 · · ·xn �∈ L.
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The Proof (concluded)

• Clearly, any circuit that implements f decides

L ∩ { 0, 1 }n.
• Now,

f(x1x2 · · ·xn) = (x1 ∧ f(1x2 · · ·xn)) ∨ (¬x1 ∧ f(0x2 · · ·xn)).

• The circuit size s(n) for f(x1x2 · · ·xn) hence satisfies

s(n) = 4 + 2s(n− 1)

with s(1) = 1.

• Solve it to obtain s(n) = 5× 2n−1 − 4 ≤ 2n+2.
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The Circuit Complexity of P

Proposition 80 All languages in P have polynomial

circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 35 (p. 328), there is a circuit with

O(p(n)2) gates that accepts L ∩ { 0, 1 }n.
• The size of that circuit depends only on L and the

length of the input.

• The size of that circuit is polynomial in n.
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Polynomial Circuits vs. P

• Is the converse of Proposition 80 true?

– Do polynomial circuits accept only languages in P?

• No.

• Polynomial circuits can accept undecidable languages!a

aSee p. 268 of the textbook.
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BPP’s Circuit Complexity: Adleman’s Theorem

Theorem 81 (Adleman, 1978) All languages in BPP

have polynomial circuits.

• Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.

– Recall our proof of Theorem 16 (p. 219).

– Something exists if its probability of existence is

nonzero.

• It is not known how to efficiently generate circuit Cn.

– If the construction of Cn can be made efficient, then

P = BPP, an unlikely result.
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The Proof

• Let L ∈ BPP be decided by a precise polynomial-time

NTM N by clear majority.

• We shall prove that L has polynomial circuits C0, C1, . . ..

– These deterministic circuits do not err.

• Suppose N runs in time p(n), where p(n) is a

polynomial.

• Let An = { a1, a2, . . . , am }, where ai ∈ { 0, 1 }p(n).
• Each ai ∈ An represents a sequence of nondeterministic

choices (i.e., a computation path) for N .

• Pick m = 12(n+ 1).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642



The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with all sequences of

choices in An and then takes the majority of the m

outcomes.a

– Note that each An yields a circuit.

• As N with ai is a polynomial-time deterministic TM, it

can be simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 80 (p. 639).

aAs m is even, there may be no clear majority. Still, the probability

of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.
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The Circuit
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The Proof (continued)

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.

• We now confirm the existence of an An making Cn

correct on all n-bit inputs.

• Call ai bad if it leads N to an error (a false positive or a

false negative) for x.

• Select An uniformly randomly.
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The Proof (continued)

• For each x ∈ { 0, 1 }n, 1/4 of the computations of N are

erroneous.

• Because the sequences in An are chosen randomly and

independently, the expected number of bad ai’s is m/4.a

• Also note after fixing the input x, the circuit is a

function of the random bits.

aSo the proof will not work for NP. Contributed by Mr. Ching-Hua

Yu (D00921025) on December 11, 2012.
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The Proof (continued)

• By the Chernoff bound (p. 618), the probability that the

number of bad ai’s is m/2 or more is at most

e−m/12 = 2−(n+1).

• The error probability of using the majority rule is thus

≤ 2−(n+1)

for each x ∈ { 0, 1 }n.
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The Proof (continued)

• The probability that there is an x such that An results

in an incorrect answer is

≤ 2n2−(n+1) = 2−1

by the union bound (Boole’s inequality).a

• We just showed that at least half of the random An are

correct.

• So with probability ≥ 0.5, a random An produces a

correct Cn for all inputs of length n.

– Of course, verifying this fact may take a long time.

aThat is, prob[A ∪B ∪ · · · ] ≤ prob[A ] + prob[B ] + · · · .

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 648



The Proof (concluded)

• Because this probability exceeds 0, an An that makes

majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic methodb popularized

by Erdős (1947).c

• This result answers the question on p. 549 with a “yes.”

aQuine (1948), “To be is to be the value of a bound variable.”
bA counting argument in the probabilistic language.
cSzele (1943) and Turán (1934) were earlier.
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Leonard Adlemana (1945–)

aTuring Award (2002).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650



Paul Erdős (1913–1996)
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Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)
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Cryptography

• Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known

only to Alice and Bob.

• The art and science of keeping messages secure is

cryptography.

Alice �
Eve

Bob
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Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the

encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.
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Encryption and Decryption (concluded)

• Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs

D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial

time.

• Eve should not be able to recover x from y without

knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.
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Degree of Security

• Perfect secrecy: After a ciphertext is intercepted by

the enemy, the a posteriori probabilities of the plaintext

that this ciphertext represents are identical to the a

priori probabilities of the same plaintext before the

interception.

– The probability that plaintext P occurs is

independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P .
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Degree of Security (concluded)

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being

used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a

unique key e such that E(e, x) = y.

aShannon (1949).
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The One-Time Pada

1: Alice generates a random string r as long as x;

2: Alice sends r to Bob over a secret channel;

3: Alice sends x⊕ r to Bob over a public channel;

4: Bob receives y;

5: Bob recovers x := y ⊕ r;

aMauborgne & Vernam (1917); Shannon (1949). It was allegedly used

for the hotline between Russia and the U.S.
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Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad

achieves perfect secrecy.a

• The random bit string must be new for each round of

communication.

• But the assumption of a private channel is problematic.

aSee p. 660.
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Chosen-Plaintext Attack

• Suppose Eve can obtain the ciphertexts for any

plaintexts of her choice.

• She can ask the encryption algorithm to encrypt an

arbitrary plaintext x to obtain cypertext y.

• Then she analyze those pairs to attack the cryptosystem.

• This is called the chosen-plaintext attack.

• For the one-time pad, she only has to perform y ⊕ x

with a single pair (x, y) to recover the private key r!

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663



Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public

knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x via

D(d,E(e, x)) = x.

aDiffie & Hellman (1976).
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Public-Key Cryptography (concluded)

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.
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Whitfield Diffiea (1944–)

aTuring Award (2016).
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Martin Hellmana (1945–)

aTuring Award (2016).
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Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure

public-key cryptosystems is P �= NP.

• But more is needed than P �= NP.

• For instance, it is not sufficient that D is hard to

compute in the worst case.

• It should be hard in “most” or “average” cases.
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