Theory of Computation

Midterm Examination on November 18, 2022

Fall Semester, 2022

Problem 1 (15 points) Recall that the depth of a gate g is the length of the longest path in a circuit from g to an input gate. A circuit is leveled if every input of a gate in depth k comes from one in depth $k-1$. Leveled Circuit asks if a leveled circuit is satisfiable. Prove that Leveled Circuit is NP-complete. (No need to show that it is in NP.)

Proof: We can obtain a leveled circuit from any circuit C by increasing the number of gates by a polynomial factor, as follows. This holds for the input gates. Inductively, suppose that all gates of depth $k-1$ have length $k-1$ for the shortest paths to the input gates. Now consider gates of depth k. Pick any gate g with a shorter shortest path to the input gates, say length $l<k$. Insert a series of $k-l$ \checkmark gates on the edge between g and its predecessor gate on one such path. These $k-l \vee$ gates have their two identical inputs. Note that $k-l=O(|C|)$. So they act as the identity function. The new circuit has size $O\left(|C|^{2}\right)$. Finally, recall that Leveled Circuit is NP-complete by Cook's Theorem.

Problem 2 (15 points) It is known that 3SAT is NP-complete. Reduce 3sAT to 4sat to show that 4sat is NP-hard.

Proof: Let ϕ be an instance of 3SAT, and x, y, z be any boolean variables. We convert ϕ to a 4SAT instance ϕ^{\prime} by turning each clause ($x \vee y \vee z$) in ϕ to ($x \vee y \vee$ $z \vee h) \wedge(x \vee y \vee z \vee \neg h)$, where h is a new boolean variable. It can be done in polynomial time.

- (If) If a given clause $(x \vee y \vee z)$ is satisfied by a truth assignment, then ($x \vee$ $y \vee z \vee h) \wedge(x \vee y \vee z \vee \neg h)$ is satisfied by the same truth assignment with h arbitrarily set. Thus if ϕ is satisfiable, ϕ^{\prime} is satisfiable.
- (Only if) Suppose that ϕ^{\prime} is satisfied by a truth assignment T. Then ($x \vee y \vee$ $z \vee h) \wedge(x \vee y \vee z \vee \neg h)$ must be true under T. As h and $\neg h$ assume different truth values, $(x \vee y \vee z)$ is true under T as well. Thus ϕ is satisfiable.

Problem 3 (15 points) Let $G=(V, E)$ be an undirected graph and K be a positive integer. Longest Path ask if there is a simple path which contains at least K edges in G. Show that Longest Path is NP-complete. (You need to show that Longest Path is in NP.)

Proof: We first show that Longest Path is in NP. Given an instance G, we guess a set of edges of size at least K and at most $|E|$ and examine if it is a simple path in G. This can be done in polynomial time. We proceed to show that Longest Path is NP-hard by reducing Hamiltonian Path to Longest Path. Given an instance G^{\prime} of Hamiltonian Path, we create an instance (G, K) of Longest Path as follows: Take $G=G^{\prime}$ and set $K=|V|-1$. Then there exists a simple path of length K in G if and only if G^{\prime} contains a Hamiltonian path.

Problem 4 (20 points) Prove that 3sat formulas are less expressive than CNFs in the sense that there are n-variable boolean functions which can be expressed by n-variable CNF formulas but not by n-variable 3 SAT ones.

Proof: CNFs can express $2^{2^{n}}$ boolean functions in n variables. For 3sAT formulas, each literal in a clause has $2 n$ choices; hence there are at most $(2 n)^{3}$ different clauses. A clause can be either picked or not to form a 3sat formula. So 3sat formulas can only express at most $2^{(2 n)^{3}}$ boolean functions in n variables.

Problem 5 (15 points) Calculate $\phi(313716)$ and $77^{192960} \bmod 313716$. (You need to write down the calculation detail explicitly.)

Proof:

- Factorize $373716=2^{2} \times 3 \times 13 \times 2011$. Hence $\phi(313716)=313716 \times \frac{1}{2} \times \frac{2}{3} \times$ $\frac{12}{13} \times \frac{2010}{2011}=94680$.
- By the Fermat-Euler theorem (Corollary 63),

$$
\left(77^{94680}\right)^{2}=77^{94680}=1 \quad \bmod 313716
$$

Problem 6 (20 points) Let $G=(V, E)$ be an undirected graph and K be a positive integer. The problem Unreachability asks if there does not exist a simple path of length at least K from node u to v in G. Prove that Unreachability is coNP-complete.

Proof: Recall that L is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete. We only need to prove that its complement problem Reachability is NP-complete. Reachability asks if there exists a simple path of length at least K from node u to v. It is clear that Reachability is in NP: guess a simple path of length at least K from node u to v and verify it in polynomial time. Recall that Hamiltonian Path is NP-complete. Clearly, there exists a Hamiltonian path from u to v in G if and only if there exists a simple path of length K from u to v in G. Hence the reduction from Hamiltonian Path produces G and $K=|V|-1$.

