TRIPARTITE MATCHING^a (3DM)

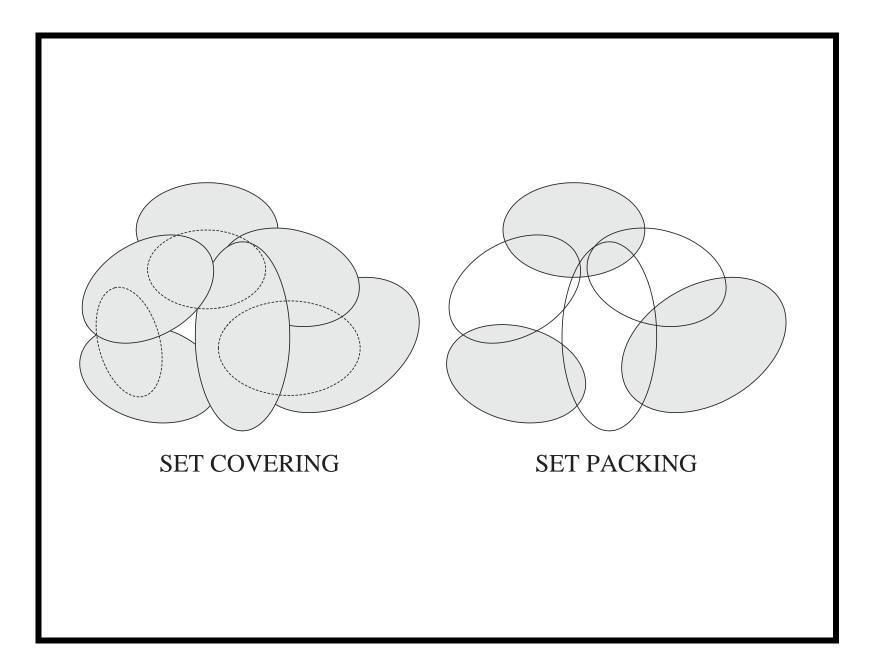
- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

Theorem 50 (Karp, 1972) TRIPARTITE MATCHING *is NP-complete*.

^aPrincess Diana (November 20, 1995), "There were three of us in this marriage, so it was a bit crowded."

Related Problems

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- EXACT COVER asks if there are disjoint sets in F whose union is U.
- Assume |U| = 3m for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS (X3C) asks if there are m sets in F that are disjoint (so have U as their union).



Related Problems (concluded)

Corollary 51 (Karp, 1972) SET COVERING, SET PACKING, EXACT COVER, and X3C are all NP-complete.

- Does SET COVERING remain NP-complete when $|S_i| = 3$?^a
- SET COVERING is used to prove that the influence maximization problem in social networks is NP-complete.^b

^aContributed by Mr. Kai-Yuan Hou (B
99201038, R03922014) on September 22, 2015.

^bKempe, Kleinberg, & Tardos (2003).

KNAPSACK

- There is a set of *n* items.
- Item *i* has value $v_i \in \mathbb{Z}^+$ and weight $w_i \in \mathbb{Z}^+$.
- We are given $K \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$.
- KNAPSACK asks if there exists a subset

 $I \subseteq \{1, 2, \dots, n\}$

such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} v_i \geq K$.

 We want to achieve the maximum satisfaction within the budget.

${\rm KNAPSACK}\ \mbox{Is}\ \mbox{NP-Complete}^{\rm a}$

- KNAPSACK \in NP: Guess an I and check the constraints.
- We shall reduce $X3C^{b}$ to KNAPSACK, in which $v_{i} = w_{i}$ for all i and K = W.
- The simplified KNAPSACK now asks if a subset of v_1, v_2, \ldots, v_n adds up to exactly $K.^c$
 - Picture yourself as a radio DJ.

^aKarp (1972). It can be solved in time $O(2^{n/2})$ with space $O(2^{n/4})$ (Schroeppel & Shamir, 1981; Vyskoč, 1987).

^bEXACT COVER BY 3-SETS.

^cThis important problem is called SUBSET SUM or 0-1 KNAPSACK. The range of our reduction will be a proper subset of SUBSET SUM.

- The primary differences between the two problems are:^a
 - Sets vs. numbers.
 - Union vs. addition.
- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of size-3 subsets of $U = \{1, 2, \dots, 3m\}$.
- X3C asks if there are m sets in F that cover the set U.

- These m subsets are disjoint by necessity.

^aThanks to a lively class discussion on November 16, 2010.

- Think of a set as a bit vector^a in $\{0, 1\}^{3m}$.
 - Assume m = 3.
 - 110010000 means the set $\{1, 2, 5\}$.
 - 001100010 means the set $\{3, 4, 8\}$.
- Our goal is

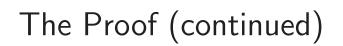
$$\overbrace{11\cdots 1}^{3m}$$

^aAlso called characteristic vector.

- A bit vector can also be seen as a binary *number*.
- Set union resembles addition:

001100010 + 110010000 111110010

which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.



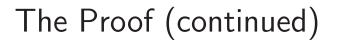
• Trouble occurs when there is *carry*:

01000000

+ 01000000

10000000

• This denotes the wrong set {1}, not the correct set {2}.

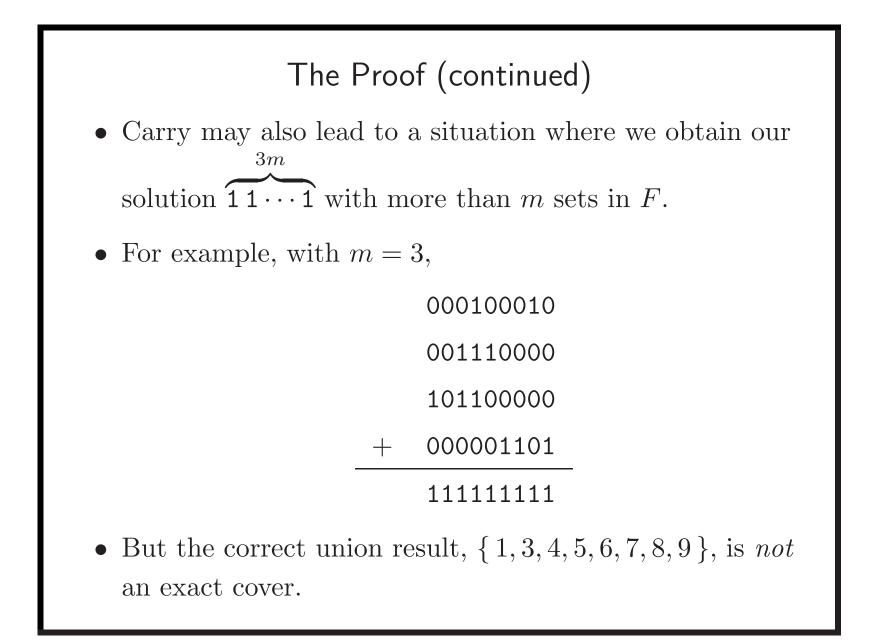


• Or consider

001100010 + 001110000 011010010

This denotes the wrong set { 2, 3, 5, 8 }, not the correct set { 3, 4, 5, 8 }.^a

^aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.



- And it uses 4 sets instead of the required $m = 3.^{a}$
- To fix this problem, we enlarge the base just enough so that there are no carries.^b
- Because there are n vectors in total, we change the base from 2 to n + 1.
- Every positive integer N has a unique expression in base
 b: There are b-adic digits 0 ≤ d_i < b such that

$$N = \sum_{i=0}^{k} d_i b^i, \quad d_k \neq 0.$$

^aThanks to a lively class discussion on November 20, 2002. ^bYou cannot simply map \cup to \vee because KNAPSACK requires + not \vee !

• Set v_i to be the integer corresponding to the bit vector^a encoding S_i :

$$v_i \stackrel{\Delta}{=} \sum_{j \in S_i} 1 \times (n+1)^{3m-j} \quad \text{(base } n+1\text{)}. \tag{4}$$

• Set

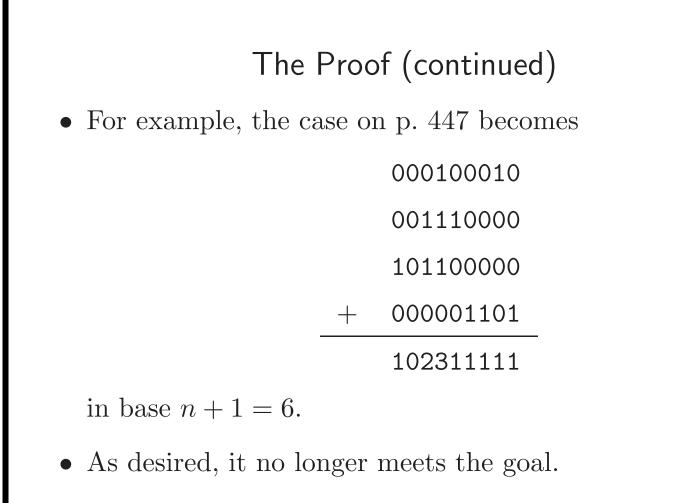
$$K \stackrel{\Delta}{=} \sum_{j=0}^{3m-1} 1 \times (n+1)^j = \overbrace{11\cdots 1}^{3m} \quad \text{(base } n+1\text{)}.$$

^aThis bit vector contains three 1s.

• Suppose there is a set I such that

$$\sum_{i \in I} v_i = \overbrace{1 \ 1 \cdots 1}^{3m} \quad \text{(base } n+1\text{)}.$$

- Then every position must be contributed by exactly one v_i and |I| = m.
- As a result, every member of U is covered by exactly one S_i with $i \in I$.



- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $I = \{1, 2, ..., m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{1 \ 1 \ \dots \ 1}^{3m}.$$

- It is important to note that the meaning of addition (+) is independent of the base.^a
 - It is just regular addition.
 - But the same S_i yields different integers v_i in Eq. (4) on p. 449 under different bases.

^aContributed by Mr. Kuan-Yu Chen (**R92922047**) on November 3, 2004.

The Proof (concluded)

• On the other hand, suppose there exists an I such that

$$\sum_{i \in I} v_i = \overbrace{1 \ 1 \ \cdots \ 1}^{3m}$$

in base n+1.

• The no-carry property implies that |I| = m and

$$\{S_i: i \in I\}$$

is an exact cover.

$\operatorname{SUBSET}\,\operatorname{SUM}^{\operatorname{a}}$ Is NP-Complete

• The proof actually proves:

Corollary 52 SUBSET SUM is NP-complete.

- The proof can be slightly revised to reduce EXACT COVER to SUBSET SUM.
- The proof would *not* work if you used m + 1 as the base.^b

^bContributed by Mr. Yuchen Wang (R08922157) on November 19, 2020.

^aRecall p. 441.

An Example

• Let $m = 3, U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, and

S_1	=	$\{1, 3, 4\},\$
S_2	—	$\{2, 3, 4\},\$
S_3	—	$\{2, 5, 6\},\$
S_4	=	$\{6,7,8\},$
S_5	=	$\{7,8,9\}.$

- Note that n = 5, as there are 5 S_i 's.
- So the base is n + 1 = 6.

An Example (continued)

• Our reduction produces

$$K = \sum_{j=0}^{3\times 3-1} 6^{j} = 11 \cdots 1_{6} = 2015539_{10},$$

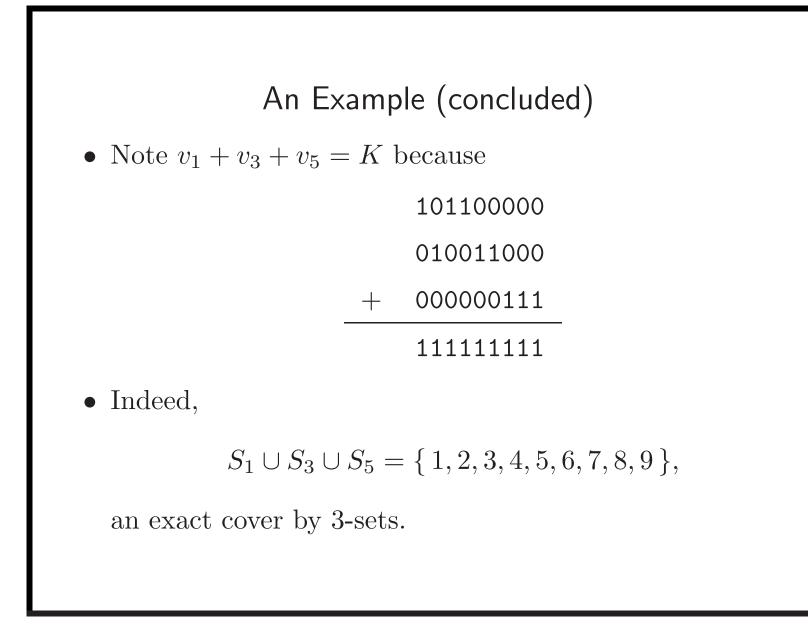
$$v_{1} = 10110000_{6} = 1734048_{10},$$

$$v_{2} = 01110000_{6} = 334368_{10},$$

$$v_{3} = 010011000_{6} = 281448_{10},$$

$$v_{4} = 000001110_{6} = 258_{10},$$

$$v_{5} = 000000111_{6} = 43_{10}.$$



BIN PACKING

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 53 BIN PACKING is NP-complete.

BIN PACKING (concluded)

- But suppose a_1, a_2, \ldots, a_N are randomly distributed between 0 and 1.
- Let *B* be the smallest number of unit-capacity bins capable of holding them.
- Then B can deviate from its average by more than t with probability at most $2e^{-2t^2/N}$.^a

^aRhee & Talagrand (1987); Dubhashi & Panconesi (2012).

INTEGER PROGRAMMING (IP)

- IP asks whether a system of linear inequalities with integer coefficients has an integer solution.
- In contrast, LINEAR PROGRAMMING (LP) asks whether a system of linear inequalities with integer coefficients has a *rational* solution.

- LP is solvable in polynomial time.^a

^aKhachiyan (1979).

${\rm IP}\xspace$ IP Is NP-Complete^a

- SET COVERING can be expressed by the inequalities $Ax \ge \vec{1}, \sum_{i=1}^{n} x_i \le B, \ 0 \le x_i \le 1$, where
 - $-x_i = 1$ if and only if S_i is in the cover.
 - A is the matrix whose columns are the bit vectors of the sets S_1, S_2, \ldots
 - $-\vec{1}$ is the vector of 1s.
 - The operations in Ax are standard matrix operations.
 - Item i is covered if the sum of the ith row of Ax is at least 1.

^aKarp (1972); Borosh & Treybig (1976); Papadimitriou (1981).

IP Is NP-Complete (concluded)

- This shows IP is NP-hard.
- Many NP-complete problems can be expressed as an IP problem.
- To show that $IP \in NP$ is nontrivial.
 - It will not work if we simply guess x_i unless this guess provabably needs only a polynomial number of bits.^a
- IP with a fixed number of variables is in P.^b

^aThanks to a lively class discussion on November 25, 2021. ^bLenstra (1983).

Christos Papadimitriou (1949–)

Easier or Harder? $^{\rm a}$

- Adding restrictions on the allowable *problem instances* will not make a problem harder.
 - We are now solving a subset of problem instances or special cases.
 - The INDEPENDENT SET proof (p. 381) and the KNAPSACK proof (p. 441): equally hard.
 - CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (p. 330): equally hard.

- SAT to 2SAT (p. 362): easier.

^aThanks to a lively class discussion on October 29, 2003.

Easier or Harder? (concluded)

- Adding restrictions on the allowable *solutions* (the solution space) may make a problem harder, equally hard, or easier.
- It is problem dependent.
 - MIN CUT to BISECTION WIDTH (p. 415): harder.
 - LP to IP (p. 460): harder.
 - SAT to NAESAT (p. 374) and MAX CUT to MAX BISECTION (p. 413): equally hard.
 - 3-COLORING to 2-COLORING (p. 425): easier.

coNP and Function Problems

I frankly confess I do not know what he means. — St. Augustin (354–430), *City of God* (426)

coNP

• By definition, coNP is the class of problems whose complement is in NP.

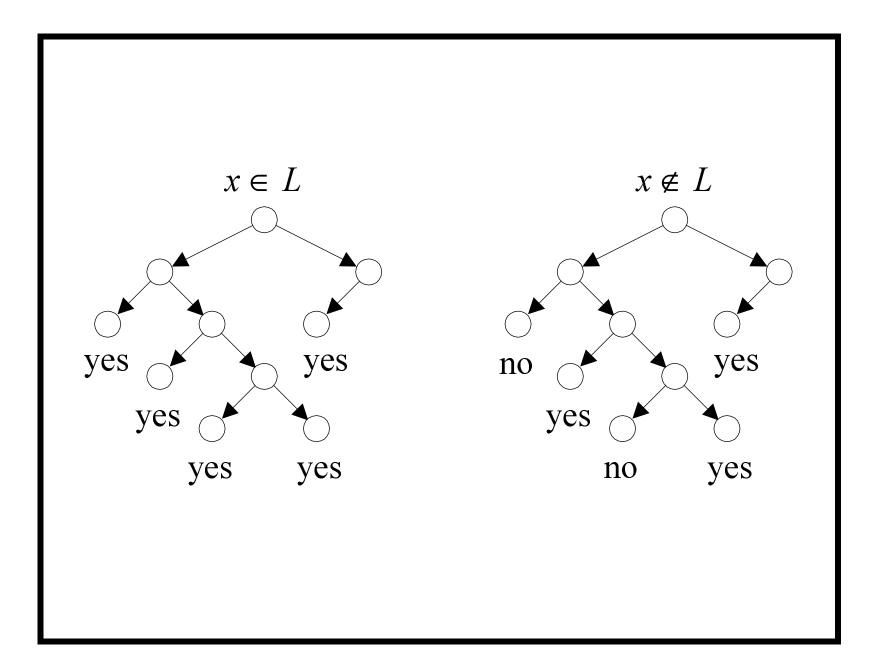
 $-L \in \text{coNP}$ if and only if $\overline{L} \in \text{NP}$.

- NP problems have succinct certificates.^a
- coNP is therefore the class of problems that have succinct **disqualifications**:^b
 - A "no" instance possesses a short proof of its being a "no" instance.
 - Only "no" instances have such proofs.

^aRecall Proposition 41 (p. 344). ^bTo be proved in Proposition 54 (p. 477).

coNP (continued)

- Suppose L is a coNP problem.
- There exists a nondeterministic polynomial-time algorithm *M* such that:
 - If $x \in L$, then M(x) = "yes" for all computation paths.
 - If $x \notin L$, then M(x) = "no" for some computation path.
- If we swap "yes" and "no" in M, the new algorithm decides $\overline{L} \in NP$ in the classic sense (p. 115).



coNP (continued)

- - Especially when you already knew $\overline{L} \in NP$.
 - 2. Prove that only "no" instances possess short proofs (for their not being in L).^a
 - 3. Write an algorithm for it directly.

^aRecall Proposition 41 (p. 344).

coNP (concluded)

- Clearly $P \subseteq coNP$.
- It is not known if

 $\mathbf{P} = \mathbf{NP} \cap \mathbf{coNP}.$

- Contrast this with

 $\mathbf{R} = \mathbf{R}\mathbf{E} \cap \mathbf{co}\mathbf{R}\mathbf{E}$

(see p. 162).

Some coNP Problems

- SAT COMPLEMENT \in coNP.
 - SAT COMPLEMENT is the complement of SAT.^a
 - Or, the disqualification is a truth assignment that satisfies it.
- Hamiltonian path complement \in coNP.
 - HAMILTONIAN PATH COMPLEMENT is the complement of HAMILTONIAN PATH.
 - Or, the disqualification is a Hamiltonian path.

^aRecall p. 207.

Some coNP Problems (concluded)

- VALIDITY \in coNP.
 - If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does *not* satisfy it.
- TSP COMPLEMENT $(D) \in coNP$.
 - TSP COMPLEMENT (D) asks if the optimal tour has a total distance of > B, where B is an input.^a

- The disqualification is a tour with a distance $\leq B$.

^aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

A Nondeterministic Algorithm for SAT COMPLEMENT (See also p. 120)

 ϕ is a boolean formula with n variables.

1: for
$$i = 1, 2, ..., n$$
 do

2: Guess $x_i \in \{0, 1\}$; {Nondeterministic choice.}

3: end for

5: **if**
$$\phi(x_1, x_2, \dots, x_n) = 0$$
 then

7: **else**

9: end if

Analysis

- The algorithm decides language $\{\phi : \phi \text{ is unsatisfiable}\}.$
 - The computation tree is a complete binary tree of depth n.
 - Every computation path corresponds to a particular truth assignment out of 2^n .
 - $-\phi$ is unsatisfiable if and only if every truth assignment falsifies ϕ .
 - But every truth assignment falsifies ϕ if and only if every computation path results in "yes."

An Alternative Characterization of coNP

Proposition 54 Let $L \subseteq \Sigma^*$ be a language. Then $L \in coNP$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

 $L = \{ x : \forall y (x, y) \in R \}.$

(As on p. 343, we assume $|y| \leq |x|^k$ for some k.)

- $\overline{L} = \{ x : \exists y (x, y) \in \neg R \}.^{\mathrm{a}}$
- Because $\neg R$ remains polynomially balanced, $\overline{L} \in NP$ by Proposition 41 (p. 344).
- Hence $L \in \text{coNP}$ by definition.

^aSo a certificate y for \overline{L} is a disqualification for L, and vice versa.

coNP-Completeness

Proposition 55 *L* is NP-complete if and only if its complement $\overline{L} = \Sigma^* - L$ is coNP-complete.

Proof (\Rightarrow ; the \Leftarrow part is symmetric)

- Let $\overline{L'}$ be any coNP language.
- Hence $L' \in NP$.
- Let R be the reduction from L' to L.
- So $x \in L'$ if and only if $R(x) \in L$.
- By the law of transposition, x ∉ L' if and only if R(x) ∉ L.

coNP Completeness (concluded)

- So $x \in \overline{L'}$ if and only if $R(x) \in \overline{L}$.
- The same R is a reduction from $\overline{L'}$ to \overline{L} .
- This shows \overline{L} is coNP-hard.
- But $\bar{L} \in \text{coNP}$.
- This shows \overline{L} is coNP-complete.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.
- TSP COMPLEMENT (D) is coNP-complete.
- VALIDITY is coNP-complete.
 - $-\phi$ is valid if and only if $\neg\phi$ is not satisfiable.
 - $-\phi \in$ Validity if and only if $\neg \phi \in$ Sat complement.
 - The reduction from SAT COMPLEMENT to VALIDITY is hence easy: $R(\phi) = \neg \phi$.

Possible Relations between P, NP, coNP $^{\rm a}$

- 1. P = NP = coNP.
- 2. NP = coNP but $P \neq NP$.
- 3. NP \neq coNP and P \neq NP.
 - Furthermore, NP $\not\subseteq$ coNP and coNP $\not\subseteq$ NP.
 - This is the current consensus.^b

^aThanks to a lively class discussion on November 25, 2021.

^bCarl Friedrich Gauss (1777–1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

The Primality Problem

- An integer p is **prime** if p > 1 and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by $2, 3, \ldots, \sqrt{N}$ is not efficient.
 - The length of N is only $\log N$, but $\sqrt{N} = 2^{0.5 \log N}$.

– It is an exponential-time algorithm.

- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- The running time is $\tilde{O}(\log^{7.5} N)$.

```
1: if n = a^b for some a, b > 1 then
 2:
       return "composite";
 3: end if
 4: for r = 2, 3, \ldots, n - 1 do
 5:
      if gcd(n, r) > 1 then
 6:
       return "composite";
 7:
       end if
 8:
       if r is a prime then
    Let q be the largest prime factor of r-1;
if q \ge 4\sqrt{r} \log n and n^{(r-1)/q} \ne 1 \mod r then
 9:
10:
11:
       break; {Exit the for-loop.}
12:
         end if
13:
       end if
14: end for \{r-1 \text{ has a prime factor } q \ge 4\sqrt{r} \log n.\}
15: for a = 1, 2, ..., 2\sqrt{r} \log n do
     if (x-a)^n \neq (x^n-a) \mod (x^r-1) in Z_n[x] then
16:
17:
      return "composite";
18:
       end if
19: end for
20: return "prime"; {The only place with "prime" output.}
```

The Primality Problem (concluded)

- Later, we will focus on efficient "randomized" algorithms for PRIMES (used in *Mathematica*, e.g.).
- NP \cap coNP is the class of problems that have succinct certificates *and* succinct disqualifications.
 - Each "yes" instance has a succinct certificate.
 - Each "no" instance has a succinct disqualification.
 - No instances have both.
- We will see that $PRIMES \in NP \cap coNP$.
 - In fact, $\texttt{PRIMES} \in \mathsf{P}$ as mentioned earlier.

Basic Modular Arithmetics $^{\rm a}$

- Let $m, n \in \mathbb{Z}^+$.
- $m \mid n$ means m divides n; m is n's **divisor**.
- We call the numbers 0, 1, ..., n − 1 the residue modulo n.
- The greatest common divisor of m and n is denoted gcd(m, n).

^aCarl Friedrich Gauss.

Basic Modular Arithmetics (concluded)

• We use

 $a \equiv b \mod n$

- if $n \mid (a b)$. - So $25 \equiv 38 \mod 13$.
- We use

 $a = b \mod n$

if b is the remainder of a divided by n.

- So $25 = 12 \mod 13$.

Primitive Roots in Finite Fields

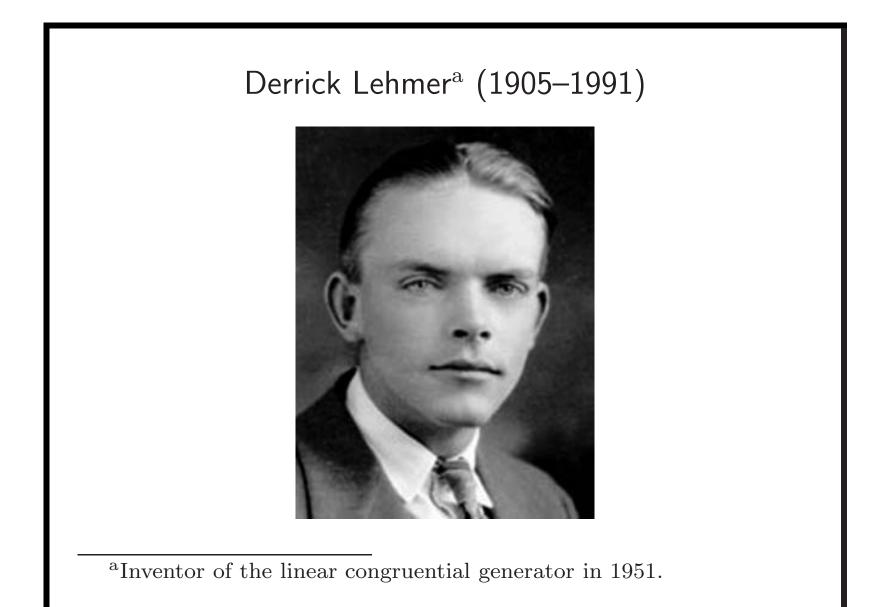
Theorem 56 (Lucas & Lehmer, 1927) ^a A number p > 1 is a prime if and only if there is a number 1 < r < p such that

1. $r^{p-1} = 1 \mod p$, and

2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.

- This r is called a **primitive root** or **generator** of p.
- We will prove one direction of the theorem later.^b

^aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry Lehmer (1905–1991). ^bSee pp. 498ff.



Pratt's Theorem

Theorem 57 (Pratt, 1975) PRIMES $\in NP \cap coNP$.

- PRIMES ∈ coNP because a succinct disqualification is a proper divisor.
 - A proper divisor of a number means it is *not* a prime.
- Now suppose p is a prime.
- p's certificate includes the r in Theorem 56 (p. 487).
 - There may be multiple choices for r.

The Proof (continued)

- Use recursive doubling to check if r^{p−1} = 1 mod p in time polynomial in the length of the input, log₂ p.
 r, r², r⁴, ... mod p, a total of ~ log₂ p steps.
- We also need all *prime* divisors of p 1: q₁, q₂, ..., q_k.
 Whether r, q₁, ..., q_k are easy to find is irrelevant.
- Checking $r^{(p-1)/q_i} \neq 1 \mod p$ is also easy.
- Checking q_1, q_2, \ldots, q_k are all the divisors of p-1 is easy.

The Proof (concluded)

- We still need certificates for the primality of the q_i 's.
- The complete certificate is recursive and tree-like:

$$C(p) = (r; q_1, C(q_1), q_2, C(q_2), \dots, q_k, C(q_k)).$$
(5)

- We next prove that C(p) is succinct.
- As a result, C(p) can be checked in polynomial time.

A Certificate for $23^{\rm a}$

• Note that 5 is a primitive root modulo 23 and $23 - 1 = 22 = 2 \times 11$.^b

• So

$$C(23) = (5; 2, C(2), 11, C(11)).$$

• Note that 2 is a primitive root modulo 11 and $11 - 1 = 10 = 2 \times 5$.

• So

$$C(11) = (2; 2, C(2), 5, C(5)).$$

^aThanks to a lively discussion on April 24, 2008. ^bOther primitive roots are 7, 10, 11, 14, 15, 17, 19, 20, 21.

A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and $5-1=4=2^2$.

• So

$$C(5) = (2; 2, C(2)).$$

• In summary,

C(23) = (5; 2, C(2), 11, (2; 2, C(2), 5, (2; 2, C(2)))).

- In *Mathematica*, PrimeQCertificate[23] yields $\{23, 5, \{2, \{11, 2, \{2, \{5, 2, \{2\}\}\}\}\}\}$

The Succinctness of the Certificate

Lemma 58 The length of C(p) is at most quadratic at $5(\log_2 p)^2$.

- This claim holds when p = 2 or p = 3.
- In general, p-1 has $k \leq \log_2 p$ prime divisors $q_1 = 2, q_2, \dots, q_k$.

– Reason:

$$2^k \le \prod_{i=1}^k q_i \le p-1.$$

• Note also that, as $q_1 = 2$,

$$\prod_{i=2}^{k} q_i \le \frac{p-1}{2}.\tag{6}$$

The Proof (continued)

- C(p) requires:
 - -2 parentheses;
 - $-2k < 2\log_2 p$ separators (at most $2\log_2 p$ bits);

-r (at most $\log_2 p$ bits);

 $-q_1 = 2$ and its certificate 1 (at most 5 bits);

$$-q_2,\ldots,q_k$$
 (at most $2\log_2 p$ bits);^a

$$- C(q_2), \ldots, C(q_k).$$

^aWhy?

The Proof (concluded)

• C(p) is succinct because, by induction,

$$\begin{aligned} |C(p)| &\leq 5\log_2 p + 5 + 5\sum_{i=2}^k (\log_2 q_i)^2 \\ &\leq 5\log_2 p + 5 + 5\left(\sum_{i=2}^k \log_2 q_i\right)^2 \\ &\leq 5\log_2 p + 5 + 5\left(\log_2 \frac{p-1}{2}\right)^2 \quad \text{by inequality (6)} \\ &< 5\log_2 p + 5 + 5[(\log_2 p) - 1]^2 \\ &= 5(\log_2 p)^2 + 10 - 5\log_2 p \leq 5(\log_2 p)^2 \end{aligned}$$
for $p \geq 4.$

Turning the Proof into an Algorithm $^{\rm a}$

- How to turn the proof into a nondeterministic polynomial-time algorithm for PRIMES?
- First, guess a $\log_2 p$ -bit number r.
- Then guess up to $\log_2 p$ numbers q_1, q_2, \ldots, q_k each containing at most $\log_2 p$ bits.
- Then recursively do the same thing for each of the q_i to form a certificate (5) on p. 491.
- Finally check if the two conditions of Theorem 56 (p. 487) hold throughout the tree.

 ^aContributed by Mr. Kai-Yuan Hou (B
99201038, R03922014) on November 24, 2015.

Euler's $^{\rm a}$ Totient or Phi Function

• Let

$$\Phi(n) = \{ m : 1 \le m < n, \gcd(m, n) = 1 \}$$

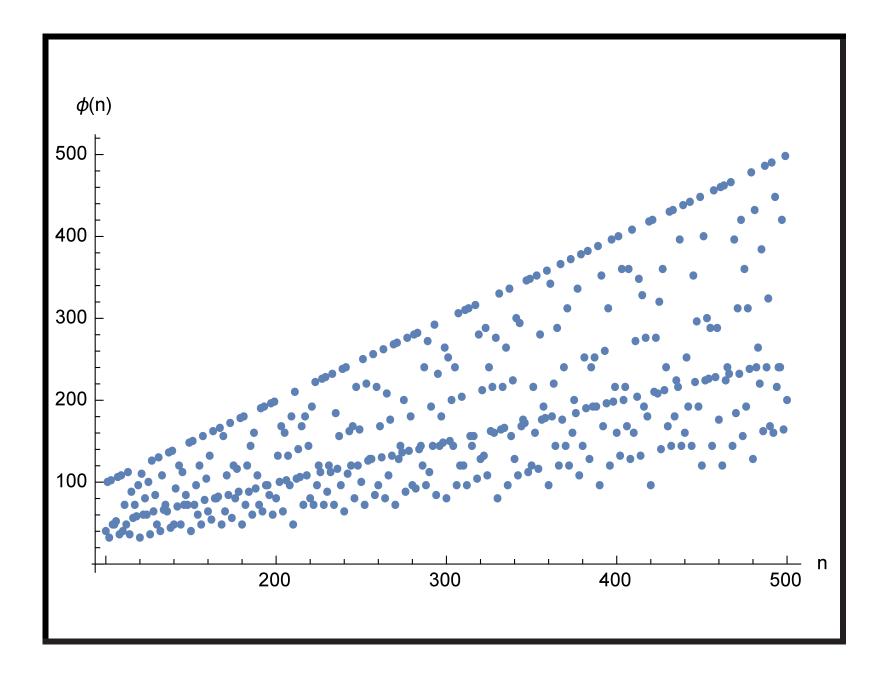
be the set of all positive integers less than n that are prime to n.^b

 $- \Phi(12) = \{ 1, 5, 7, 11 \}.$

- Define **Euler's function** of *n* to be $\phi(n) = |\Phi(n)|$.
- $\phi(p) = p 1$ for prime p, and $\phi(1) = 1$ by convention.
- Euler's function is not expected to be easy to compute without knowing *n*'s factorization.

^aLeonhard Euler (1707–1783).

 $^{{}^{\}mathrm{b}}Z_n^*$ is an alternative notation.



Leonhard Euler (1707–1783)

Three Properties of Euler's Function $^{\rm a}$

The inclusion-exclusion principle^b can be used to prove the following.

Lemma 59 If $n = p_1^{e_1} p_2^{e_2} \cdots p_{\ell}^{e_{\ell}}$ is the prime factorization of n, then

$$\phi(n) = n \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i} \right).$$

• For example, if n = pq, where p and q are distinct primes, then

$$\phi(n) = pq\left(1 - \frac{1}{p}\right)\left(1 - \frac{1}{q}\right) = pq - p - q + 1.$$

^aSee p. 224 of the textbook.

^bConsult any textbooks on discrete mathematics.

Three Properties of Euler's Function (concluded) Corollary 60 $\phi(mn) = \phi(m) \phi(n)$ if gcd(m, n) = 1. Lemma 61 (Gauss) $\sum_{m|n} \phi(m) = n$.

The Chinese Remainder Theorem

- Let $n = n_1 n_2 \cdots n_k$, where n_i are pairwise relatively prime.
- For any integers a_1, a_2, \ldots, a_k , the set of simultaneous equations

 $x = a_1 \mod n_1,$ $x = a_2 \mod n_2,$ \vdots $x = a_k \mod n_k,$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem^a

Lemma 62 For all 0 < a < p, $a^{p-1} = 1 \mod p$.

- Recall $\Phi(p) = \{1, 2, \dots, p-1\}.$
- Consider $a\Phi(p) = \{ am \mod p : m \in \Phi(p) \}.$

•
$$a\Phi(p) = \Phi(p).$$

 $-a\Phi(p) \subseteq \Phi(p)$ as a remainder must be between 1 and p-1.

- Suppose $am \equiv am' \mod p$ for m > m', where $m, m' \in \Phi(p)$.
- That means $a(m m') = 0 \mod p$, and p divides a or m m', which is impossible.

^aPierre de Fermat (1601-1665).

The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield (p-1)!.
- Multiply all the numbers in $a\Phi(p)$ to yield $a^{p-1}(p-1)!$.

• As
$$a\Phi(p) = \Phi(p)$$
, we have

$$a^{p-1}(p-1)! \equiv (p-1)! \mod p.$$

• Finally, $a^{p-1} = 1 \mod p$ because $p \not| (p-1)!$.

The Fermat-Euler Theorem^a

Corollary 63 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$.

- The proof is similar to that of Lemma 62 (p. 504).
- Consider $a\Phi(n) = \{am \mod n : m \in \Phi(n)\}.$
- $a\Phi(n) = \Phi(n)$.
 - $-a\Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and n-1 and relatively prime to n.
 - Suppose $am \equiv am' \mod n$ for m' < m < n, where $m, m' \in \Phi(n)$.
 - That means $a(m m') = 0 \mod n$, and n divides a or m m', which is impossible.

 $^{\mathrm{a}}\mathrm{Proof}$ by Mr. Wei-Cheng Cheng (R93922108, D95922011) on November 24, 2004.

The Proof (concluded) a

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a\Phi(n)$ to yield $a^{\phi(n)}\prod_{m\in\Phi(n)}m.$

• As
$$a\Phi(n) = \Phi(n)$$
,

$$\prod_{m \in \Phi(n)} m \equiv a^{\phi(n)} \left(\prod_{m \in \Phi(n)} m\right) \mod n.$$

• Finally, $a^{\phi(n)} = 1 \mod n$ because $n \not\mid \prod_{m \in \Phi(n)} m$.

^aSome typographical errors corrected by Mr. Jung-Ying Chen (D95723006) on November 18, 2008.

An Example

As
$$12 = 2^2 \times 3$$
,
 $\phi(12) = 12 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 4.$

• In fact,
$$\Phi(12) = \{1, 5, 7, 11\}.$$

• For example,

$$5^4 = 625 = 1 \mod 12.$$

Exponents

• The **exponent** of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that

$$m^k = 1 \bmod p.$$

- Every residue $s \in \Phi(p)$ has an exponent.
 - $-1, s, s^2, s^3, \ldots$ eventually repeats itself modulo p, say $s^i \equiv s^j \mod p, \ i < j$, which means $s^{j-i} = 1 \mod p$.
- If the exponent of m is k and $m^{\ell} = 1 \mod p$, then $k \mid \ell$.
 - Otherwise, $\ell = qk + a$ for 0 < a < k, and $m^{\ell} = m^{qk+a} \equiv m^a \equiv 1 \mod p$, a contradiction.

Lemma 64 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem (p. 504), all exponents divide p 1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p) = \{1, 2, \dots, p-1\}$ that have exponent k.
- We already knew that R(k) = 0 for $k \not| (p-1)$.
- As every number has an exponent,

$$\sum_{k \mid (p-1)} R(k) = p - 1.$$
 (7)

Size of R(k)

- Any $a \in \Phi(p)$ of exponent k satisfies $x^k = 1 \mod p$.
- By Lemma 64 (p. 509) there are at most k residues of exponent k, i.e., R(k) ≤ k.
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are distinct modulo p.
 - Otherwise, $s^i \equiv s^j \mod p$ with i < j.
 - Then $s^{j-i} = 1 \mod p$ with j i < k, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they comprise all the solutions of $x^k = 1 \mod p$.

Size of R(k) (continued)

- But do all of them have exponent k (i.e., R(k) = k)?
- And if not (i.e., R(k) < k), how many of them do?
- Pick s^{ℓ} , where $\ell < k$.
- Suppose $\ell \notin \Phi(k)$ with $gcd(\ell, k) = d > 1$.
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore, s^{ℓ} has exponent at most k/d < k.
- So s^{ℓ} has exponent k only if $\ell \in \Phi(k)$.
- We conclude that

$$R(k) \le \phi(k).$$

Size of R(k) (continued)

• Because all p-1 residues have an exponent,

$$p - 1 = \sum_{k \mid (p-1)} R(k) \le \sum_{k \mid (p-1)} \phi(k) = p - 1$$

by Lemma 61 (p. 502) and Eq. (7) (p. 510).

• Hence

$$R(k) = \begin{cases} \phi(k), & \text{when } k \mid (p-1), \\ 0, & \text{otherwise.} \end{cases}$$

Size of R(k) (concluded)

• Incidentally, we have shown that

 g^{ℓ} , where $\ell \in \Phi(k)$,

are all the numbers with exponent k if g has exponent k.

- As $R(p-1) = \phi(p-1) > 0$, p has primitive roots.
- This proves one direction of Theorem 56 (p. 487).

A Few Calculations

- Let p = 13.
- From p. 506 $\phi(p-1) = 4$.
- Hence R(12) = 4.
- Indeed, there are 4 primitive roots of p.
- As

$$\Phi(p-1) = \{1, 5, 7, 11\},\$$

the primitive roots are

$$g^1, g^5, g^7, g^{11},$$

for any primitive root g.