
tripartite matchinga (3dm)

• We are given three sets B, G, and H, each containing n

elements.

• Let T ⊆ B ×G×H be a ternary relation.

• tripartite matching asks if there is a set of n triples

in T , none of which has a component in common.

– Each element in B is matched to a different element

in G and different element in H.

Theorem 50 (Karp, 1972) tripartite matching is

NP-complete.

aPrincess Diana (November 20, 1995), “There were three of us in this

marriage, so it was a bit crowded.”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436



Related Problems

• We are given a family F = {S1, S2, . . . , Sn } of subsets

of a finite set U and a budget B.

• set covering asks if there exists a set of B sets in F

whose union is U .

• set packing asks if there are B disjoint sets in F .

• exact cover asks if there are disjoint sets in F whose

union is U .

• Assume |U | = 3m for some m ∈ N and |Si | = 3 for all i.

• exact cover by 3-sets (x3c) asks if there are m sets

in F that are disjoint (so have U as their union).
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 51 (Karp, 1972) set covering, set

packing, exact cover, and x3c are all NP-complete.

• Does set covering remain NP-complete when

|Si | = 3?a

• set covering is used to prove that the influence

maximization problem in social networks is

NP-complete.b

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

September 22, 2015.
bKempe, Kleinberg, & Tardos (2003).
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knapsack

• There is a set of n items.

• Item i has value vi ∈ Z
+ and weight wi ∈ Z

+.

• We are given K ∈ Z
+ and W ∈ Z

+.

• knapsack asks if there exists a subset

I ⊆ { 1, 2, . . . , n }
such that

∑
i∈I wi ≤ W and

∑
i∈I vi ≥ K.

– We want to achieve the maximum satisfaction within

the budget.
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knapsack Is NP-Completea

• knapsack ∈ NP: Guess an I and check the constraints.

• We shall reduce x3cb to knapsack, in which vi = wi

for all i and K = W .

• The simplified knapsack now asks if a subset of

v1, v2, . . . , vn adds up to exactly K.c

– Picture yourself as a radio DJ.

aKarp (1972). It can be solved in time O(2n/2) with space O(2n/4)

(Schroeppel & Shamir, 1981; Vyskoč, 1987).
bexact cover by 3-sets.
cThis important problem is called subset sum or 0-1 knapsack. The

range of our reduction will be a proper subset of subset sum.
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The Proof (continued)

• The primary differences between the two problems are:a

– Sets vs. numbers.

– Union vs. addition.

• We are given a family F = {S1, S2, . . . , Sn } of size-3

subsets of U = { 1, 2, . . . , 3m }.
• x3c asks if there are m sets in F that cover the set U .

– These m subsets are disjoint by necessity.

aThanks to a lively class discussion on November 16, 2010.
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The Proof (continued)

• Think of a set as a bit vectora in { 0, 1 }3m.

– Assume m = 3.

– 110010000 means the set { 1, 2, 5 }.
– 001100010 means the set { 3, 4, 8 }.

• Our goal is
3m︷ ︸︸ ︷

1 1 · · · 1 .
aAlso called characteristic vector.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 443



The Proof (continued)

• A bit vector can also be seen as a binary number.

• Set union resembles addition:

001100010

+ 110010000

111110010

which denotes the set { 1, 2, 3, 4, 5, 8 }, as desired.
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The Proof (continued)

• Trouble occurs when there is carry:

010000000

+ 010000000

100000000

• This denotes the wrong set { 1 }, not the correct set { 2 }.
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The Proof (continued)

• Or consider

001100010

+ 001110000

011010010

• This denotes the wrong set { 2, 3, 5, 8 }, not the correct

set { 3, 4, 5, 8 }.a
aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.
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The Proof (continued)

• Carry may also lead to a situation where we obtain our

solution

3m︷ ︸︸ ︷
1 1 · · · 1 with more than m sets in F .

• For example, with m = 3,

000100010

001110000

101100000

+ 000001101

111111111

• But the correct union result, { 1, 3, 4, 5, 6, 7, 8, 9 }, is not
an exact cover.
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The Proof (continued)

• And it uses 4 sets instead of the required m = 3.a

• To fix this problem, we enlarge the base just enough so

that there are no carries.b

• Because there are n vectors in total, we change the base

from 2 to n+ 1.

• Every positive integer N has a unique expression in base

b: There are b-adic digits 0 ≤ di < b such that

N =
k∑

i=0

dib
i, dk �= 0.

aThanks to a lively class discussion on November 20, 2002.
bYou cannot simply map ∪ to ∨ because knapsack requires + not ∨!
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The Proof (continued)

• Set vi to be the integer corresponding to the bit vectora

encoding Si:

vi
Δ
=
∑
j∈Si

1× (n+ 1)3m−j (base n+ 1). (4)

• Set

K
Δ
=

3m−1∑
j=0

1× (n+ 1)j =

3m︷ ︸︸ ︷
1 1 · · · 1 (base n+ 1).

aThis bit vector contains three 1s.
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The Proof (continued)

• Suppose there is a set I such that

∑
i∈I

vi =

3m︷ ︸︸ ︷
1 1 · · · 1 (base n+ 1).

• Then every position must be contributed by exactly one

vi and | I | = m.

• As a result, every member of U is covered by exactly one

Si with i ∈ I .
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The Proof (continued)

• For example, the case on p. 447 becomes

000100010

001110000

101100000

+ 000001101

102311111

in base n+ 1 = 6.

• As desired, it no longer meets the goal.
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The Proof (continued)

• Suppose F admits an exact cover, say {S1, S2, . . . , Sm }.
• Then picking I = { 1, 2, . . . ,m } clearly results in

v1 + v2 + · · ·+ vm =

3m︷ ︸︸ ︷
1 1 · · · 1 .

• It is important to note that the meaning of addition (+)

is independent of the base.a

– It is just regular addition.

– But the same Si yields different integers vi in Eq. (4)

on p. 449 under different bases.

aContributed by Mr. Kuan-Yu Chen (R92922047) on November 3,

2004.
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The Proof (concluded)

• On the other hand, suppose there exists an I such that

∑
i∈I

vi =

3m︷ ︸︸ ︷
1 1 · · · 1

in base n+ 1.

• The no-carry property implies that | I | = m and

{Si : i ∈ I }
is an exact cover.
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subset suma Is NP-Complete

• The proof actually proves:

Corollary 52 subset sum is NP-complete.

• The proof can be slightly revised to reduce exact

cover to subset sum.

• The proof would not work if you used m+ 1 as the

base.b

aRecall p. 441.
bContributed by Mr. Yuchen Wang (R08922157) on November 19,

2020.
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An Example

• Let m = 3, U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, and

S1 = { 1, 3, 4 },
S2 = { 2, 3, 4 },
S3 = { 2, 5, 6 },
S4 = { 6, 7, 8 },
S5 = { 7, 8, 9 }.

• Note that n = 5, as there are 5 Si’s.

• So the base is n+ 1 = 6.
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An Example (continued)

• Our reduction produces

K =
3×3−1∑
j=0

6j =

3×3︷ ︸︸ ︷
1 1 · · · 16 = 201553910,

v1 = 1011000006 = 173404810,

v2 = 0111000006 = 33436810,

v3 = 0100110006 = 28144810,

v4 = 0000011106 = 25810,

v5 = 0000001116 = 4310.
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An Example (concluded)

• Note v1 + v3 + v5 = K because

101100000

010011000

+ 000000111

111111111

• Indeed,

S1 ∪ S3 ∪ S5 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 },
an exact cover by 3-sets.
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bin packing

• We are given N positive integers a1, a2, . . . , aN , an

integer C (the capacity), and an integer B (the number

of bins).

• bin packing asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.

• Think of packing bags at the check-out counter.

Theorem 53 bin packing is NP-complete.
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bin packing (concluded)

• But suppose a1, a2, . . . , aN are randomly distributed

between 0 and 1.

• Let B be the smallest number of unit-capacity bins

capable of holding them.

• Then B can deviate from its average by more than t

with probability at most 2e−2t2/N .a

aRhee & Talagrand (1987); Dubhashi & Panconesi (2012).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 459



integer programming (ip)

• ip asks whether a system of linear inequalities with

integer coefficients has an integer solution.

• In contrast, linear programming (lp) asks whether a

system of linear inequalities with integer coefficients has

a rational solution.

– lp is solvable in polynomial time.a

aKhachiyan (1979).
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ip Is NP-Completea

• set covering can be expressed by the inequalities

Ax ≥ �1,
∑n

i=1 xi ≤ B, 0 ≤ xi ≤ 1, where

– xi = 1 if and only if Si is in the cover.

– A is the matrix whose columns are the bit vectors of

the sets S1, S2, . . ..

– �1 is the vector of 1s.

– The operations in Ax are standard matrix operations.

– Item i is covered if the sum of the ith row of Ax is at

least 1.

aKarp (1972); Borosh & Treybig (1976); Papadimitriou (1981).
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ip Is NP-Complete (concluded)

• This shows ip is NP-hard.

• Many NP-complete problems can be expressed as an ip

problem.

• To show that ip ∈ NP is nontrivial.

– It will not work if we simply guess xi unless this guess

provabably needs only a polynomial number of bits.a

• ip with a fixed number of variables is in P.b

aThanks to a lively class discussion on November 25, 2021.
bLenstra (1983).
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Christos Papadimitriou (1949–)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 463



Easier or Harder?a

• Adding restrictions on the allowable problem instances

will not make a problem harder.

– We are now solving a subset of problem instances or

special cases.

– The independent set proof (p. 381) and the

knapsack proof (p. 441): equally hard.

– circuit value to monotone circuit value

(p. 330): equally hard.

– sat to 2sat (p. 362): easier.

aThanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

• Adding restrictions on the allowable solutions (the

solution space) may make a problem harder, equally

hard, or easier.

• It is problem dependent.

– min cut to bisection width (p. 415): harder.

– lp to ip (p. 460): harder.

– sat to naesat (p. 374) and max cut to max

bisection (p. 413): equally hard.

– 3-coloring to 2-coloring (p. 425): easier.
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coNP and Function Problems
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I frankly confess

I do not know what he means.

— St. Augustin (354–430),

City of God (426)
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coNP

• By definition, coNP is the class of problems whose

complement is in NP.

– L ∈ coNP if and only if L̄ ∈ NP.

• NP problems have succinct certificates.a

• coNP is therefore the class of problems that have

succinct disqualifications:b

– A “no” instance possesses a short proof of its being a

“no” instance.

– Only “no” instances have such proofs.

aRecall Proposition 41 (p. 344).
bTo be proved in Proposition 54 (p. 477).
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coNP (continued)

• Suppose L is a coNP problem.

• There exists a nondeterministic polynomial-time

algorithm M such that:

– If x ∈ L, then M(x) = “yes” for all computation

paths.

– If x �∈ L, then M(x) = “no” for some computation

path.

• If we swap “yes” and “no” in M , the new algorithm

decides L̄ ∈ NP in the classic sense (p. 115).
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coNP (continued)

• So there are 3 major approaches to proving L ∈ coNP.

1. Prove L̄ ∈ NP.

– Especially when you already knew L̄ ∈ NP.

2. Prove that only “no” instances possess short proofs

(for their not being in L).a

3. Write an algorithm for it directly.

aRecall Proposition 41 (p. 344).
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coNP (concluded)

• Clearly P ⊆ coNP.

• It is not known if

P = NP ∩ coNP.

– Contrast this with

R = RE ∩ coRE

(see p. 162).
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Some coNP Problems

• sat complement ∈ coNP.

– sat complement is the complement of sat.a

– Or, the disqualification is a truth assignment that

satisfies it.

• hamiltonian path complement ∈ coNP.

– hamiltonian path complement is the complement

of hamiltonian path.

– Or, the disqualification is a Hamiltonian path.

aRecall p. 207.
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Some coNP Problems (concluded)

• validity ∈ coNP.

– If φ is not valid, it can be disqualified very succinctly:

a truth assignment that does not satisfy it.

• tsp complement (d) ∈ coNP.

– tsp complement (d) asks if the optimal tour has a

total distance of > B, where B is an input.a

– The disqualification is a tour with a distance ≤ B.

aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
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A Nondeterministic Algorithm for sat complement
(See also p. 120)

φ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ { 0, 1 }; {Nondeterministic choice.}
3: end for

4: {Verification:}
5: if φ(x1, x2, . . . , xn) = 0 then

6: “yes”;

7: else

8: “no”;

9: end if
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Analysis

• The algorithm decides language {φ : φ is unsatisfiable }.
– The computation tree is a complete binary tree of

depth n.

– Every computation path corresponds to a particular

truth assignment out of 2n.

– φ is unsatisfiable if and only if every truth

assignment falsifies φ.

– But every truth assignment falsifies φ if and only if

every computation path results in “yes.”
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An Alternative Characterization of coNP

Proposition 54 Let L ⊆ Σ∗ be a language. Then L ∈ coNP

if and only if there is a polynomially decidable and

polynomially balanced relation R such that

L = {x : ∀y (x, y) ∈ R }.
(As on p. 343, we assume | y | ≤ |x |k for some k.)

• L̄ = {x : ∃y (x, y) ∈ ¬R }.a

• Because ¬R remains polynomially balanced, L̄ ∈ NP by

Proposition 41 (p. 344).

• Hence L ∈ coNP by definition.

aSo a certificate y for L̄ is a disqualification for L, and vice versa.
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coNP-Completeness

Proposition 55 L is NP-complete if and only if its

complement L̄ = Σ∗ − L is coNP-complete.

Proof (⇒; the ⇐ part is symmetric)

• Let L′ be any coNP language.

• Hence L′ ∈ NP.

• Let R be the reduction from L′ to L.

• So x ∈ L′ if and only if R(x) ∈ L.

• By the law of transposition, x �∈ L′ if and only if

R(x) �∈ L.
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coNP Completeness (concluded)

• So x ∈ L′ if and only if R(x) ∈ L̄.

• The same R is a reduction from L′ to L̄.

• This shows L̄ is coNP-hard.

• But L̄ ∈ coNP.

• This shows L̄ is coNP-complete.
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Some coNP-Complete Problems

• sat complement is coNP-complete.

• hamiltonian path complement is coNP-complete.

• tsp complement (d) is coNP-complete.

• validity is coNP-complete.

– φ is valid if and only if ¬φ is not satisfiable.

– φ ∈ validity if and only if ¬φ ∈ sat complement.

– The reduction from sat complement to validity

is hence easy: R(φ) = ¬φ.
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Possible Relations between P, NP, coNPa

1. P = NP = coNP.

2. NP = coNP but P �= NP.

3. NP �= coNP and P �= NP.

• Furthermore, NP �⊆ coNP and coNP �⊆ NP.

• This is the current consensus.b

aThanks to a lively class discussion on November 25, 2021.
bCarl Friedrich Gauss (1777–1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose

of.”
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The Primality Problem

• An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.

• primes asks if an integer N is a prime number.

• Dividing N by 2, 3, . . . ,
√
N is not efficient.

– The length of N is only logN , but
√
N = 20.5 logN .

– It is an exponential-time algorithm.

• A polynomial-time algorithm for primes was not found

until 2002 by Agrawal, Kayal, and Saxena!

• The running time is Õ(log7.5 N).
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1: if n = ab for some a, b > 1 then

2: return “composite”;

3: end if

4: for r = 2, 3, . . . , n − 1 do

5: if gcd(n, r) > 1 then

6: return “composite”;

7: end if

8: if r is a prime then

9: Let q be the largest prime factor of r − 1;

10: if q ≥ 4
√
r logn and n(r−1)/q �= 1 mod r then

11: break; {Exit the for-loop.}
12: end if

13: end if

14: end for{r − 1 has a prime factor q ≥ 4
√
r logn.}

15: for a = 1, 2, . . . , 2
√
r logn do

16: if (x − a)n �= (xn − a) mod (xr − 1) in Zn[x ] then

17: return “composite”;

18: end if

19: end for

20: return “prime”; {The only place with “prime” output.}
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The Primality Problem (concluded)

• Later, we will focus on efficient “randomized” algorithms

for primes (used in Mathematica, e.g.).

• NP ∩ coNP is the class of problems that have succinct

certificates and succinct disqualifications.

– Each “yes” instance has a succinct certificate.

– Each “no” instance has a succinct disqualification.

– No instances have both.

• We will see that primes ∈ NP ∩ coNP.

– In fact, primes ∈ P as mentioned earlier.
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Basic Modular Arithmeticsa

• Let m,n ∈ Z
+.

• m |n means m divides n; m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo

n.

• The greatest common divisor of m and n is denoted

gcd(m,n).

aCarl Friedrich Gauss.
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Basic Modular Arithmetics (concluded)

• We use

a ≡ b mod n

if n | (a− b).

– So 25 ≡ 38 mod 13.

• We use

a = b mod n

if b is the remainder of a divided by n.

– So 25 = 12 mod 13.
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Primitive Roots in Finite Fields

Theorem 56 (Lucas & Lehmer, 1927) a A number

p > 1 is a prime if and only if there is a number 1 < r < p

such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q �= 1 mod p for all prime divisors q of p− 1.

• This r is called a primitive root or generator of p.

• We will prove one direction of the theorem later.b

aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry

Lehmer (1905–1991).
bSee pp. 498ff.
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Derrick Lehmera (1905–1991)

aInventor of the linear congruential generator in 1951.
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Pratt’s Theorem

Theorem 57 (Pratt, 1975) primes ∈ NP ∩ coNP.

• primes ∈ coNP because a succinct disqualification is a

proper divisor.

– A proper divisor of a number means it is not a prime.

• Now suppose p is a prime.

• p’s certificate includes the r in Theorem 56 (p. 487).

– There may be multiple choices for r.
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The Proof (continued)

• Use recursive doubling to check if rp−1 = 1 mod p in

time polynomial in the length of the input, log2 p.

– r, r2, r4, . . . mod p, a total of ∼ log2 p steps.

• We also need all prime divisors of p− 1: q1, q2, . . . , qk.

– Whether r, q1, . . . , qk are easy to find is irrelevant.

• Checking r(p−1)/qi �= 1 mod p is also easy.

• Checking q1, q2, . . . , qk are all the divisors of p− 1 is easy.
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The Proof (concluded)

• We still need certificates for the primality of the qi’s.

• The complete certificate is recursive and tree-like:

C(p) = (r; q1, C(q1), q2, C(q2), . . . , qk, C(qk)). (5)

• We next prove that C(p) is succinct.

• As a result, C(p) can be checked in polynomial time.
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A Certificate for 23a

• Note that 5 is a primitive root modulo 23 and

23− 1 = 22 = 2× 11.b

• So

C(23) = (5; 2, C(2), 11, C(11)).

• Note that 2 is a primitive root modulo 11 and

11− 1 = 10 = 2× 5.

• So

C(11) = (2; 2, C(2), 5, C(5)).

aThanks to a lively discussion on April 24, 2008.
bOther primitive roots are 7, 10, 11, 14, 15, 17, 19, 20, 21.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 492



A Certificate for 23 (concluded)

• Note that 2 is a primitive root modulo 5 and

5− 1 = 4 = 22.

• So

C(5) = (2; 2, C(2)).

• In summary,

C(23) = (5; 2, C(2), 11, (2; 2, C(2), 5, (2; 2, C(2)))).

– In Mathematica, PrimeQCertificate[23] yields

{ 23, 5, { 2, { 11, 2, { 2, { 5, 2, { 2 }}}}}}
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The Succinctness of the Certificate

Lemma 58 The length of C(p) is at most quadratic at

5(log2 p)
2.

• This claim holds when p = 2 or p = 3.

• In general, p− 1 has k ≤ log2 p prime divisors

q1 = 2, q2, . . . , qk.

– Reason:

2k ≤
k∏

i=1

qi ≤ p− 1.

• Note also that, as q1 = 2,

k∏
i=2

qi ≤ p− 1

2
. (6)
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The Proof (continued)

• C(p) requires:

– 2 parentheses;

– 2k < 2 log2 p separators (at most 2 log2 p bits);

– r (at most log2 p bits);

– q1 = 2 and its certificate 1 (at most 5 bits);

– q2, . . . , qk (at most 2 log2 p bits);a

– C(q2), . . . , C(qk).

aWhy?
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The Proof (concluded)

• C(p) is succinct because, by induction,

|C(p) | ≤ 5 log2 p+ 5 + 5

k∑
i=2

(log2 qi)
2

≤ 5 log2 p+ 5 + 5

(
k∑

i=2

log2 qi

)2

≤ 5 log2 p+ 5 + 5

(
log2

p− 1

2

)2

by inequality (6)

< 5 log2 p+ 5 + 5[ (log2 p)− 1 ]2

= 5(log2 p)
2 + 10− 5 log2 p ≤ 5(log2 p)

2

for p ≥ 4.
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Turning the Proof into an Algorithma

• How to turn the proof into a nondeterministic

polynomial-time algorithm for primes?

• First, guess a log2 p-bit number r.

• Then guess up to log2 p numbers q1, q2, . . . , qk each

containing at most log2 p bits.

• Then recursively do the same thing for each of the qi to

form a certificate (5) on p. 491.

• Finally check if the two conditions of Theorem 56 (p.

487) hold throughout the tree.

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

November 24, 2015.
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Euler’sa Totient or Phi Function

• Let

Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1 }
be the set of all positive integers less than n that are

prime to n.b

– Φ(12) = { 1, 5, 7, 11 }.
• Define Euler’s function of n to be φ(n) = |Φ(n) |.
• φ(p) = p− 1 for prime p, and φ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

aLeonhard Euler (1707–1783).
bZ∗

n is an alternative notation.
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Leonhard Euler (1707–1783)
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Three Properties of Euler’s Functiona

The inclusion-exclusion principleb can be used to prove the

following.

Lemma 59 If n = pe11 pe22 · · · pe�� is the prime factorization

of n, then

φ(n) = n
�∏

i=1

(
1− 1

pi

)
.

• For example, if n = pq, where p and q are distinct

primes, then

φ(n) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1.

aSee p. 224 of the textbook.
bConsult any textbooks on discrete mathematics.
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Three Properties of Euler’s Function (concluded)

Corollary 60 φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

Lemma 61 (Gauss)
∑

m|n φ(m) = n.
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The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively

prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous

equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.
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Fermat’s “Little” Theorema

Lemma 62 For all 0 < a < p, ap−1 = 1 mod p.

• Recall Φ(p) = { 1, 2, . . . , p− 1 }.
• Consider aΦ(p) = { am mod p : m ∈ Φ(p) }.
• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 1 and

p− 1.

– Suppose am ≡ am′ mod p for m > m′, where
m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or

m−m′, which is impossible.

aPierre de Fermat (1601–1665).
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The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), we have

ap−1(p− 1)! ≡ (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p � |(p− 1)!.
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The Fermat-Euler Theorema

Corollary 63 For all a ∈ Φ(n), aφ(n) = 1 mod n.

• The proof is similar to that of Lemma 62 (p. 504).

• Consider aΦ(n) = { am mod n : m ∈ Φ(n) }.
• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and

n− 1 and relatively prime to n.

– Suppose am ≡ am′ mod n for m′ < m < n, where

m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or

m−m′, which is impossible.
aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.
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The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield

aφ(n)
∏

m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏
m∈Φ(n)

m ≡ aφ(n)

⎛
⎝ ∏

m∈Φ(n)

m

⎞
⎠ mod n.

• Finally, aφ(n) = 1 mod n because n � | ∏m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.
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An Example

• As 12 = 22 × 3,

φ(12) = 12×
(
1− 1

2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = { 1, 5, 7, 11 }.
• For example,

54 = 625 = 1 mod 12.
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Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z
+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say

si ≡ sj mod p, i < j, which means sj−i = 1 mod p.

• If the exponent of m is k and m� = 1 mod p, then k | �.
– Otherwise, � = qk + a for 0 < a < k, and

m� = mqk+a ≡ ma ≡ 1 mod p, a contradiction.

Lemma 64 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.
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Exponents and Primitive Roots

• From Fermat’s “little” theorem (p. 504), all exponents

divide p− 1.

• A primitive root of p is thus a number with exponent

p− 1.

• Let R(k) denote the total number of residues in

Φ(p) = { 1, 2, . . . , p− 1 } that have exponent k.

• We already knew that R(k) = 0 for k � |(p− 1).

• As every number has an exponent,∑
k | (p−1)

R(k) = p− 1. (7)
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Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies xk = 1 mod p.

• By Lemma 64 (p. 509) there are at most k residues of

exponent k, i.e., R(k) ≤ k.

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si ≡ sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they comprise all the solutions of xk = 1 mod p.
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Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Pick s�, where � < k.

• Suppose � �∈ Φ(k) with gcd(�, k) = d > 1.

• Then

(s�)k/d = (sk)�/d = 1 mod p.

• Therefore, s� has exponent at most k/d < k.

• So s� has exponent k only if � ∈ Φ(k).

• We conclude that

R(k) ≤ φ(k).
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Size of R(k) (continued)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k | (p−1)

R(k) ≤
∑

k | (p−1)

φ(k) = p− 1

by Lemma 61 (p. 502) and Eq. (7) (p. 510).

• Hence

R(k) =

⎧⎨
⎩ φ(k), when k | (p− 1),

0, otherwise.
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Size of R(k) (concluded)

• Incidentally, we have shown that

g�, where � ∈ Φ(k),

are all the numbers with exponent k if g has exponent k.

• As R(p− 1) = φ(p− 1) > 0, p has primitive roots.

• This proves one direction of Theorem 56 (p. 487).
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A Few Calculations

• Let p = 13.

• From p. 506 φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As

Φ(p− 1) = { 1, 5, 7, 11 },
the primitive roots are

g1, g5, g7, g11,

for any primitive root g.
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