
Another Variant of 3sat

Proposition 42 3sat is NP-complete for expressions in

which each variable is restricted to appear at most three

times, and each literal at most twice. (3sat here requires

only that each clause has at most 3 literals.)
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The Proof (continued)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by

x2, and so on.

– x1, x2, . . . , xk are k new variables.
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The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the

expression.

– It is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– So it is necessary that x1, x2, . . . , xk assume an

identical truth value to satisfy the whole expression.

• Note that each clause ¬xi ∨ xj above has only 2 literals.

• The resulting equivalent expression satisfies the

conditions for x.
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An Example

• Suppose we are given the following 3sat expression

· · · (¬x ∨ w ∨ g) ∧ · · · ∧ (x ∨ y ∨ z) · · · .

• The transformed expression is

· · · ( ¬x1 ∨w∨g)∧· · ·∧( x2 ∨y∨z) · · · ( ¬x1 ∨ x2 )∧( ¬x2 ∨ x1 ).

– Variable x1 appears 3 times.

– Literal x1 appears once.

– Literal ¬x1 appears 2 times.
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2sat Is in NL ⊆ P

• Let φ be an instance of 2sat: Each clause has 2 literals.

• NL is a subset of P.a

• Because coNL = NL,b we need to show only that

recognizing unsatisfiable 2sat expressions is in NL.

• See the textbook for the complete proof.

aRecall p. 255.
bRecall p. 269.
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Generalized 2sat: max2sat

• Consider a 2sat formula.

• Let K ∈ N.

• max2sat asks whether there is a truth assignment that

satisfies at least K of the clauses.

– max2sat becomes 2sat when K equals the number

of clauses.
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Generalized 2sat: max2sat (concluded)

• max2sat can be used to solve the related optimization

version.

– With binary search, one can nail the maximum

number of satisfiable clauses of 2sat formulas.

• max2sat ∈ NP: Guess a truth assignment and verify

the count.

• We now reduce 3sat to max2sat.
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max2sat Is NP-Completea

• Consider the following 10 clauses:

(x) ∧ (y) ∧ (z) ∧ (w)

(¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬z ∨ ¬x)
(x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w)

• Let the 2sat formula r(x, y, z, w) represent the

conjunction of these clauses.

• The clauses are symmetric with respect to x, y, and z.

• How many clauses can we satisfy?

aGarey, Johnson, & Stockmeyer (1976).
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The Proof (continued)

All of x, y, z are true: By setting w to true, we satisfy

4 + 0 + 3 = 7 clauses, whereas by setting w to false, we

satisfy only 3 + 0 + 3 = 6 clauses.

Two of x, y, z are true: By setting w to true, we satisfy

3 + 2 + 2 = 7 clauses, whereas by setting w to false, we

satisfy 2 + 2 + 3 = 7 clauses.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 366



The Proof (continued)

One of x, y, z is true: By setting w to false, we satisfy

1 + 3 + 3 = 7 clauses, whereas by setting w to true, we

satisfy only 2 + 3 + 1 = 6 clauses.

None of x, y, z is true: By setting w to false, we satisfy

0 + 3 + 3 = 6 clauses, whereas by setting w to true, we

satisfy only 1 + 3 + 0 = 4 clauses.
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The Proof (continued)

• A truth assignment that satisfies x ∨ y ∨ z can be

extended to satisfy 7 of the 10 clauses of r(x, y, z, w),

and no more.

• A truth assignment that does not satisfy x ∨ y ∨ z can

be extended to satisfy only 6 of them, and no more.

• The reduction from 3sat φ to 2sat R(φ):

– For each clause Ci = (α ∨ β ∨ γ) of φ, add

r(α, β, γ, wi) to R(φ).

• If φ has m clauses, then R(φ) has 10m clauses.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 368



The Proof (continued)

• Finally, set K = 7m.

• So the reduction transforms φ to (R(φ), 7m).

• We now show that K clauses of R(φ) can be satisfied if

and only if φ is satisfiable.
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The Proof (continued)

• Suppose K = 7m clauses of R(φ) can be satisfied.

– 7 clauses of each r(α, β, γ, wi) must be satisfied

because it can have at most 7 clauses satisfied.a

– Hence each clause Ci = (α∨ β ∨ γ) of φ is satisfied by

the same truth assignment.

– So φ is satisfied.

aIf 70% of the world population are male and if at most 70% of each

country’s population are male, then each country must have exactly 70%

male population.
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The Proof (concluded)

• Suppose φ is satisfiable.

– Let T satisfy all clauses of φ.

– Each r(α, β, γ, wi) can set its wi appropriately to

have 7 clauses satisfied.

– So K = 7m clauses are satisfied.
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naesat

• The naesat (for “not-all-equal” sat) is like 3sat.

• But there must be a satisfying truth assignment under

which no clauses have all three literals equal in truth

value.

– Equivalently, there is a truth assignment such that

each clause has a literal assigned true and a literal

assigned false.

– Equivalently, there is a satisfying truth assignment

under which each clause has a literal assigned false.
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naesat (concluded)

• Take

φ = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

∧ (x1 ∨ x2 ∨ x3)

as an example.

• Then {x1 = true, x2 = false, x3 = false }
nae-satisfies φ because

( false ∨ true ∨ true) ∧ ( false ∨ false ∨ true)

∧ (true ∨ false ∨ false ).
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naesat Is NP-Completea

• Recall the reduction of circuit sat to sat on p. 293ff.

• It produced a CNF φ in which each clause had 1, 2, or 3

literals.

• Add the same variable z to all clauses with fewer than 3

literals to make it a 3sat formula.

• Goal: The new formula φ(z) is nae-satisfiable if and

only if the original circuit is satisfiable.

aSchaefer (1978).
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The Proof (continued)

• The following simple observation will be useful.

• Suppose T nae-satisfies a boolean formula φ.

• Let T̄ take the opposite truth value of T on every

variable.

• Then T̄ also nae-satisfies φ.a

aHesse’s Siddhartha (1922), “The opposite of every truth is just as

true!”
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The Proof (continued)

• Suppose T nae-satisfies φ(z).

– T̄ also nae-satisfies φ(z).

– Under T or T̄ , variable z takes the value false.

– This truth assignment T must satisfy all the clauses

of φ.

∗ Because z is not the reason that makes φ(z) true

under T anyway.

– So T |= φ.

– And the original circuit is satisfiable.
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The Proof (concluded)

• Suppose there is a truth assignment that satisfies the

circuit.

– Then there is a truth assignment T that satisfies

every clause of φ.

– Extend T by adding T (z) = false to obtain T ′.

– T ′ satisfies φ(z).

– Clearly, in no clauses are all three literals false under

T ′.

– In no clauses are all three literals true under T ′.

∗ Need to go over the detailed construction on

pp. 294–296.
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Undirected Graphs

• An undirected graph G = (V,E) has a finite set of

nodes, V , and a set of undirected edges, E.

• It is like a directed graph except that the edges have no

directions and there are no self-loops.

• Use [ i, j ] to mean there is an undirected edge between

node i and node j.a

aAn equally good notation is { i, j }.
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Independent Sets

• Let G = (V,E) be an undirected graph.

• I ⊆ V .

• I is independent if there is no edge between any two

nodes i, j ∈ I .

• independent set: Given an undirected graph and a

goal K, is there an independent set of size K?

• Many applications.
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independent set Is NP-Complete

• This problem is in NP: Guess a set of nodes and verify

that it is independent and meets the count.

• We will reduce 3sat to independent set.

• Note: If a graph contains a triangle, any independent set

can contain at most one node of the triangle.

• The reduction will output graphs whose nodes can be

partitioned into disjoint triangles, one for each clause.a

aRecall that a reduction does not have to be an onto function.
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The Proof (continued)

• Let φ be a 3sat formula with m clauses.

• We will construct graph G with K = m.

• Furthermore, φ is satisfiable if and only if G has an

independent set of size K.

• Here is the reduction:

– There is a triangle for each clause with the literals as

the nodes’ labels.

– Add edges between x and ¬x for every variable x.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 382



(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)
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Identical literals that appear in the same clause or different

clauses yield distinct nodes.
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The Proof (continued)

• Suppose G has an independent set I of size K = m.

– An independent set can contain at most m nodes,

one from each triangle.

– So I contains exactly one node from each triangle.

– Truth assignment T assigns true to those literals in I .

– T is consistent because contradictory literals are

connected by an edge; hence both cannot be in I .

– T satisfies φ because it has a node from every

triangle, thus satisfying every clause.a

aThe variables without a truth value can be assigned arbitrarily. Con-

tributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.
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The Proof (concluded)

• Suppose φ is satisfiable.

– Let truth assignment T satisfy φ.

– Collect one node from each triangle whose literal is

true under T .

– The choice is arbitrary if there is more than one true

literal.

– This set of m nodes must be independent by

construction.

∗ Because both literals x and ¬x cannot be assigned

true.
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Other independent set-Related NP-Complete
Problems

Corollary 43 independent set is NP-complete for

4-degree graphs.

Theorem 44 independent set is NP-complete for planar

graphs.

Theorem 45 (Garey & Johnson, 1977) independent

set is NP-complete for 3-degree planar graphs.
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Is independent edge set Also NP-Complete?

• independent edge set: Given an undirected graph

and a goal K, is there an independent edge set of size K?

• This problem is equivalent to maximum matching!

• Maximum matching can be solved in polynomial time.a

aEdmonds (1965); Micali & V. Vazirani (1980).
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A Maximum Matching
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node cover

• We are given an undirected graph G and a goal K.

• node cover: Is there a set C with K or fewer nodes

such that each edge of G has at least one of its

endpoints (i.e., incident nodes) in C?

• Many applications.
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node cover (concluded)
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node cover Is NP-Complete

Corollary 46 (Karp, 1972) node cover is NP-complete.

• I is an independent set of G = (V,E) if and only if

V − I is a node cover of G.a

I

aFinish the reduction!
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Richard Karpa (1935–)

aTuring Award (1985).
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Remarksa

• Are independent set and node cover in P if K is a

constant?

– Yes, because one can do an exhaustive search on all

the possible node covers or independent sets (both(
n
K

)
= O(nK) of them, a polynomial).b

• Are independent set and node cover NP-complete

if K is a linear function of n?

– independent set with K = n/3 and node cover

with K = 2n/3 remain NP-complete by our

reductions.

aContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
bn = |V |.
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clique

• We are given an undirected graph G and a goal K.

• clique asks if there is a set C with K nodes such that

there is an edge between any two nodes i, j ∈ C.

• Many applications.
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clique (concluded)
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clique Is NP-Completea

Corollary 47 clique is NP-complete.

• Let Ḡ be the complement of G, where [x, y ] ∈ Ḡ if

and only if [x, y ] �∈ G.

• I is a clique in G ⇔ I is an independent set in Ḡ.

aKarp (1972).
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min cut and max cut

• A cut in an undirected graph G = (V,E) is a partition

of the nodes into two nonempty sets S and V − S.

• The size of a cut (S, V − S) is the number of edges

between S and V − S.

• min cut asks for the minimum cut size.

• min cut ∈ P by the maxflow algorithm.a

• max cut asks if there is a cut of size at least K.

– K is part of the input.

aFord & Fulkerson (1962); Orlin (2012) improves the running time to

O(|V | · |E |).
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A Cut of Size 4
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min cut and max cut (concluded)

• max cut has applications in circuit layout.

– The minimum area of a VLSI layout of a graph is not

less than the square of its maximum cut size.a

aRaspaud, Sýkora, & Vrťo (1995); Mak & Wong (2000).
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max cut Is NP-Completea

• We will reduce naesat to max cut.

• Given a 3sat formula φ with m clauses, we shall

construct a graph G = (V,E) and a goal K.

• Furthermore, there is a cut of size at least K if and only

if φ is nae-satisfiable.

• Our graph will have multiple edges between two nodes.

– Each such edge contributes one to the cut if its nodes

are separated.

aKarp (1972); Garey, Johnson, & Stockmeyer (1976). max cut re-

mains NP-complete even for graphs with maximum degree 3 (Makedon,

Papadimitriou, & Sudborough, 1985).
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The Proof

• Suppose φ’s m clauses are C1, C2, . . . , Cm.

• The boolean variables are x1, x2, . . . , xn.

• G has 2n nodes: x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn.

• Each clause with 3 distinct literals makes a triangle in G.

• For each clause with two identical literals, there are two

parallel edges between the two distinct literals.

– Call it a degenerate triangle.
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The Proof (continued)

• Assume φ has no clauses with only one distinct literal

(why?).

• Ignore clauses containing two opposite literals xi and

¬xi (why?).

• For each variable xi, add ni copies of edge [ xi,¬xi ],

where ni is the number of occurrences of xi and ¬xi in φ.

• Note that
n∑

i=1

ni = 3m.

– The summation counts the number of literals in φ.
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Take

(x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• Then n1 = n2 = n3 = 3
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The Proof (continued)

• Set K = 5m.

• Suppose there is a cut (S, V − S) of size 5m or more.

• A clause (a triangle, i.e.) contributes at most 2 to a cut

however you split it.a

• Suppose some xi and ¬xi are on the same side of the

cut.

• They together contribute at most 2ni edges to the cut.

– They appear in at most ni different clauses.

– A clause contributes at most 2 to a cut.

aSee p. 402.
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The Proof (continued)

• Either xi or ¬xi contributes at most ni to the cut by the

pigeonhole principle.

• Changing the side of that literal does not decrease the

size of the cut.

• Hence we assume variables are separated from their

negations.

• The total number of edges in the cut that join opposite

literals xi and ¬xi is
∑n

i=1 ni.

• But we knew
∑n

i=1 ni = 3m.
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The Proof (concluded)

• The remaining K − 3m ≥ 2m edges in the cut must

come from the m triangles that correspond to clauses.

• Each can contribute at most 2 to the cut.

• So all are split.

• A split clause means at least one of its literals is true

and at least one false.

• The other direction is left as an exercise.
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This Cut Does Not Meet the Goal K = 5× 3 = 15
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is 13 < 15.
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This Cut Meets the Goal K = 5× 3 = 15
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is now 15.
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Remarks

• We had proved that max cut is NP-complete for

multigraphs.

• How about proving the same thing for simple graphs?a

• How to modify the proof to reduce 4sat to max cut?b

• All NP-complete problems are mutually reducible by

definition.c

– So they are equally hard in this sense.d

aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
cContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
dContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
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max bisection

• max cut becomes max bisection if we require that

|S | = |V − S |.

• It has many applications, especially in VLSI layout.
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max bisection Is NP-Complete

• We shall reduce the more general max cut to max

bisection.

• Add |V | = n isolated nodes to G to yield G′.

• G′ has 2n nodes.

• G′’s goal K is identical to G’s

– As the new nodes have no edges, they contribute 0 to

the cut.

• This completes the reduction.
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The Proof (concluded)

• A cut (S, V − S) can be made into a bisection by

allocating the new nodes between S and V − S.

• Hence each cut of G can be made a cut of G′ of the
same size, and vice versa.
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bisection width

• bisection width is like max bisection except that it

asks if there is a bisection of size at most K (sort of min

bisection).

• Unlike min cut, bisection width is NP-complete.

• We reduce max bisection to bisection width.

• Given a graph G = (V,E), where |V | is even, we
generate the complementa of G.

• Given a goal of K, we generate a goal of n2 −K.b

aRecall p. 396.
b|V | = 2n.
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The Proof (concluded)

• To show the reduction works, simply notice the following

easily verifiable claims.

– A graph G = (V,E), where |V | = 2n, has a bisection

of size K if and only if the complement of G has a

bisection of size n2 −K.

– So G has a bisection of size ≥ K if and only if its

complement has a bisection of size ≤ n2 −K.
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hamiltonian path Is NP-Completea

Theorem 48 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).
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A Hamiltonian Path at IKEA, Covina, California?
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Random hamiltonian cycle

• Consider a random graph where each pair of nodes are

connected by an edge independently with probability

1/2.

• Then it contains a Hamiltonian cycle with probability

1− o(1).a

aFrieze & Reed (1998).
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tsp (d) Is NP-Complete

Corollary 49 tsp (d) is NP-complete.

• We will reduce hamiltonian path to tsp (d).

• Consider a graph G with n nodes.

• Create a weighted complete graph G′ with the same

nodes as G.

• Set dij = 1 on G′ if [ i, j ] ∈ G and dij = 2 on G′ if
[ i, j ] �∈ G.

– Note that G′ is a complete graph.

• Set the budget B = n+ 1.

• This completes the reduction.
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tsp (d) Is NP-Complete (continued)

• Suppose G′ has a toura of distance at most n+ 1.

• Then that tour on G′ must contain at most one edge

with weight 2.

• If a tour on G′ contains one edge with weight 2, remove

that edge to arrive at a Hamiltonian path for G.

• Suppose a tour on G′ contains no edge with weight 2.

• Remove any edge to arrive at a Hamiltonian path for G.

aA tour is a cycle, not a path.
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tsp (d) Is NP-Complete (concluded)

• On the other hand, suppose G has a Hamiltonian path.

• There is a tour on G′ containing at most one edge with

weight 2.

– Start with a Hamiltonian path.

– Insert the edge connecting the beginning and ending

nodes to yield a tour.

• The total cost is then at most (n− 1) + 2 = n+ 1 = B.

• We conclude that there is a tour of length B or less on

G′ if and only if G has a Hamiltonian path.
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Random tsp

• Suppose each distance dij is picked uniformly and

independently from the interval [ 0, 1 ].

• Then the total distance of the shortest tour has a mean

value of β
√
n for some positive β.a

• In fact, the total distance of the shortest tour deviates

from the mean by more than t with probability at most

e−t2/(4n)!b

aBeardwood, Halton, & Hammersley (1959).
bRhee & Talagrand (1987); Dubhashi & Panconesi (2012).
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Graph Coloring

• k-coloring: Can the nodes of a graph be colored with

≤ k colors such that no two adjacent nodes have the

same color?a

• 2-coloring is in P (why?).

• But 3-coloring is NP-complete (see next page).

ak is not part of the input; k is part of the problem statement.
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3-coloring Is NP-Completea

• We will reduce naesat to 3-coloring.

• We are given a set of clauses C1, C2, . . . , Cm each with 3

literals.

• The boolean variables are x1, x2, . . . , xn.

• We now construct a graph that can be colored with

colors { 0, 1, 2 } if and only if all the clauses can be

nae-satisfied.

aKarp (1972).
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The Proof (continued)

• Every variable xi is involved in a triangle [ a, xi,¬xi ]

with a common node a.

• Each clause Ci = (ci1 ∨ ci2 ∨ ci3) is also represented by a

triangle

[ ci1, ci2, ci3 ].

– Node cij and a node in an a-triangle [ a, xk,¬xk ]

with the same label represent distinct nodes.

• There is an edge between literal cij in the a-triangle and

the node representing the jth literal of Ci.
a

aAlternative proof: There is an edge between ¬cij and the node

that represents the jth literal of Ci. Contributed by Mr. Ren-Shuo Liu

(D98922016) on October 27, 2009.
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Construction for · · · ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ · · ·
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The Proof (continued)

Suppose the graph is 3-colorable.

• Assume without loss of generality that node a takes the

color 2.

• A triangle must use up all 3 colors.

• As a result, one of xi and ¬xi must take the color 0 and

the other 1.
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The Proof (continued)

• Treat 1 as true and 0 as false.a

– We are dealing with the a-triangles here, not the

clause triangles yet.

• The resulting truth assignment is clearly contradiction

free.

• As each clause triangle contains one color 1 and one

color 0, the clauses are nae-satisfied.

– Here, treat 0 as true and 1 as false.

– Ignore 2’s truth value as it is irrelevant now.

aThe opposite also works.
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The Proof (continued)

Suppose the clauses are nae-satisfiable.

• For each a-triangle:

– Color node a with color 2.

– Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).
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The Proof (continued)

• For each clause triangle:

– Pick any two literals with opposite truth values.a

– Color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

– Color the remaining node with color 2 regardless of

its truth value.

aBreak ties arbitrarily.
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The Proof (concluded)

• The coloring is legitimate.

– If literal w of a clause triangle has color 2, then its

color will never be an issue.

– If literal w of a clause triangle has color 1, then it

must be connected up to literal w with color 0.

– If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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More on 3-coloring and the Chromatic Number

• 3-coloring remains NP-complete for planar graphs.a

• Assume G is 3-colorable.

• There is a classic algorithm that finds a 3-coloring in

time O(3n/3) = 1.4422n.b

• It can be improved to O(1.3289n).c

aGarey, Johnson, & Stockmeyer (1976); Dailey (1980).
bLawler (1976).
cBeigel & Eppstein (2000).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 434



More on 3-coloring and the Chromatic Number
(concluded)

• The chromatic number χ(G) is the smallest number

of colors needed to color a graph G.

• There is an algorithm to find χ(G) in time

O((4/3)n/3) = 2.4422n.a

• It can be improved to O((4/3 + 34/3/4)n) = O(2.4150n)b

and 2nnO(1).c

• Computing χ(G) cannot be easier than 3-coloring.d

aLawler (1976).
bEppstein (2003).
cKoivisto (2006).
dContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
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