Theory of Computation

Midterm Examination on October 14, 2022

Fall Semester, 2022

Problem 1 (20 points) Prove that the following language L is undecidable:

$$
L=\{M ; x ; n: \text { a TM } M \text { with input } x \text { executes the } n \text {th instruction of } M\} .
$$

Use reduction from the halting problem $H=\{M ; x: M(x) \neq \nearrow\}$.
Proof: Suppose that L is decidable. We now reduce the halting problem to L. Consider an instance $M ; x$. Then replace all instructions $\delta(q, s)=(r, t, D)$, where r is a "yes," a "no," or an h , with $\delta(q, s)=(Q, t, D)$, where Q is a new state. Then add instructions which make the head move to the beginning of the tape (with symbol $\triangleright)$ while remaining at state Q. Let k be the number of instructions of the aforesaid machine. Finally, add the instruction $\delta(Q, \triangleright)=(h, \triangleright,-)$ numbered $n=k+1$. Call this modified machine M^{\prime}. Now we construct a TM $M^{\prime \prime}$ such that

$$
M^{\prime \prime}\left(M^{\prime} ; x ; n\right)=\left\{\begin{array}{l}
\text { "yes", if } M^{\prime}(x) \text { executes the } n \text {th instruction; } \\
\text { "no", otherwise. }
\end{array}\right.
$$

Clearly $M^{\prime} ; x ; n \in L$ if and only if $M ; x \in H$, a contradiction. Hence L is undecidable.

Problem 2 (20 points) Answer the following questions.
(1) Write down the property of being a polynomially decidable language.
(2) Use Rice's theorem to prove that this property is undecidable.

Proof:

(1) The property of being a polynomially decidable language is
$\{L$: a TM M decides L in polynomial time $\}$.
(2) We know $P \subsetneq E$ of the lecture notes, which also implies there are problems in E but not in P. Hence the said property is nontrivial and Rice's theorem applies.

Problem 3 (20 points) We call a boolean function $f:\{0,1\}^{k} \rightarrow\{0,1\}$ symmetric if $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ depends only on $\sum_{i=1}^{k}=x_{i}$. How many symmetric boolean functions of k variables are there?

Proof: 2^{k+1}.

Problem 4 (20 points) Suppose L_{1} is undecidable and $L_{1} \subseteq L_{2}$. Is L_{2} undecidable? Either prove it or give examples with proofs.

Proof: It depends. When $L_{2}=\Sigma^{*}, L_{2}$ is decidable: Just answer "yes." If $L_{2}-L_{1}$ is decidable, then L_{2} is undecidable. This is because:

- Clearly,

$$
x \in L_{1} \text { if and only if } x \in L_{2} \text { and } x \notin L_{2}-L_{1} .
$$

- Therefore, if L_{2} were decidable, then L_{1} would be.

Problem 5 (20 points) Let ϕ_{1} and ϕ_{2} be arbitrary boolean expressions. We say ϕ_{1} and ϕ_{2} are equivalent, written in $\phi_{1} \equiv \phi_{2}$, if for any truth assignment T appropriate to both of them, $T \models \phi_{1}$ if and only if $T \models \phi_{2}$. Prove that $\phi_{1} \equiv \phi_{2}$ if and only if $\phi_{1} \Leftrightarrow \phi_{2}$ is tautology. (Recall that $\phi_{1} \Leftrightarrow \phi_{2}$ is a short hand for $\left.\left(\phi_{1} \Rightarrow \phi_{2}\right) \wedge\left(\phi_{2} \Rightarrow \phi_{1}\right).\right)$

Proof:

- (If) Suppose that $\phi_{1} \Leftrightarrow \phi_{2}$ is tautology. Assume that $T \models \phi_{1}$. Then T satisfies ϕ_{2} because $\phi_{1} \Leftrightarrow \phi_{2}$ is a tautology. Similarly, T satisfies ϕ_{1} if T satisfies ϕ_{2}. Thus $\phi_{1} \equiv \phi_{2}$.
- (Only if) Suppose $\phi_{1} \equiv \phi_{2}$. For any truth assignment T such that $T \models \phi_{1}$ and $T \models \phi_{2}, T$ surely satisfies $\phi_{1} \wedge \phi_{2}$. On the other hand, for any truth assignment T such that $T \not \vDash \phi_{1}$ and $T \not \vDash \phi_{2}, T$ satisfies $\neg \phi_{1} \wedge \neg \phi_{2}$. There are no other possibilities because $\phi_{1} \equiv \phi_{2}$. So all truth assignments satisfy $\left(\phi_{1} \wedge \phi_{2}\right) \vee\left(\neg \phi_{1} \wedge \neg \phi_{2}\right)$ which is logically equivalent to $\phi_{1} \Leftrightarrow \phi_{2}$. Hence $\phi_{1} \Leftrightarrow \phi_{2}$ is tautology.

