
circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.a

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.

aEssentially the same algorithm as the one on p. 120.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 218

Somea Boolean Functions Need Exponential Circuitsb

Theorem 16 For any n ≥ 2, there is an n-ary boolean

function f such that no boolean circuits with 2n/(2n) or

fewer gates can compute it.

• There are 22
n

different n-ary boolean functions.c

• We next prove that there are fewer than 22
n

boolean

circuits with up to 2n/(2n) gates.

aCan be strengthened to “Almost all” (Lupanov, 1958).
bRiordan & Shannon (1942); Shannon (1949).
cRecall p. 209.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 219

The Proof (concluded)

• There are at most ((n+ 5)×m2)m boolean circuits with

m or fewer gates (see next page).

• But ((n+ 5)×m2)m < 22
n

when m = 2n/(2n):

m log2((n+ 5)×m2)

= 2n

(
1− log2

4n2

n+5

2n

)

< 2n

for n ≥ 2.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 220

m choices

n+5 choices

m choices

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 221

Claude Elwood Shannon (1916–2001)

Howard Gardner (1987), “[Shan-

non’s master’s thesis is] possibly the

most important, and also the most

famous, master’s thesis of the cen-

tury.”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 222

Comments

• The lower bound 2n/(2n) is rather tight because an

upper bound is n2n (p. 211).

• The proof counted the number of circuits.

– Some circuits may not be valid at all.

– Different circuits may also compute the same

function.

• Both are fine because we only need an upper bound on

the number of circuits.

• We do not need to consider the outgoing edges because

they have been counted as incoming edges.a

aIf you prove the theorem by considering outgoing edges, the bound

will not be good. (Try it!)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 223

Relations between Complexity Classes

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 224

It is, I own, not uncommon to be

wrong in theory

and right in practice.

— Edmund Burke (1729–1797),

A Philosophical Enquiry into the Origin of Our

Ideas of the Sublime and Beautiful (1757)

The problem with QE is

it works in practice,

but it doesn’t work in theory.

— Ben Bernanke (2014)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 225

Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = �f(|x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.
– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.
• Mf ’s running time is bounded by f(n).

aThe textbook calls “�” the quasi-blank symbol. The use of Mf (x)

will become clear in Proposition 17 (p. 229).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 226

Examples of Proper Functions

• Most “reasonable” functions are proper: c, �logn�,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.a

• Nonproper functions when serving as the time bounds

for complexity classes spoil “theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).b

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aFor f(g(n)), we need to add f(n) ≥ n.
bTrakhtenbrot (1964); Borodin (1972). Theorem 7.3 on p. 145 of the

textbook proves it.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 227

Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precisely f(n) steps,a and

– All of its strings are of length precisely g(n) at

halting.b

∗ Recall that if M is a TM with input and output,

we exclude the first and last strings.

• M can be deterministic or nondeterministic.

aFully time constructible (Hopcroft & Ullman, 1979).
bFully space constructible (Hopcroft & Ullman, 1979).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 228

Precise TMs Are General

Proposition 17 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n+ f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output, of length f(|x |), will serve as a

“yardstick” or an “alarm clock.”

aDeterministic or nondeterministic.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 229

The Proof (continued)

• Then M ′ simulates M(x).

• M ′(x) halts when and only when the alarm clock runs

out—even if M halts earlier.

• If f is a time bound:

– The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

– Because M ′ stops at the moment the “clock” string

is exhausted—even if M(x) stops earlier, it is precise.

– The time bound is therefore O(|x |+ f(|x |)).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 230

The Proof (concluded)

• If f is a space bound (sketch):

– M ′ simulates M on the quasi-blanks of Mf ’s output

string.a

– The total space, not counting the input string, is

O(f(n)).

– But we still need a way to make sure there is no

infinite loop even if M does not halt.b

aThis is to make sure the space bound is precise.
bSee the proof of Theorem 24 (p. 248).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 231

Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk)
Δ
=
⋃
j>0

NTIME(nj).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 232

Important Complexity Classes (concluded)

P
Δ
= TIME(nk),

NP
Δ
= NTIME(nk),

PSPACE
Δ
= SPACE(nk),

NPSPACE
Δ
= NSPACE(nk),

E
Δ
= TIME(2kn),

EXP
Δ
= TIME(2n

k

),

NEXP
Δ
= NTIME(2n

k

),

L
Δ
= SPACE(logn),

NL
Δ
= NSPACE(logn).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 233

Complements of Nondeterministic Classes

• Recall that the complement of L, or L̄, is the language

Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.

• R, RE, and coRE are distinct.a

– Again, coRE contains the complements of languages

in RE, not languages that are not in RE.

aRecall p. 164.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 234

The Co-Classes

• For any complexity class C, coC denotes the class

{L : L̄ ∈ C }.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.
– They are said to be closed under complement.

• Whether nondeterministic classes for time are closed

under complement is not known.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 235

The Co-Classes (concluded)

• As

coC = {L : L̄ ∈ C },
L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L
∈ coC.
– coC is not defined as C̄.

• For example, suppose C = {{ 2, 4, 6, 8, 10, . . . }, . . . }.
• Then coC = {{ 1, 3, 5, 7, 9, . . . }, . . . }.
• But C̄ = 2{ 1,2,3,... } − {{ 2, 4, 6, 8, 10, . . .}, . . . }.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 236

The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf
Δ
= {M ;x : M accepts input x

after at most f(|x |) steps },
where M is deterministic.

• Assume the input is binary as usual.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 237

Hf ∈ TIME(f 3(n))

• For each input M ;x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 87), the universal

TM (p. 142), and the linear speedup theorem (p. 97).

– Our simulator accepts M ;x if and only if M accepts

x before the alarm clock runs out.

• From p. 94, the total running time is O(�Mk2Mf2(n)),

where �M is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As �Mk2M = O(n), the running time is O(f3(n)), where

the constant is independent of M .

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 238

Hf
∈ TIME(f(�n/2�))
• Suppose TM MHf

decides Hf in time f(�n/2�).
• Consider machine:

Df (M) {
if MHf

(M ;M) = “yes”

then “no”;

else “yes”;

}

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 239

The Proof (continued)

• MHf
(M ;M) runs in time f(� 2n+1

2 �) = f(n), where

n = |M |.a

• By construction, Df (M) runs in the same amount of

time as MHf
(M ;M), i.e., f(n), where n = |M |.

aMr. Hsiao-Fei Liu (F92922019) and Mr. Hong-Lung Wang

(F92922085) pointed out on October 6, 2004, that this estimation (and

the text’s Lemma 7.2) forgets to include the time to write down M ;M .

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 240

The Proof (concluded)

• First, suppose Df (Df) = “yes”.

• This implies

Df ;Df
∈ Hf .

• Thus Df does not accept Df within time f(|Df |).
• But Df (Df) stops in time f(|Df |) with an answer.

• Hence Df (Df) = “no”, a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 241

The Time Hierarchy Theorem

Theorem 18 If f(n) ≥ n is proper, then

TIME(f(n)) � TIME(f3(2n+ 1)).

• The quantified halting problem makes it so.

Corollary 19 P � E.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 18,

TIME (2n) � TIME
(
(22n+1)3

) ⊆ E.

• So P � E.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 242

The Space Hierarchy Theorem

Theorem 20 (Hennie & Stearns, 1966) If f(n) is

proper, then

SPACE(f(n)) � SPACE(f(n) log f(n)).

Corollary 21 L � PSPACE.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 243

Nondeterministic Time Hierarchy Theorems

Theorem 22 (Cook, 1973) NTIME(nr) � NTIME(ns)

whenever 1 ≤ r < s.

Theorem 23 (Seiferas, Fischer, & Meyer, 1978) If

T1(n) and T2(n) are proper, then

NTIME(T1(n)) � NTIME(T2(n))

whenever T1(n+ 1) = o(T2(n)).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 244

The Reachability Method

• The computation of a time-bounded TM can be

represented by a directed graph.

• The TM’s configurations constitute the nodes.

• There is a directed edge from node x to node y if x

yields y in one step.

• The start node representing the initial configuration has

zero in-degree.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 245

The Reachability Method (concluded)

• When the TM is nondeterministic, a node may have an

out-degree greater than one.

– The graph is the same as the computation tree

earlier.

– But identical configurations are merged into one

node.a

• So M accepts the input if and only if there is a path

from the start node to a node with a “yes” state.

• It is the reachability problem.

aSo we end up with a graph not a tree.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 246

Illustration of the Reachability Method

yes

yes
Initial

configuration

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 247

Relations between Complexity Classes

Theorem 24 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klogn+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Specifically, generate an f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248

Proof of Theorem 24(2)

• (continued)

– Simulate the NTM based on the choices.

– Recycle the space and repeat the above steps.

– Halt with “yes” when a “yes” is encountered.

– Halt with “no” if the tree is exhausted without

encountering a “yes.”

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) because space is recycled.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 249

Proof of Theorem 24(3)

• Let k-string NTM

M = (K,Σ,Δ, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 250

Proof of Theorem 24(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K | × (n+ 1)× |Σ |2(k−2)f(n) = O(c
logn+f(n)
1) (2)

for some c1 > 1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 251

Proof of Theorem 24(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .).a

• This is reachability on a graph with O(c
logn+f(n)
1)

nodes.

• It is in TIME(clogn+f(n)) for some c > 1 because

reachability ∈ TIME(nj) for some j and[
c
logn+f(n)
1

]j
= (cj1)

logn+f(n).

aThere may be many of them.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 252

Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations earlier

(p. 116), the TMs are not required to halt at all.

• When the space is bounded by a proper function f ,

computations can be assumed to halt:

– Run the TM associated with f to produce a

quasi-blank output of length f(n) first.

– The space-bounded computation must repeat a

configuration if it runs for more than clogn+f(n) steps

for some c > 1.a

aSee Eq. (2) on p. 251.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253

Space-Bounded Computation and Proper Functions
(concluded)

• (continued)

– So an infinite loop occurs during simulation for a

computation path longer than clogn+f(n) steps.

– Hence we only need to simulate up to clogn+f(n) time

steps per computation path.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 254

A Grand Chain of Inclusionsa

• It is an easy application of Theorem 24 (p. 248) that

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 21 (p. 243), we know L � PSPACE.

• So the chain must break somewhere between L and EXP.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.

aWith input from Mr. Chin-Luei Chang (B89902053, R93922004,

D95922007) on October 22, 2004.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 255

What Is Wrong with the Proof?a

• By Theorem 24(2) (p. 248),

NL ⊆ TIME
(
kO(logn)

)
⊆ TIME (nc1)

for some c1 > 0.

• By Theorem 18 (p. 242),

TIME (nc1) � TIME (nc2) ⊆ P

for some c2 > c1.

• So

NL
= P.

aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11,

2014.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 256

What Is Wrong with the Proof? (concluded)

• Recall from p. 232 that TIME(kO(logn)) is a shorthand

for ⋃
j>0

TIME
(
jO(logn)

)
.

• So the correct proof runs more like

NL ⊆
⋃
j>0

TIME
(
jO(logn)

)
⊆
⋃
c>0

TIME (nc) = P.

• And

NL
= P

no longer follows.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 257

Nondeterministic and Deterministic Space

• By Theorem 6 (p. 132),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof yet that the exponential gap is

inherent.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic—a

polynomial—by Savitch’s theorem.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 258

Savitch’s Theorem

Theorem 25 (Savitch, 1970)

reachability ∈ SPACE(log2 n).

• Let G(V,E) be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, �logn�)
holds.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 259

The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i− 1) and PATH(z, y, i− 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, �logn�) with a depth-first search

on a graph with nodes (x, y, i)s (see next page).a

• Like stacks in recursive calls, we keep only the current

path’s (x, y, i)s.

aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 260

The Proof (continued): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ E then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i− 1) and PATH(z, y, i− 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 261

The Proof (continued)

�����������	 ��

�����������	 ��� �����������	 ���

�����

����

����

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 262

The Proof (concluded)

• The space requirement is proportional to the depth of

the tree (�logn�) times the size of the items stored at

each node.

• Depth is �logn�, and each node (x, y, i) needs space

O(log n).

• The total space is O(log2 n).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 263

The Relation between Nondeterministic and
Deterministic Space Is Only Quadratic

Corollary 26 Let f(n) ≥ logn be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s proof to the configuration graph of the

NTM on its input.

• From p. 251, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(cf(n)) space!

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We checked node connectedness only when i = 0 on

p. 261, by examining the input graph G.

• Suppose we are given configurations x and y.

• Then we go over the Turing machine’s program to

determine if there is an instruction that can turn x into

y in one step.a

• So connectivity is checked locally and on demand.

aThanks to a lively class discussion on October 15, 2003.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 265

The Proof (continued)

• The z variable in the algorithm on p. 261 simply runs

through all possible valid configurations.

– Let z = 0, 1, . . . , O(cf(n)).

– Make sure z is a valid configuration before

proceeding with it.a

∗ Adopt the same width for each symbol and state of

the NTM and for the cursor position on the input

string.b

– If it is not, advance to the next z.

aThanks to a lively class discussion on October 13, 2004.
bContributed by Mr. Jia-Ming Zheng (R04922024) on October 17,

2017.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 266

The Proof (concluded)

• Each z has length O(f(n)).

• So each node needs space O(f(n)).

• The depth of the recursive call on p. 261 is O(log cf(n)),

which is O(f(n)).

• The total space is therefore O(f2(n)).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 267

Implications of Savitch’s Theorem

Corollary 27 PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 268

Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes.a

• It is known thatb

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL.

• But it is not known whether coNP = NP.c

aRecall p. 235.
bSzelepscényi (1987); Immerman (1988).
cIf P = NP, then coNP = NP. Contributed by Mr. Yu-Ming Lu

(R06723032, D08922008) on October 21, 2021.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 269

Reductions and Completeness

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 270

It is unworthy of excellent men

to lose hours like slaves

in the labor of computation.

— Gottfried Wilhelm von Leibniz (1646–1716)

I thought perhaps you might be members of

that lowly section of the university

known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 271

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if:

– There is a transformation R which for every problem

instance x of B yields a problem instance R(x) of A.a

– The answer to “R(x) ∈ A?” is the same as the

answer to “x ∈ B?”

– R is easy to compute.

• We say problem A is at least as hard asb problem B if B

reduces to A.

aSee also p. 156.
bOr simply “harder than” for brevity.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 272

Reduction

x yes/noR(x)
R

algorithm
for A

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.a

aMore general reductions are possible, such as the Turing (1939) re-

duction and the Cook (1971) reduction.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 273

Degrees of Difficulty (concluded)

• This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A

must be at least as hard.

– If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.a

– So if B is hard to solve, A must be hard, too!

aThanks to a lively class discussion on October 13, 2009.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 274

Commentsa

• Suppose B reduces to A via a transformation R.b

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.c

– Some instances of A may never appear in R’s range.

• But x must be an arbitrary instance for B.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
bSometimes, we say “B can be reduced to A.”
cR(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 275

Comments (concluded)

• Usually, R(x)’s range A′ is a small subset of A.

• If A′ or a subset of A that contains A′ is an interesting

problem in its own right, it will be given a name.a

aContributed by Mr. Yu-Ming Lu (R06723032, D08922008) on Novem-

ber 18, 2021.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276

Is “Reduction” a Confusing Choice of Word?a

• If B reduces to A, doesn’t that intuitively make A

smaller and simpler?

• But our definition means the opposite.

• Our definition says in this case B is a special case of A.b

• Hence A is harder.

aMoore & Mertens (2011).
bSee also p. 157.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 277

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278

Reduction between Languages (concluded)

• Note that by Theorem 24 (p. 248), R runs in polynomial

time.

– In most cases, a polynomial-time R suffices for

proofs.a

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2?” is an algorithm for solving

“x ∈ L1?”
b

aIn fact, unless stated otherwise, we will only require that the reduc-

tion R run in polynomial time. It is often called a polynomial-time

many-one reduction.
bOf course, it may not be the most efficient one.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 279

A Paradox?

• Degree of difficulty is not defined in terms of absolute

complexity.

• So a language B ∈ TIME(n99) may be “easier” than a

language A ∈ TIME(n3) if B reduces to A.

• But isn’t this a contradiction if the best algorithm for B

requires n99 steps?

• That is, how can a problem requiring n99 steps be

reducible to a problem solvable in n3 steps?

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 280

Paradox Resolved

• The “contradiction” is the result of flawed logic.

• Suppose we solve the problem “x ∈ B?” via “R(x) ∈ A?”

• We must consider the time spent by R(x) and its length

|R(x) |:
– It is R(x) — not x — that is solved by A.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 281

