Circuit Sat and Circuit Value

Circuit Sat: Given a circuit, is there a truth assignment such that the circuit outputs true?

- Circuit Sat ∈ NP: Guess a truth assignment and then evaluate the circuit.\(^a\)

Circuit Value: The same as Circuit Sat except that the circuit has no variable gates.

- Circuit Value ∈ P: Evaluate the circuit from the input gates gradually towards the output gate.

\(^a\)Essentially the same algorithm as the one on p. 120.
Some Boolean Functions Need Exponential Circuits

Theorem 16 For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different n-ary boolean functions.\(^c\)
- We next prove that there are fewer than 2^{2^n} boolean circuits with up to $2^n/(2n)$ gates.

\(^a\)Can be strengthened to “Almost all” (Lupanov, 1958).
\(^b\)Riordan & Shannon (1942); Shannon (1949).
\(^c\)Recall p. 209.
The Proof (concluded)

- There are at most \(((n+5) \times m^2)^m \) boolean circuits with \(m \) or fewer gates (see next page).

- But \(((n+5) \times m^2)^m < 2^{2^n} \) when \(m = 2^n/(2n) \):

\[
m \log_2 ((n+5) \times m^2) = 2^n \left(1 - \frac{\log_2 \frac{4n^2}{n+5}}{2n} \right) < 2^n \text{ for } n \geq 2.
\]
$n+5$ choices

m choices m choices
Claude Elwood Shannon (1916–2001)

Howard Gardner (1987), “[Shannon’s master’s thesis is] possibly the most important, and also the most famous, master’s thesis of the century.”
Comments

• The lower bound $2^n/(2n)$ is rather tight because an upper bound is $n2^n$ (p. 211).

• The proof counted the number of circuits.
 – Some circuits may not be valid at all.
 – Different circuits may also compute the same function.

• Both are fine because we only need an upper bound on the number of circuits.

• We do not need to consider the *outgoing* edges because they have been counted as incoming edges.\(^a\)

\(^a\)If you prove the theorem by considering outgoing edges, the bound will not be good. (Try it!)
Relations between Complexity Classes
It is, I own, not uncommon to be wrong in theory and right in practice.

— Edmund Burke (1729–1797),
A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

The problem with QE is it works in practice, but it doesn’t work in theory.

— Ben Bernanke (2014)
Proper (Complexity) Functions

- We say that \(f : \mathbb{N} \rightarrow \mathbb{N} \) is a proper (complexity) function if the following hold:
 - \(f \) is nondecreasing.
 - There is a \(k \)-string TM \(M_f \) such that
 \[
 M_f(x) = \sqcap^f(|x|) \quad \text{for any } x.\]
 - \(M_f \) halts after \(O(|x| + f(|x|)) \) steps.
 - \(M_f \) uses \(O(f(|x|)) \) space besides its input \(x \).

- \(M_f \)'s behavior depends only on \(|x| \) not \(x \)'s contents.
- \(M_f \)'s running time is bounded by \(f(n) \).

\(^a\)The textbook calls “\(\sqcap \)” the quasi-blank symbol. The use of \(M_f(x) \) will become clear in Proposition 17 (p. 229).
Examples of Proper Functions

- Most “reasonable” functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n, \sqrt{n}, $n!$, etc.

- If f and g are proper, then so are $f + g$, fg, and 2^g.\(^a\)

- Nonproper functions when serving as the time bounds for complexity classes spoil “theory building.”
 - For example, $\text{TIME}(f(n)) = \text{TIME}(2^{f(n)})$ for some recursive function f (the gap theorem).\(^b\)

- Only proper functions f will be used in $\text{TIME}(f(n))$, $\text{SPACE}(f(n))$, $\text{NTIME}(f(n))$, and $\text{NSPACE}(f(n))$.

\(^a\)For $f(g(n))$, we need to add $f(n) \geq n$.

\(^b\)Trakhtenbrot (1964); Borodin (1972). Theorem 7.3 on p. 145 of the textbook proves it.
Precise Turing Machines

• A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after *precisely* $f(n)$ steps,\(^a\) and
 - All of its strings are of length precisely $g(n)$ at halting.\(^b\)
 *
 * Recall that if M is a TM with input and output, we exclude the first and last strings.

• M can be deterministic or nondeterministic.

\(^{a}\)Fully time constructible (Hopcroft & Ullman, 1979).
\(^{b}\)Fully space constructible (Hopcroft & Ullman, 1979).
Precise TMs Are General

Proposition 17 Suppose a TM\(^a\) \(M\) decides \(L\) within time (space) \(f(n)\), where \(f\) is proper. Then there is a precise TM \(M'\) which decides \(L\) in time \(O(n + f(n))\) (space \(O(f(n))\), respectively).

- \(M'\) on input \(x\) first simulates the TM \(M_f\) associated with the proper function \(f\) on \(x\).
- \(M_f\)'s output, of length \(f(|x|)\), will serve as a "yardstick" or an "alarm clock."

\(^a\)Deterministic or nondeterministic.
The Proof (continued)

- Then M' simulates $M(x)$.
- $M'(x)$ halts when and only when the alarm clock runs out—even if M halts earlier.
- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the “clock” string.
 - Because M' stops at the moment the “clock” string is exhausted—even if $M(x)$ stops earlier, it is precise.
 - The time bound is therefore $O(|x| + f(|x|))$.
The Proof (concluded)

- If f is a space bound (sketch):
 - M' simulates M on the quasi-blanks of M_f's output string.\(^a\)
 - The total space, not counting the input string, is $O(f(n))$.
 - But we still need a way to make sure there is no infinite loop even if M does not halt.\(^b\)

\(^a\)This is to make sure the space bound is precise.
\(^b\)See the proof of Theorem 24 (p. 248).
Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example,

$$\text{NTIME}(n^k) \triangleq \bigcup_{j>0} \text{NTIME}(n^j).$$
Important Complexity Classes (concluded)

\[P \triangleq \text{TIME}(n^k) , \]
\[\text{NP} \triangleq \text{NTIME}(n^k) , \]
\[\text{PSPACE} \triangleq \text{SPACE}(n^k) , \]
\[\text{NPSPACE} \triangleq \text{NSPACE}(n^k) , \]
\[E \triangleq \text{TIME}(2^{kn}) , \]
\[\text{EXP} \triangleq \text{TIME}(2^{n^k}) , \]
\[\text{NEXP} \triangleq \text{NTIME}(2^{n^k}) , \]
\[L \triangleq \text{SPACE}(\log n) , \]
\[\text{NL} \triangleq \text{NSPACE}(\log n) . \]
Complements of Nondeterministic Classes

• Recall that the complement of L, or \overline{L}, is the language $\Sigma^* - L$.

 – SAT COMPLEMENT is the set of unsatisfiable boolean expressions.

• R, RE, and $coRE$ are distinct.a

 – Again, coRE contains the complements of languages in RE, not languages that are not in RE.

aRecall p. 164.
The Co-Classes

• For any complexity class \mathcal{C}, $\text{co}\mathcal{C}$ denotes the class
 \[\{ L : \bar{L} \in \mathcal{C} \} . \]

• Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C} = \text{co}\mathcal{C}$.
 – They are said to be closed under complement.

• Whether nondeterministic classes for time are closed under complement is not known.
The Co-Classes (concluded)

• As

\[\text{co}C = \{ L : \bar{L} \in C \}, \]

\(L \in C \) if and only if \(\bar{L} \in \text{co}C \).

• But it is not true that \(L \in C \) if and only if \(L \notin \text{co}C \).
 – \(\text{co}C \) is not defined as \(\bar{C} \).

• For example, suppose \(C = \{ \{ 2, 4, 6, 8, 10, \ldots \}, \ldots \} \).

• Then \(\text{co}C = \{ \{ 1, 3, 5, 7, 9, \ldots \}, \ldots \} \).

• But \(\bar{C} = 2^{\{1, 2, 3, \ldots \}} - \{ \{ 2, 4, 6, 8, 10, \ldots \}, \ldots \} \).
The Quantified Halting Problem

- Let \(f(n) \geq n \) be proper.
- Define

\[
H_f \triangleq \{ M; x : M \text{ accepts input } x \\
\text{after at most } f(|x|) \text{ steps } \},
\]

where \(M \) is deterministic.
- Assume the input is binary as usual.
\[H_f \in \text{TIME}(f^3(n)) \]

- For each input \(M; x \), we simulate \(M \) on \(x \) with an alarm clock of length \(f(|x|) \).

 - Use the single-string simulator (p. 87), the universal TM (p. 142), and the linear speedup theorem (p. 97).

 - Our simulator accepts \(M; x \) if and only if \(M \) accepts \(x \) before the alarm clock runs out.

- From p. 94, the total running time is \(O(\ell_M k^2_M f^2(n)) \), where \(\ell_M \) is the length to encode each symbol or state of \(M \) and \(k_M \) is \(M \)'s number of strings.

- As \(\ell_M k^2_M = O(n) \), the running time is \(O(f^3(n)) \), where the constant is independent of \(M \).
\(H_f \not\in \text{TIME}(f(\lfloor n/2 \rfloor)) \)

- Suppose TM \(M_{H_f} \) decides \(H_f \) in time \(f(\lfloor n/2 \rfloor) \).
- Consider machine:

\[
D_f(M) \quad \{
\begin{align*}
\text{if } M_{H_f}(M; M) &= \text{“yes”} \\
\text{then } \text{“no”; } \\
\text{else } \text{“yes”; }
\end{align*}
\}
\]
The Proof (continued)

- $M_{H_f}(M; M)$ runs in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where $n = |M|$.\(^a\)

- By construction, $D_f(M)$ runs in the same amount of time as $M_{H_f}(M; M)$, i.e., $f(n)$, where $n = |M|$.\(^a\)

\(^a\)Mr. Hsiao-Fei Liu (F92922019) and Mr. Hong-Lung Wang (F92922085) pointed out on October 6, 2004, that this estimation (and the text’s Lemma 7.2) forgets to include the time to write down $M; M$.
The Proof (concluded)

- First, suppose $D_f(D_f) = \text{“yes”}$.
- This implies
 $$D_f; D_f \not\in H_f.$$
- Thus D_f does not accept D_f within time $f(|D_f|)$.
- But $D_f(D_f)$ stops in time $f(|D_f|)$ with an answer.
- Hence $D_f(D_f) = \text{“no”}$, a contradiction.
- Similarly, $D_f(D_f) = \text{“no”} \Rightarrow D_f(D_f) = \text{“yes.”}$
The Time Hierarchy Theorem

Theorem 18 If \(f(n) \geq n \) is proper, then

\[
\text{TIME}(f(n)) \subsetneq \text{TIME}(f^3(2n + 1)).
\]

- The quantified halting problem makes it so.

Corollary 19 \(P \subsetneq E \).

- \(P \subseteq \text{TIME}(2^n) \) because \(\text{poly}(n) \leq 2^n \) for \(n \) large enough.
- But by Theorem 18,

\[
\text{TIME}(2^n) \subsetneq \text{TIME}\left((2^{2n+1})^3\right) \subseteq E.
\]
- So \(P \subsetneq E \).
The Space Hierarchy Theorem

Theorem 20 (Hennie & Stearns, 1966) If $f(n)$ is proper, then

$$\text{SPACE}(f(n)) \subsetneq \text{SPACE}(f(n) \log f(n)).$$

Corollary 21 $L \subsetneq \text{PSPACE}$.
Nondeterministic Time Hierarchy Theorems

Theorem 22 (Cook, 1973) \(\text{NTIME}(n^r) \subsetneq \text{NTIME}(n^s) \) whenever \(1 \leq r < s \).

Theorem 23 (Seiferas, Fischer, & Meyer, 1978) If \(T_1(n) \) and \(T_2(n) \) are proper, then

\[
\text{NTIME}(T_1(n)) \subsetneq \text{NTIME}(T_2(n))
\]

whenever \(T_1(n + 1) = o(T_2(n)) \).
The Reachability Method

• The computation of a time-bounded TM can be represented by a directed graph.

• The TM’s configurations constitute the nodes.

• There is a directed edge from node x to node y if x yields y in one step.

• The start node representing the initial configuration has zero in-degree.
The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out-degree greater than one.
 - The graph is the same as the computation tree earlier.
 - But identical configurations are merged into one node.\(^a\)

- So \(M\) accepts the input if and only if there is a path from the start node to a node with a “yes” state.

- It is the reachability problem.

\(^a\)So we end up with a graph not a tree.
Illustration of the Reachability Method
Relations between Complexity Classes

Theorem 24 Suppose $f(n)$ is proper. Then

1. $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$, $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$.

2. $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$.

3. $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k \log n + f(n))$.

• Proof of 2:
 – Explore the computation tree of the NTM for “yes.”
 – Specifically, generate an $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.
Proof of Theorem 24(2)

• (continued)
 – Simulate the NTM based on the choices.
 – Recycle the space and repeat the above steps.
 – Halt with “yes” when a “yes” is encountered.
 – Halt with “no” if the tree is exhausted without encountering a “yes.”
 – Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
 – The total space is $O(f(n))$ because space is recycled.
Proof of Theorem 24(3)

• Let k-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in \text{NSPACE}(f(n))$.

• Use the reachability method on the configuration graph of M on input x of length n.

• A configuration is a $(2k + 1)$-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$
Proof of Theorem 24(3) (continued)

- We only care about

\[(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1}),\]

where \(i\) is an integer between 0 and \(n\) for the position of the first cursor.

- The number of configurations is therefore at most

\[|K| \times (n+1) \times |\Sigma|^{2(k-2)f(n)} = O(c_1 \log n + f(n)) \quad (2)\]

for some \(c_1 > 1\), which depends on \(M\).

- Add edges to the configuration graph based on \(M\)’s transition function.
Proof of Theorem 24(3) (concluded)

• $x \in L \iff$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots).\(^a\)

• This is REACHABILITY on a graph with $O(c_1 \log n + f(n))$ nodes.

• It is in $\text{TIME}(c^{\log n + f(n)})$ for some $c > 1$ because $\text{REACHABILITY} \in \text{TIME}(n^j)$ for some j and

$$
\left[c_1^{\log n + f(n)} \right]^j = (c_1^j)^{\log n + f(n)}.
$$

\(^a\)There may be many of them.
Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations earlier (p. 116), the TMs are not required to halt at all.

- When the space is bounded by a proper function \(f \), computations can be assumed to halt:
 - Run the TM associated with \(f \) to produce a quasi-blank output of length \(f(n) \) first.
 - The space-bounded computation must repeat a configuration if it runs for more than \(c \log n + f(n) \) steps for some \(c > 1 \).\(^a\)

\(^a\)See Eq. (2) on p. 251.
Space-Bounded Computation and Proper Functions (concluded)

• (continued)
 – So an infinite loop occurs during simulation for a computation path longer than \(c^{\log n + f(n)} \) steps.
 – Hence we only need to simulate up to \(c^{\log n + f(n)} \) time steps per computation path.
A Grand Chain of Inclusionsa

- It is an easy application of Theorem 24 (p. 248) that
 \[L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP. \]
- By Corollary 21 (p. 243), we know \(L \nsubseteq PSPACE. \)
- So the chain must break somewhere between \(L \) and \(EXP. \)
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.

aWith input from Mr. Chin-Luei Chang (B89902053, R93922004, D95922007) on October 22, 2004.
What Is Wrong with the Proof?\(^a\)

- By Theorem 24(2) (p. 248),
 \[
 \text{NL} \subseteq \text{TIME} \left(k^{O(\log n)} \right) \subseteq \text{TIME} \left(n^{c_1} \right)
 \]
 for some \(c_1 > 0 \).

- By Theorem 18 (p. 242),
 \[
 \text{TIME} \left(n^{c_1} \right) \subsetneq \text{TIME} \left(n^{c_2} \right) \subseteq \text{P}
 \]
 for some \(c_2 > c_1 \).

- So
 \[
 \text{NL} \neq \text{P}.
 \]

\(^a\)Contributed by Mr. Yuan-Fu Shao (R02922083) on November 11, 2014.
What Is Wrong with the Proof? (concluded)

- Recall from p. 232 that $\text{TIME}(k^{O(\log n)})$ is a shorthand for
 \[\bigcup_{j>0} \text{TIME} \left(j^{O(\log n)} \right). \]

- So the correct proof runs more like
 \[\text{NL} \subseteq \bigcup_{j>0} \text{TIME} \left(j^{O(\log n)} \right) \subseteq \bigcup_{c>0} \text{TIME} \left(n^c \right) = \text{P}. \]

- And
 \[\text{NL} \neq \text{P} \]
 no longer follows.
Nondeterministic and Deterministic Space

• By Theorem 6 (p. 132),

$$\text{NTIME}(f(n)) \subseteq \text{TIME}(c^f(n)),$$

an exponential gap.

• There is no proof yet that the exponential gap is inherent.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic—a polynomial—by Savitch’s theorem.
Savitch’s Theorem

Theorem 25 (Savitch, 1970)

\[\text{REACHABILITY} \in \text{SPACE}(\log^2 n). \]

- Let \(G(V, E) \) be a graph with \(n \) nodes.
- For \(i \geq 0 \), let
 \[\text{PATH}(x, y, i) \]
 mean there is a path from node \(x \) to node \(y \) of length at most \(2^i \).
- There is a path from \(x \) to \(y \) if and only if
 \[\text{PATH}(x, y, \lceil \log n \rceil) \]
 holds.
The Proof (continued)

- For $i > 0$, $\text{PATH}(x, y, i)$ if and only if there exists a z such that $\text{PATH}(x, z, i - 1)$ and $\text{PATH}(z, y, i - 1)$.
- For $\text{PATH}(x, y, 0)$, check the input graph or if $x = y$.
- Compute $\text{PATH}(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).
- Like stacks in recursive calls, we keep only the current path’s (x, y, i)s.

\[\text{Contributed by Mr. Chuan-Yao Tan on October 11, 2011.} \]
The Proof (continued): Algorithm for \(\text{PATH}(x, y, i) \)

1: if \(i = 0 \) then
2: if \(x = y \) or \((x, y) \in E\) then
3: return true;
4: else
5: return false;
6: end if
7: else
8: for \(z = 1, 2, \ldots, n \) do
9: if \(\text{PATH}(x, z, i - 1) \) and \(\text{PATH}(z, y, i - 1) \) then
10: return true;
11: end if
12: end for
13: return false;
14: end if
The Proof (continued)

\[
\text{PATH}(x, y, \log n) \\
\text{PATH}(x, z, \log(n-1)) \\
\text{PATH}(z, y, \log(n-1))
\]

"yes" "no" "no"
The Proof (concluded)

- The space requirement is proportional to the depth of the tree (\[\log n\]) times the size of the items stored at each node.

- Depth is \([\log n]\), and each node \((x, y, i)\) needs space \(O(\log n)\).

- The total space is \(O(\log^2 n)\).
The Relation between Nondeterministic and Deterministic Space Is Only Quadratic

Corollary 26 Let $f(n) \geq \log n$ be proper. Then

$$\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)).$$

- Apply Savitch’s proof to the configuration graph of the NTM on its input.
- From p. 251, the configuration graph has $O(c^f(n))$ nodes; hence each node takes space $O(f(n))$.
- But if we construct *explicitly* the whole graph before applying Savitch’s theorem, we get $O(c^f(n))$ space!
The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We checked node connectedness only when $i = 0$ on p. 261, by examining the input graph G.

• Suppose we are given configurations x and y.

• Then we go over the Turing machine’s program to determine if there is an instruction that can turn x into y in one step.\(^a\)

• So connectivity is checked locally and on demand.

\(^a\)Thanks to a lively class discussion on October 15, 2003.
The Proof (continued)

- The z variable in the algorithm on p. 261 simply runs through all possible valid configurations.

 - Let $z = 0, 1, \ldots, O(c^f(n))$.

 - Make sure z is a valid configuration before proceeding with it.a

 * Adopt the same width for each symbol and state of the NTM and for the cursor position on the input string.b

 - If it is not, advance to the next z.

aThanks to a lively class discussion on October 13, 2004.

bContributed by Mr. Jia-Ming Zheng (R04922024) on October 17, 2017.
The Proof (concluded)

- Each z has length $O(f(n))$.
- So each node needs space $O(f(n))$.
- The depth of the recursive call on p. 261 is $O(\log c f(n))$, which is $O(f(n))$.
- The total space is therefore $O(f^2(n))$.
Implications of Savitch’s Theorem

Corollary 27 \(PSPACE = NPSPACE \).

- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if \(P = NP \).
Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes.\(^a\)

- It is known that\(^b\)

\[
\text{coNSPACE}(f(n)) = \text{NSPACE}(f(n)). \quad (3)
\]

- So

\[
\text{coNL} = \text{NL}.
\]

- But it is not known whether \(\text{coNP} = \text{NP}\).\(^c\)

\(^a\)Recall p. 235.
\(^b\)Szelepscényi (1987); Immerman (1988).
\(^c\)If \(P = \text{NP}\), then \(\text{coNP} = \text{NP}\). Contributed by Mr. Yu-Ming Lu (R06723032, D08922008) on October 21, 2021.
Reductions and Completeness
It is unworthy of excellent men to lose hours like slaves in the labor of computation.
— Gottfried Wilhelm von Leibniz (1646–1716)

I thought perhaps you might be members of that lowly section of the university known as the Sheffield Scientific School.
F. Scott Fitzgerald (1920), “May Day”
Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if:
 – There is a transformation R which for every problem instance x of B yields a problem instance $R(x)$ of A.\(^{a}\)
 – The answer to “$R(x) \in A$?” is the same as the answer to “$x \in B$?”
 – R is easy to compute.

• We say problem A is at least as hard as\(^{b}\) problem B if B reduces to A.

\(^{a}\)See also p. 156.

\(^{b}\)Or simply “harder than” for brevity.
Solving problem B by calling the algorithm for problem A once and without further processing its answer.\(^a\)

\(^a\)More general reductions are possible, such as the Turing (1939) reduction and the Cook (1971) reduction.
Degrees of Difficulty (concluded)

• This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 – If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.\(^a\)
 – So if B is hard to solve, A must be hard, too!

\(^a\)Thanks to a lively class discussion on October 13, 2009.
Commentsa

- Suppose B reduces to A via a transformation R.b
- The input x is an instance of B.
- The output $R(x)$ is an instance of A.
- $R(x)$ may not span all possible instances of A.c
 - Some instances of A may never appear in R’s range.
- But x must be an arbitrary instance for B.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.
bSometimes, we say “B can be reduced to A.”
c$R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.
Comments (concluded)

- Usually, $R(x)$’s range A' is a small subset of A.
- If A' or a subset of A that contains A' is an interesting problem in its own right, it will be given a name.a

aContributed by Mr. Yu-Ming Lu (R06723032, D08922008) on November 18, 2021.
Is “Reduction” a Confusing Choice of Word?a

- If B reduces to A, doesn’t that intuitively make A smaller and simpler?
- But our definition means the opposite.
- Our definition says in this case B is a special case of A.b
- Hence A is harder.

aMoore & Mertens (2011).
bSee also p. 157.
Reduction between Languages

- Language L_1 is \textbf{reducible to} L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.

- Furthermore, for all inputs x, $x \in L_1$ if and only if $R(x) \in L_2$.

- R is said to be a \textbf{(Karp) reduction} from L_1 to L_2.
Reduction between Languages (concluded)

• Note that by Theorem 24 (p. 248), R runs in polynomial time.

 – In most cases, a polynomial-time R suffices for proofs.a

• Suppose R is a reduction from L_1 to L_2.

• Then solving “$R(x) \in L_2$?” is an algorithm for solving “$x \in L_1$?”b

a In fact, unless stated otherwise, we will only require that the reduction R run in polynomial time. It is often called a **polynomial-time many-one reduction**.

b Of course, it may not be the most efficient one.
A Paradox?

• Degree of difficulty is not defined in terms of *absolute* complexity.

• So a language \(B \in \text{TIME}(n^{99}) \) may be “easier” than a language \(A \in \text{TIME}(n^3) \) if \(B \) reduces to \(A \).

• But isn’t this a contradiction if the best algorithm for \(B \) requires \(n^{99} \) steps?

• That is, how can a problem *requiring* \(n^{99} \) steps be reducible to a problem solvable in \(n^3 \) steps?
Paradox Resolved

• The “contradiction” is the result of flawed logic.

• Suppose we solve the problem “$x \in B$?” via “$R(x) \in A$?”

• We must consider the time spent by $R(x)$ and its length $|R(x)|$:
 - It is $R(x)$ — not x — that is solved by A.