CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

- Circuit sat \in NP: Guess a truth assignment and then evaluate the circuit. ${ }^{\text {a }}$

CIRCUIT VALUE: The same as CIRCUIT sat except that the circuit has no variable gates.

- circuit value $\in \mathrm{P}$: Evaluate the circuit from the input gates gradually towards the output gate.

[^0]
Some ${ }^{\text {a }}$ Boolean Functions Need Exponential Circuits ${ }^{\text {b }}$

Theorem 16 For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^{n} /(2 n)$ or fewer gates can compute it.

- There are $2^{2^{n}}$ different n-ary boolean functions. ${ }^{\text {c }}$
- We next prove that there are fewer than $2^{2^{n}}$ boolean circuits with up to $2^{n} /(2 n)$ gates.

[^1]
The Proof (concluded)

- There are at most $\left((n+5) \times m^{2}\right)^{m}$ boolean circuits with m or fewer gates (see next page).
- But $\left((n+5) \times m^{2}\right)^{m}<2^{2^{n}}$ when $m=2^{n} /(2 n)$:

$$
\begin{aligned}
& m \log _{2}\left((n+5) \times m^{2}\right) \\
= & 2^{n}\left(1-\frac{\log _{2} \frac{4 n^{2}}{n+5}}{2 n}\right) \\
< & 2^{n}
\end{aligned}
$$

for $n \geq 2$.

Claude Elwood Shannon (1916-2001)

Howard Gardner (1987), "[Shannon's master's thesis is] possibly the most important, and also the most famous, master's thesis of the century."

Comments

- The lower bound $2^{n} /(2 n)$ is rather tight because an upper bound is $n 2^{n}$ (p. 211).
- The proof counted the number of circuits.
- Some circuits may not be valid at all.
- Different circuits may also compute the same function.
- Both are fine because we only need an upper bound on the number of circuits.
- We do not need to consider the outgoing edges because they have been counted as incoming edges. ${ }^{\text {a }}$
${ }^{\text {a }}$ If you prove the theorem by considering outgoing edges, the bound will not be good. (Try it!)

Relations between Complexity Classes

It is, I own, not uncommon to be wrong in theory and right in practice.

- Edmund Burke (1729-1797), A Philosophical Enquiry into the Origin of Our Ideas of the Sublime and Beautiful (1757)

The problem with QE is it works in practice, but it doesn't work in theory.

- Ben Bernanke (2014)

Proper (Complexity) Functions

- We say that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a proper (complexity) function if the following hold:
- f is nondecreasing.
- There is a k-string TM M_{f} such that $M_{f}(x)=\square^{f(|x|)}$ for any x. ${ }^{\text {a }}$
- M_{f} halts after $O(|x|+f(|x|))$ steps.
- M_{f} uses $O(f(|x|))$ space besides its input x.
- M_{f} 's behavior depends only on $|x|$ not x 's contents.
- M_{f} 's running time is bounded by $f(n)$.
${ }^{\text {a }}$ The textbook calls " \square " the quasi-blank symbol. The use of $M_{f}(x)$ will become clear in Proposition 17 (p. 229).

Examples of Proper Functions

- Most "reasonable" functions are proper: $c,\lceil\log n\rceil$, polynomials of $n, 2^{n}, \sqrt{n}, n!$, etc.
- If f and g are proper, then so are $f+g, f g$, and 2^{g}. ${ }^{\text {a }}$
- Nonproper functions when serving as the time bounds for complexity classes spoil "theory building."
- For example, $\operatorname{TIME}(f(n))=\operatorname{TIME}\left(2^{f(n)}\right)$ for some recursive function f (the gap theorem). ${ }^{\text {b }}$
- Only proper functions f will be used in $\operatorname{TIME}(f(n))$, $\operatorname{SPACE}(f(n)), \operatorname{NTIME}(f(n))$, and $\operatorname{NSPACE}(f(n))$.

[^2]
Precise Turing Machines

- A TM M is precise if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
- M halts after precisely $f(n)$ steps, ${ }^{\text {a }}$ and
- All of its strings are of length precisely $g(n)$ at halting. ${ }^{\text {b }}$
* Recall that if M is a TM with input and output, we exclude the first and last strings.
- M can be deterministic or nondeterministic.

[^3]
Precise TMs Are General

Proposition 17 Suppose a $T M^{a} M$ decides L within time (space) $f(n)$, where f is proper. Then there is a precise TM M^{\prime} which decides L in time $O(n+f(n))$ (space $O(f(n))$, respectively).

- M^{\prime} on input x first simulates the $\mathrm{TM} M_{f}$ associated with the proper function f on x.
- M_{f} 's output, of length $f(|x|)$, will serve as a "yardstick" or an "alarm clock."

[^4]
The Proof (continued)

- Then M^{\prime} simulates $M(x)$.
- $M^{\prime}(x)$ halts when and only when the alarm clock runs out-even if M halts earlier.
- If f is a time bound:
- The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
- Because M^{\prime} stops at the moment the "clock" string is exhausted-even if $M(x)$ stops earlier, it is precise.
- The time bound is therefore $O(|x|+f(|x|))$.

The Proof (concluded)

- If f is a space bound (sketch):
- M^{\prime} simulates M on the quasi-blanks of M_{f} 's output string. ${ }^{\text {a }}$
- The total space, not counting the input string, is $O(f(n))$.
- But we still need a way to make sure there is no infinite loop even if M does not halt. ${ }^{\text {b }}$

[^5]
Important Complexity Classes

- We write expressions like n^{k} to denote the union of all complexity classes, one for each value of k.
- For example,

$$
\operatorname{NTIME}\left(n^{k}\right) \triangleq \bigcup_{j>0} \operatorname{NTIME}\left(n^{j}\right) .
$$

Important Complexity Classes (concluded)

$$
\begin{aligned}
\mathrm{P} & \triangleq \operatorname{TIME}\left(n^{k}\right), \\
\mathrm{NP} & \triangleq \operatorname{NTIME}\left(n^{k}\right), \\
\operatorname{PSPACE} & \triangleq \operatorname{SPACE}\left(n^{k}\right), \\
\operatorname{NPSPACE} & \triangleq \operatorname{NSPACE}\left(n^{k}\right), \\
\mathrm{E} & \triangleq \operatorname{TIME}\left(2^{k n}\right), \\
\mathrm{EXP} & \triangleq \operatorname{TIME}\left(2^{n^{k}}\right), \\
\operatorname{NEXP} & \triangleq \operatorname{NTIME}\left(2^{n^{k}}\right), \\
\mathrm{L} & \triangleq \operatorname{SPACE}(\log n), \\
\mathrm{NL} & \triangleq \operatorname{NSPACE}(\log n) .
\end{aligned}
$$

Complements of Nondeterministic Classes

- Recall that the complement of L, or \bar{L}, is the language $\Sigma^{*}-L$.
- sat complement is the set of unsatisfiable boolean expressions.
- R, RE, and coRE are distinct. ${ }^{\text {a }}$
- Again, coRE contains the complements of languages in RE, not languages that are not in RE.

[^6]
The Co-Classes

- For any complexity class \mathcal{C}, coC denotes the class

$$
\{L: \bar{L} \in \mathcal{C}\} .
$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C}=\mathrm{coC}$.
- They are said to be closed under complement.
- Whether nondeterministic classes for time are closed under complement is not known.

The Co-Classes (concluded)

- As

$$
\operatorname{coC}=\{L: \bar{L} \in \mathcal{C}\}
$$

$L \in \mathcal{C}$ if and only if $\bar{L} \in \operatorname{coC}$.

- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{coC}$.
- coC is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $\mathcal{C}=\{\{2,4,6,8,10, \ldots\}, \ldots\}$.
- Then $\operatorname{coC}=\{\{1,3,5,7,9, \ldots\}, \ldots\}$.
- But $\overline{\mathcal{C}}=2^{\{1,2,3, \ldots\}}-\{\{2,4,6,8,10, \ldots\}, \ldots\}$.

The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{aligned}
H_{f} & \triangleq\{M ; x: M \text { accepts input } x \\
& \text { after at most } f(|x|) \text { steps }\}
\end{aligned}
$$

where M is deterministic.

- Assume the input is binary as usual.

$$
H_{f} \in \operatorname{TIME}\left(f^{3}(n)\right)
$$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 87), the universal TM (p. 142), and the linear speedup theorem (p. 97).
- Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 94, the total running time is $O\left(\ell_{M} k_{M}^{2} f^{2}(n)\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f^{3}(n)\right)$, where the constant is independent of M.

$H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine:

$$
\begin{aligned}
D_{f}(M)\{ & \\
& \text { if } M_{H_{f}}(M ; M)=\text { "yes" } \\
& \text { then "no"; } \\
& \text { else "yes"; }
\end{aligned}
$$

\}

The Proof (continued)

- $M_{H_{f}}(M ; M)$ runs in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|{ }^{\mathrm{a}}$
- By construction, $D_{f}(M)$ runs in the same amount of time as $M_{H_{f}}(M ; M)$, i.e., $f(n)$, where $n=|M|$.
${ }^{\text {a Mr. Hsiao-Fei Liu (F92922019) and Mr. Hong-Lung Wang }}$ (F92922085) pointed out on October 6, 2004, that this estimation (and the text's Lemma 7.2) forgets to include the time to write down $M ; M$.

The Proof (concluded)

- First, suppose $D_{f}\left(D_{f}\right)=$ "yes".
- This implies

$$
D_{f} ; D_{f} \notin H_{f} .
$$

- Thus D_{f} does not accept D_{f} within time $f\left(\left|D_{f}\right|\right)$.
- But $D_{f}\left(D_{f}\right)$ stops in time $f\left(\left|D_{f}\right|\right)$ with an answer.
- Hence $D_{f}\left(D_{f}\right)=$ "no", a contradiction
- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem

Theorem 18 If $f(n) \geq n$ is proper, then

$$
\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}\left(f^{3}(2 n+1)\right) .
$$

- The quantified halting problem makes it so.

Corollary $19 \mathrm{P} \subsetneq \mathrm{E}$.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because $\operatorname{poly}(n) \leq 2^{n}$ for n large enough.
- But by Theorem 18,
$\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq$ E.
- So P $\subsetneq \mathrm{E}$.

The Space Hierarchy Theorem
Theorem 20 (Hennie \& Stearns, 1966) If $f(n)$ is proper, then

$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n)) .
$$

Corollary $21 \mathrm{~L} \subsetneq$ PSPACE.

Nondeterministic Time Hierarchy Theorems
Theorem 22 (Cook, 1973) $\operatorname{NTIME}\left(n^{r}\right) \subsetneq \operatorname{NTIME}\left(n^{s}\right)$
whenever $1 \leq r<s$.
Theorem 23 (Seiferas, Fischer, \& Meyer, 1978) If
$T_{1}(n)$ and $T_{2}(n)$ are proper, then
$\operatorname{NTIME}\left(T_{1}(n)\right) \subsetneq \operatorname{NTIME}\left(T_{2}(n)\right)$
whenever $T_{1}(n+1)=o\left(T_{2}(n)\right)$.

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- There is a directed edge from node x to node y if x yields y in one step.
- The start node representing the initial configuration has zero in-degree.

The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out-degree greater than one.
- The graph is the same as the computation tree earlier.
- But identical configurations are merged into one node. ${ }^{\text {a }}$
- So M accepts the input if and only if there is a path from the start node to a node with a "yes" state.
- It is the reachability problem.

[^7]Illustration of the Reachability Method

Relations between Complexity Classes

Theorem 24 Suppose $f(n)$ is proper. Then

1. $\operatorname{SPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$, $\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n))$.
3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}\left(k^{\log n+f(n)}\right)$.

- Proof of 2 :
- Explore the computation tree of the NTM for "yes."
- Specifically, generate an $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.

Proof of Theorem 24(2)

- (continued)
- Simulate the NTM based on the choices.
- Recycle the space and repeat the above steps.
- Halt with "yes" when a "yes" is encountered.
- Halt with "no" if the tree is exhausted without encountering a "yes."
- Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
- The total space is $O(f(n))$ because space is recycled.

Proof of Theorem 24(3)

- Let k-string NTM

$$
M=(K, \Sigma, \Delta, s)
$$

with input and output decide $L \in \operatorname{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

Proof of Theorem 24(3) (continued)

- We only care about

$$
\left(q, i, w_{2}, u_{2}, \ldots, w_{k-1}, u_{k-1}\right)
$$

where i is an integer between 0 and n for the position of the first cursor.

- The number of configurations is therefore at most

$$
\begin{equation*}
|K| \times(n+1) \times|\Sigma|^{2(k-2) f(n)}=O\left(c_{1}^{\log n+f(n)}\right) \tag{2}
\end{equation*}
$$

for some $c_{1}>1$, which depends on M.

- Add edges to the configuration graph based on M's transition function.

Proof of Theorem 24(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots). ${ }^{\text {a }}$
- This is REACHABILITY on a graph with $O\left(c_{1}^{\log n+f(n)}\right)$ nodes.
- It is in $\operatorname{TIME}\left(c^{\log n+f(n)}\right)$ for some $c>1$ because REAChABILITY $\in \operatorname{TIME}\left(n^{j}\right)$ for some j and

$$
\left[c_{1}^{\log n+f(n)}\right]^{j}=\left(c_{1}^{j}\right)^{\log n+f(n)}
$$

${ }^{\text {a }}$ There may be many of them.

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations earlier (p. 116), the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce a quasi-blank output of length $f(n)$ first.
- The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n+f(n)}$ steps for some $c>1 .{ }^{\text {a }}$

[^8]
Space-Bounded Computation and Proper Functions (concluded)

- (continued)
- So an infinite loop occurs during simulation for a computation path longer than $c^{\log n+f(n)}$ steps.
- Hence we only need to simulate up to $c^{\log n+f(n)}$ time steps per computation path.

A Grand Chain of Inclusions ${ }^{\text {a }}$

- It is an easy application of Theorem 24 (p. 248) that

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP} .
$$

- By Corollary 21 (p. 243), we know L \subsetneq PSPACE.
- So the chain must break somewhere between L and EXP.
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.
${ }^{a}$ With input from Mr. Chin-Luei Chang (B89902053, R93922004, D95922007) on October 22, 2004.

What Is Wrong with the Proof? ${ }^{a}$

- By Theorem 24(2) (p. 248),

$$
\operatorname{NL} \subseteq \operatorname{TIME}\left(k^{O(\log n)}\right) \subseteq \operatorname{TIME}\left(n^{c_{1}}\right)
$$

for some $c_{1}>0$.

- By Theorem 18 (p. 242),

$$
\operatorname{TIME}\left(n^{c_{1}}\right) \subsetneq \operatorname{TIME}\left(n^{c_{2}}\right) \subseteq \mathrm{P}
$$

for some $c_{2}>c_{1}$.

- So

$$
\mathrm{NL} \neq \mathrm{P} .
$$

${ }^{\text {a }}$ Contributed by Mr. Yuan-Fu Shao (R02922083) on November 11, 2014.

What Is Wrong with the Proof? (concluded)

- Recall from p. 232 that $\operatorname{TIME}\left(k^{O(\log n)}\right)$ is a shorthand for

$$
\bigcup_{j>0} \operatorname{TIME}\left(j^{O(\log n)}\right) .
$$

- So the correct proof runs more like

$$
\mathrm{NL} \subseteq \bigcup_{j>0} \operatorname{TIME}\left(j^{O(\log n)}\right) \subseteq \bigcup_{c>0} \operatorname{TIME}\left(n^{c}\right)=\mathrm{P}
$$

- And

$$
\mathrm{NL} \neq \mathrm{P}
$$

no longer follows.

Nondeterministic and Deterministic Space

- By Theorem 6 (p. 132),

$$
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}\left(c^{f(n)}\right),
$$

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic-a polynomial-by Savitch's theorem.

Savitch's Theorem

Theorem 25 (Savitch, 1970)

$$
\text { REACHABILITY } \in \operatorname{SPACE}\left(\log ^{2} n\right)
$$

- Let $G(V, E)$ be a graph with n nodes.
- For $i \geq 0$, let

$$
\operatorname{PATH}(x, y, i)
$$

mean there is a path from node x to node y of length at most 2^{i}.

- There is a path from x to y if and only if

$$
\operatorname{PATH}(x, y,\lceil\log n\rceil)
$$

holds.

The Proof (continued)

- For $i>0, \operatorname{PATH}(x, y, i)$ if and only if there exists a z such that $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$.
- For $\operatorname{PATH}(x, y, 0)$, check the input graph or if $x=y$.
- Compute $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ with a depth-first search on a graph with nodes (x, y, i) s (see next page). ${ }^{\text {a }}$
- Like stacks in recursive calls, we keep only the current path's (x, y, i) s.

[^9]The Proof (continued): Algorithm for $\operatorname{PATH}(x, y, i)$
1: if $i=0$ then
2: \quad if $x=y$ or $(x, y) \in E$ then
3: return true;
4: else
5: return false;
6: end if
7: else
8: \quad for $z=1,2, \ldots, n$ do
9: if $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$ then
10: return true;
11: end if
12: end for
13: return false;
14: end if

The Proof (continued)

The Proof (concluded)

- The space requirement is proportional to the depth of the tree $(\lceil\log n\rceil)$ times the size of the items stored at each node.
- Depth is $\lceil\log n\rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O\left(\log ^{2} n\right)$.

The Relation between Nondeterministic and Deterministic Space Is Only Quadratic

Corollary 26 Let $f(n) \geq \log n$ be proper. Then

$$
\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right) .
$$

- Apply Savitch's proof to the configuration graph of the NTM on its input.
- From p. 251, the configuration graph has $O\left(c^{f(n)}\right)$ nodes; hence each node takes space $O(f(n))$.
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O\left(c^{f(n)}\right)$ space!

The Proof (continued)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- We checked node connectedness only when $i=0$ on p. 261, by examining the input graph G.
- Suppose we are given configurations x and y.
- Then we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. ${ }^{\text {a }}$
- So connectivity is checked locally and on demand.

[^10]
The Proof (continued)

- The z variable in the algorithm on p .261 simply runs through all possible valid configurations.
- Let $z=0,1, \ldots, O\left(c^{f(n)}\right)$.
- Make sure z is a valid configuration before proceeding with it. ${ }^{\text {a }}$
* Adopt the same width for each symbol and state of the NTM and for the cursor position on the input string. ${ }^{\text {b }}$
- If it is not, advance to the next z.

[^11]
The Proof (concluded)

- Each z has length $O(f(n))$.
- So each node needs space $O(f(n))$.
- The depth of the recursive call on p. 261 is $O\left(\log c^{f(n)}\right)$, which is $O(f(n))$.
- The total space is therefore $O\left(f^{2}(n)\right)$.

Implications of Savitch's Theorem

Corollary 27 PSPACE $=$ NPSPACE .

- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if $\mathrm{P}=\mathrm{NP}$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes. ${ }^{\text {a }}$
- It is known that ${ }^{\text {b }}$

$$
\begin{equation*}
\operatorname{coNSPACE}(f(n))=\operatorname{NSPACE}(f(n)) \tag{3}
\end{equation*}
$$

- So

$$
\operatorname{coNL}=\mathrm{NL} .
$$

- But it is not known whether coNP $=$ NP. ${ }^{\text {c }}$
${ }^{\text {a }}$ Recall p. 235.
${ }^{\text {b }}$ Szelepscényi (1987); Immerman (1988).
${ }^{c}$ If $\mathrm{P}=\mathrm{NP}$, then coNP $=\mathrm{NP}$. Contributed by Mr. Yu-Ming Lu (R06723032, D08922008) on October 21, 2021.

Reductions and Completeness

It is unworthy of excellent men to lose hours like slaves in the labor of computation. — Gottfried Wilhelm von Leibniz (1646-1716)

I thought perhaps you might be members of that lowly section of the university known as the Sheffield Scientific School. F. Scott Fitzgerald (1920), "May Day"

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if:
- There is a transformation R which for every problem instance x of B yields a problem instance $R(x)$ of A . ${ }^{\text {a }}$
- The answer to " $R(x) \in \mathrm{A}$?" is the same as the answer to " $x \in \mathrm{~B}$?"
$-R$ is easy to compute.
- We say problem A is at least as hard as ${ }^{b}$ problem B if B reduces to A.

[^12]
Reduction

Solving problem B by calling the algorithm for problem A once and without further processing its answer. ${ }^{\text {a }}$

[^13]
Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
- If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too. ${ }^{\text {a }}$
- So if B is hard to solve, A must be hard, too!
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2009.

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R. ${ }^{\text {b }}$
- The input x is an instance of B .
- The output $R(x)$ is an instance of A .
- $R(x)$ may not span all possible instances of $\mathrm{A} .{ }^{\mathrm{c}}$
- Some instances of A may never appear in R 's range.
- But x must be an arbitrary instance for B.

[^14]
Comments (concluded)

- Usually, $R(x)$'s range A^{\prime} is a small subset of A .
- If A^{\prime} or a subset of A that contains A^{\prime} is an interesting problem in its own right, it will be given a name. ${ }^{\text {a }}$
${ }^{\text {a }}$ Contributed by Mr. Yu-Ming Lu (R06723032, D08922008) on November 18, 2021.

Is "Reduction" a Confusing Choice of Word?a

- If B reduces to A, doesn't that intuitively make A smaller and simpler?
- But our definition means the opposite.
- Our definition says in this case B is a special case of A. ${ }^{\text {b }}$
- Hence A is harder.
${ }^{\text {a }}$ Moore \& Mertens (2011).
${ }^{\mathrm{b}}$ See also p. 157.

Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a (Karp) reduction from L_{1} to L_{2}.

Reduction between Languages (concluded)

- Note that by Theorem 24 (p. 248), R runs in polynomial time.
- In most cases, a polynomial-time R suffices for proofs. ${ }^{\text {a }}$
- Suppose R is a reduction from L_{1} to L_{2}.
- Then solving " $R(x) \in L_{2}$?" is an algorithm for solving $" x \in L_{1}$?" ${ }^{\mathrm{b}}$

[^15]
A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$ if B reduces to A .
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^{3} steps?

Paradox Resolved

- The "contradiction" is the result of flawed logic.
- Suppose we solve the problem " $x \in \mathrm{~B}$?" via " $R(x) \in \mathrm{A}$?"
- We must consider the time spent by $R(x)$ and its length $|R(x)|$:
- It is $R(x)$ - not x - that is solved by A.

[^0]: ${ }^{\text {a }}$ Essentially the same algorithm as the one on p. 120.

[^1]: ${ }^{\text {a }}$ Can be strengthened to "Almost all" (Lupanov, 1958).
 ${ }^{\text {b }}$ Riordan \& Shannon (1942); Shannon (1949).
 ${ }^{\text {c }}$ Recall p. 209.

[^2]: ${ }^{\text {a }}$ For $f(g(n))$, we need to add $f(n) \geq n$.
 ${ }^{\mathrm{b}}$ Trakhtenbrot (1964); Borodin (1972). Theorem 7.3 on p. 145 of the textbook proves it.

[^3]: ${ }^{\text {a }}$ Fully time constructible (Hopcroft \& Ullman, 1979).
 ${ }^{\mathrm{b}}$ Fully space constructible (Hopcroft \& Ullman, 1979).

[^4]: ${ }^{\text {a }}$ Deterministic or nondeterministic.

[^5]: ${ }^{\text {a }}$ This is to make sure the space bound is precise.
 ${ }^{\mathrm{b}}$ See the proof of Theorem 24 (p. 248).

[^6]: ${ }^{\text {a Recall p. }} 164$.

[^7]: ${ }^{\text {a }}$ So we end up with a graph not a tree.

[^8]: ${ }^{\text {a See Eq. (2) on p. } 251 .}$

[^9]: ${ }^{\text {a}}$ Contributed by Mr. Chuan-Yao Tan on October 11, 2011.

[^10]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 15, 2003.

[^11]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2004.
 ${ }^{\mathrm{b}}$ Contributed by Mr. Jia-Ming Zheng (R04922024) on October 17, 2017.

[^12]: ${ }^{\text {a }}$ See also p. 156.
 b Or simply "harder than" for brevity.

[^13]: ${ }^{\text {a }}$ More general reductions are possible, such as the Turing (1939) reduction and the Cook (1971) reduction.

[^14]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.
 ${ }^{\mathrm{b}}$ Sometimes, we say "B can be reduced to A."
 ${ }^{c} R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

[^15]: ${ }^{\text {a }}$ In fact, unless stated otherwise, we will only require that the reduction R run in polynomial time. It is often called a polynomial-time many-one reduction.
 ${ }^{\mathrm{b}}$ Of course, it may not be the most efficient one.

