
Undecidability
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He [Turing] invented

the idea of software, essentially[.]

It’s software that’s really

the important invention.

— Freeman Dyson (2015)
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Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.b

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java virtual machine, which executes

any valid bytecode.

aTuring (1936) calls it “universal computing machine.”
bSee pp. 57–58 of the textbook.
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The Halting Problem

• Undecidable problems are problems that have no

algorithms.

– Equivalently, they are languages that are not

recursive.

• We now define a concrete undecidable problem, the

halting problem:

H
Δ
= {M ;x : M(x) �=↗}.

– Does M halt on input x?

• H is called the halting set.
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H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.
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H Is Not Recursivea

• Suppose H is recursive.

• Then there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Insert an infinite loop here.}
3: else

4: “yes”;

5: end if

aTuring (1936).
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H Is Not Recursive (concluded)

• Consider D(D):

– D(D) =↗⇒ MH(D;D) = “yes” ⇒ D;D ∈ H ⇒
D(D) �=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D;D) = “no” ⇒ D;D �∈ H ⇒
D(D) =↗, another contradiction.
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Comments

• Two levels of interpretations of M :a

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes with D(D).

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter

to a Lisp interpreter, a sorting program to a sorting

program, etc.

aEckert & Mauchly (1943); von Neumann (1945); Turing (1946).
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It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do? [· · · ]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872–1970),

Autobiography, Vol. I (1967)
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Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider R = {A : A �∈ A}.
• If R ∈ R, then R �∈ R by definition.

• If R �∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”b

Liar’s Paradox: “This sentence is false.”

Plato (375 B.C.), The Republic: “master of himself.”

aE.g., Quine (1966), The Ways of Paradox and Other Essays and

Hofstadter (1979), Gödel, Escher, Bach: An Eternal Golden Braid.
bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your dis-

covery of the contradiction [. . .] has shaken the basis on which I intended

to build arithmetic.”
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Self-Loop Paradoxes (continued)

Epimenides and Eubulides: The Cretan says, “All

Cretans are liars.”a

Psalms 116:11: “Everyone is a liar.”

Hypochondriac: a patient with imaginary symptoms and

ailments.b

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

Numbers 12:3: “Moses was the most humble person in all

the world [· · · ]” (attributed to Moses).

aAlso quoted in Titus 1:12.
bLike Gödel and the pianist Glenn Gould (1932–1982).
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Self-Loop Paradoxes (continued)

A restaurant in Boston: No Name Restaurant

(1917–2020).

U.S. Department of State (March 19, 2020): U.S.

citizens who live in the United States should arrange for

immediate return to the United States[.]

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”a

aSee also John 14:10 and 17:21.
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Self-Loop Paradoxes (concluded)

Jerome K. Jerome (1887), Three Men in a Boat:

“How could I wake you, when you didn’t wake me?”

Winston Churchill (January 23, 1948): “For my part,

I consider that it will be found much better by all

parties to leave the past to history, especially as I

propose to write that history myself.”

Nicola Lacey (2004), A Life of H. L. A. Hart: “Top

Secret [MI5] Documents: Burn before Reading!”
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Bertrand Russella (1872–1970)

Norbert Wiener (1953),

“It is impossible to de-

scribe Bertrand Russell

except by saying that he

looks like the Mad Hat-

ter.”

Karl Popper (1974), “per-

haps the greatest philoso-

pher since Kant.”

aNobel Prize in Literature (1950).
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Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L′ (such as H) is known to be undecidable.

• Find a computable transformation R (called

reductiona) from L′ to L such thatb

∀x {x ∈ L′ if and only if R(x) ∈ L }.

• Now we can answer “x ∈ L′?” for any x by answering

“R(x) ∈ L?” because it has the same answer.

aPost (1944).
bContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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x yes/noR(x)
R algorithm 

for L

algorithm for L

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 155



Reductions in Proving Undecidability (concluded)

• L′ is said to be reduced to L.a

– It is written as L′ ≤ L or even L′ ≤m L to emphasize

that the transformation is many-one.

• If L were decidable, “R(x) ∈ L?” becomes computable

and we have an algorithm to decide L′, a contradiction!

• So L must be undecidable.

Theorem 8 Suppose language L1 can be reduced to

language L2. If L1 is undecidable, then L2 is undecidable.

aIntuitively, L can be used to solve L′.
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Special Cases and Reduction

• Suppose L1 can be reduced to L2.

• As the reduction R maps members of L1 to a subset of

L2,
a we may say L1 is a “special case” of L2.

b

• That is one way to understand the use of the somewhat

confusing term “reduction.”

aBecause R may not be onto.
bContributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan

Hou (B99201038, R03922014) on October 13, 2015.
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The Universal Halting Problem

• The universal halting problem:

H∗ Δ
= {M : M halts on all inputs }.

• It is also called the totality problem.
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H∗ Is Not Recursivea

• We will reduce H to H∗.

• Given the question “M ;x ∈ H?”, construct the following

machine (this is the reduction):b

Mx(y) {M(x) }

• M halts on x if and only if Mx halts on all inputs.

• In other words, M ;x ∈ H if and only if Mx ∈ H∗.

• So if H∗ were recursive (recall the box for L on p. 155),

H would be recursive, a contradiction.

aKleene (1936).
bSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability

• {M ;x : there is a y such that M(x) = y }.
• {M ;x :

the computation M on input x uses all states of M }.

• {M ;x; y : M(x) = y }.
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Complements of Recursive Languages

The complement of L, denoted by L̄, is the language

Σ∗ − L.

Lemma 9 If L is recursive, then so is L̄.

• Let L be decided by a deterministic M .

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.a

aRecall p. 118.
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Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene’s theorem; Post, 1944) L is

recursive if and only if both L and L̄ are recursively

enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, then halt on state “yes” because x ∈ L.

• If M̄ accepts, then halt on state “no” because x �∈ L.a

• The other direction is trivial.

aEither M or M̄ (but not both) must accept the input and halt.
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A Useful Corollary and Its Consequences

Corollary 11 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 10 (p. 162), L is recursive, a contradiction.

Corollary 12 H̄ is not recursively enumerable.a

aRecall that H̄
Δ
= {M ;x : M(x) =↗}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

• Note that coRE is not RE.

– coRE
Δ
= {L : L ∈ RE } = {L : L ∈ RE }.

– RE
Δ
= {L : L �∈ RE }.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE.a

• There exist languages in RE but not in R and not in

coRE.

– Such as H.b

• There are languages in coRE but not in RE.

– Such as H̄.c

• There are languages in neither RE nor coRE.

aRecall p. 162.
bRecall pp. 144, 145, and 163.
cRecall p. 163.
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R
coRERE
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H Is Complete for REa

• Let L be any recursively enumerable language.

• Assume M accepts L.

• Clearly, x ∈ L if and only if M : x ∈ H.

• Hence all recursively enumerable languages are reducible

to H!

• H is said to be RE-complete.

aPost (1944).
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Notations

• The language accepted by TM M is written as L(M).

• If M(x) =↗ for all x, then L(M) = ∅.
• If M(x) is never “yes” nor ↗ (as required by the

definition of acceptance), we also let L(M) = ∅.
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Nontrivial Properties of Sets in RE

• A property of the recursively enumerable languages can

be defined by the set C of all the recursively enumerable

languages that satisfy it.

– The property of finite recursively enumerable

languages is

{L : L = L(M) for a TM M , L is finite }.

– The property of recursiveness is

{L : L = L(M) for a TM M , L is recursive }.
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Nontrivial Properties of Sets in RE (continued)

• A property is trivial if C = RE or C = ∅.
– Answer to a trivial property (about the language a

TM accepts) is either always “yes”or always “no.”

– It is either possessed by all recursively enumerable

languages or by none.

• Here is a trivial property (always yes): Does the TM

accept a recursively enumerable language?a

• Here is a trivial property (always no): Does the TM

accept a language that is finite and infinite?

aOr, L(M) ∈ RE? Formally, {L : L = L(M) for a TM M,L ∈ RE }.
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Nontrivial Properties of Sets in RE (continued)

• A property is nontrivial if C �= RE and C �= ∅.
– In other words, answer to a nontrivial property is

“yes” for some TMs and “no” for others.

– It is possessed by some recursively enumerable

languages but not by all.

• Here is a nontrivial property: Does the TM accept an

empty language?a

– Some machines do, but some machines do not.

aOr, L(M) = ∅? That is, does it go into an infinite loop on all inputs?
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Nontrivial Properties of Sets in RE (concluded)

• Up to now, all nontrivial properties (of recursively

enumerable languages) are undecidable.a

• In fact, Rice’s theorem confirms that.

aSuch as the universal halting problem H∗ on p. 159.
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Rice’s Theorem

Theorem 13 (Rice, 1956) Suppose C �= ∅ and C � RE.a

Then the question “L(M) ∈ C?” is undecidable.

• Note that the input is a TM program M .

• Assume that ∅ �∈ C (otherwise, repeat the proof for

RE− C.
• Let L ∈ C be accepted by TM ML (recall that C �= ∅).
• Let MH accept the undecidable language H.

– MH exists (p. 144).

aA nontrivial property, i.e.
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The Proof (continued)

• Construct machine Mx(y):

if MH(x) = “yes” then ML(y) else ↗

• On the next page, we will prove that

x ∈ H if and only if L(Mx) ∈ C. (1)

– As a result, the halting problem is reduced to

deciding L(Mx) ∈ C.
– Hence L(Mx) ∈ C must be undecidable,a and we are

done.

aBy Theorem 8 (p. 156).
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The Proof (concluded)

• Suppose x ∈ H, i.e., MH(x) = “yes.”

– Mx(y) determines this, and it either accepts y or

never halts, depending on whether y ∈ L.

– Hence L(Mx) = L ∈ C.
• Suppose MH(x) =↗.

– Mx never halts.

– L(Mx) = ∅ �∈ C.
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Comments

• Rice’s theorem is about nontrivial properties of the

languages accepted by Turing machines.

• It says they are undecidable.

• Rice’s theorem is not about Turing machines

themselves, such as

Does this TM contain 5 states?

Does this TM take more than 1,000 steps on ε?

• Both are clearly decidable.
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Comments (concluded)

• Rather, it is about

Does this TM accept a language acceptable by

one that contains 5 states?

Does this TM accept a language acceptable by

one that takes more than 1,000 steps on ε?

• Because both properties are nontrivial,a they are

undecidable by Rice’s theorem.

aWhy?

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 177



Consequences of Rice’s Theorem

Corollary 14 The following properties of recursively

enumerative sets are undecidable.

• Emptiness.

• Nonemptiness.

• Finiteness.

• Recursiveness.

• Σ∗.

• Regularity.a

• Context-freedom.b

aDoes the Turing machine accept a regular language?
bDoes the Turing machine accept a context-free language?
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Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s

(1928) Entscheidungsproblem).a

• Natural numbers with addition and multiplication is

undecidable.b

• Rational numbers with addition and multiplication is

undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable

and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)
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Alfred Tarski (1901–1983)
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Boolean Logic
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Christianity is either false or true.

— Girolamo Savonarola (1497)

Both of us had said the very same thing.

Did we both speak the truth

—or one of us did

—or neither?

— Joseph Conrad (1857–1924),

Lord Jim (1900)
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.
Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

• ∨n
i=1 φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn (multiple

conjunction).

• ∧n
i=1 φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn (multiple

disjunction).

aGeorge Boole (1815–1864) in 1847.
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Boolean Logic (concluded)

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).
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Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression φ if it defines the truth value for every

variable in φ.

– {x1 = true, x2 = false } is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false } is not appropriate to

x1 ∨ x2.
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Satisfaction

• T |= φ means boolean expression φ is true under T ; in

other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of

them, T |= φ1 if and only if T |= φ2.
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Truth Tablea

• Suppose φ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of φ under it.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Just check if they give identical truth values under all

appropriate truth assignments.

aPeirce (1893); Post (1921); Wittgenstein (1922). Here, 1 is used to

denote true; 0 is used to denote false. This is called the standard

representation (Beigel, 1993).
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A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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A Second Truth Table

p q p ∨ q

0 0 0

0 1 1

1 0 1

1 1 1

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191



A Third Truth Table

p ¬p
0 1

1 0
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Proof of Equivalency by the Truth Table:
p ⇒ q ≡ ¬q ⇒ ¬p

p q p ⇒ q ¬q ⇒ ¬p
0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1
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De Morgan’s Lawsa

• De Morgan’s laws state that

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2.

• Here is a proof of the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871) or William of Ockham (1288–

1348).
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Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal

form (CNF) if

φ =

n∧

i=1

Ci,

where each clause Ci is the disjunction of zero or more

literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is unsatisfiable.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form

(DNF) if

φ =

n∨

i=1

Di,

where each implicanta or simply term Di is the

conjunction of zero or more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).

aDi implies φ, thus the term.
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Clauses and Implicants

• The
∨

of clauses yields a clause.

– For example,

(x1 ∨ x2) ∨ (x1 ∨ ¬x2) ∨ (x2 ∨ x3)

= x1 ∨ x2 ∨ x1 ∨ ¬x2 ∨ x2 ∨ x3.

• The
∧

of implicants yields an implicant.

– For example,

(x1 ∧ x2) ∧ (x1 ∧ ¬x2) ∧ (x2 ∧ x3)

= x1 ∧ x2 ∧ x1 ∧ ¬x2 ∧ x2 ∧ x3.
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Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj:

• This is trivially true.

φ = ¬φ1 and a CNF is sought:

• Turn φ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought:

• Turn φ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for φ.
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Any Expression φ Can Be Converted into CNFs and DNFs

(continued)

φ = φ1 ∨ φ2 and a DNF is sought:

• Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought:

• Turn φ1 and φ2 into CNFs,a

φ1 =

n1∧

i=1

Ai, φ2 =

n2∧

j=1

Bj .

• Set

φ =

n1∧

i=1

n2∧

j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.
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Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought:

• Make φ1 and φ2 CNFs.

φ = φ1 ∧ φ2 and a DNF is sought:

• Turn φ1 and φ2 into DNFs,

φ1 =

n1∨

i=1

Ai, φ2 =

n2∨

j=1

Bj .

• Set

φ =

n1∨

i=1

n2∨

j=1

(Ai ∧Bj).
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An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))

¬(CNF∨CNF)
= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))

¬(CNF)
= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))

de Morgan
= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

de Morgan
= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).
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Functional Completeness

• A set of logical connectives is called functionally

complete if every boolean expression is equivalent to

one involving only these connectives.

• The set {¬,∨,∧} is functionally complete.

– Every boolean expression can be turned into a CNF,

which involves only ¬, ∨, and ∧.
• The sets {¬,∨} and {¬,∧} are functionally complete.a

– By the above result and de Morgan’s laws.

• {nand } and {nor } are functionally complete.b

aPost (1921).
bPeirce (c. 1880); Sheffer (1913).
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Satisfiability

• A boolean expression φ is satisfiable if there is a truth

assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all

T appropriate to φ.

aWittgenstein (1922). Wittgenstein is one of the most important

philosophers of all time. Russell (1919), “The importance of ‘tautology’

for a definition of mathematics was pointed out to me by my former

pupil Ludwig Wittgenstein, who was working on the problem. I do not

know whether he has solved it, or even whether he is alive or dead.”

“God has arrived,” the great economist Keynes (1883–1946) said of him

on January 18, 1928, “I met him on the 5:15 train.”
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Satisfiability (concluded)

• φ is unsatisfiable or a contradiction if φ is false

under all appropriate truth assignments.

– Or, equivalently, if ¬φ is valid (prove it).

• φ is a contingency if φ is neither a tautology nor a

contradiction.
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Ludwig Wittgenstein (1889–1951)

Wittgenstein (1922),

“Whereof one cannot

speak, thereof one must

be silent.”
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satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP.a

• A most important problem in settling the “P
?
= NP”

problem.b

aRecall p. 120.
bSee p. 332.
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unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– φ and ¬φ are basically of the same length.

– So unsat and validity have the same complexity.

– Both take the form: For all truth assignments, . . .?

• Both are solvable in exponential time by the truth table

method.
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Relations among sat, unsat, and validity

ContingentValid Unsatisfiable

• The negation of an unsatisfiable expression is a valid

expression.

• None of the four problems—satisfiability, unsatisfiability,

validity, and contingency—are known to be in P.
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Boolean Functions

• An n-ary boolean function is a function

f : { true, false }n → { true, false }.

• It can be represented by a truth table.

• There are 22
n

such boolean functions.

– We can assign true or false to f for each of the 2n

truth assignments.
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Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false
...

...

2n true or false

• A boolean expression expresses a boolean function.

– Think of its truth values under all possible truth

assignments.
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Boolean Functions (continued)

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true in “row” T (y1 ∧ · · · ∧ yn).
a

∗ The implicant y1 ∧ · · · ∧ yn is called the minterm

over {x1, . . . , xn } for T .

– The sizeb is ≤ n2n ≤ 22n.

– This DNF is optimal for the parity function, for

example.c

aSimilar to programmable logic array. This is called the table

lookup representation (Beigel, 1993).
bWe count only the literals here.
cDu & Ko (2000).
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Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).
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Boolean Functions (concluded)

Corollary 15 Every n-ary boolean function can be

expressed by a boolean expression of size O(n2n).

• In general, the exponential length in n cannot be

avoided (p. 219).

• The size of the truth table is also O(n2n).a

aThere are 2n n-bit strings.
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Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{ true, false,∨,∧,¬, x1, x2, . . . }.
– There are n+ 5 sorts.
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Boolean Circuits (concluded)

• Gates with a sort from { true, false, x1, x2, . . . } are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• A boolean function can be realized by infinitely many

equivalent boolean circuits.
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Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬ �
�

¬

�
�

�
�
 ∨ �

�

∨

�
�

�
�

�
�
 ∧ �

�

∧

�
�

�
�
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An Example

((x1  x2 ) (x3 x4)) (x3 x4))

x1 x2 x3 x4

• Circuits are potentially more economical because of the

possibility of “sharing.”a

aBut see p. 293 for an efficient equivalent boolean expression. Con-

tributed by Mr. Han-Ting Chen (R10922073) on October 14, 2021.
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