Turing Machines with Multiple Strings

A k-string Turing machine (TM) is a quadruple
M = (K,3,94,s).

K., >, s are as before.

§: K x¥k = (KU{h, “yes”, “no”}) x (X x {<, —, =}~

All strings start with a >.
The first string contains the input.
Decidability and acceptability are the same as before.

When TMs compute functions, the output is the last
(kth) string.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74



A 2-String TM

'

»>1000110000111001110001110UUL

v

>111110000LUuUHHyUULLLL

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75



PALINDROME Revisited

e A 2-string TM can decide PALINDROME in O(n) steps.

— It copies the input to the second string.

The cursor of the first string is positioned at the first
symbol of the input.

The cursor of the second string is positioned at the
last symbol of the input.

The symbols under the cursors are then compared.

The two cursors are then moved in opposite
directions until the ends are reached.

The machine accepts if and only if the symbols under
the two cursors are identical at all steps.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76



i

>ababbaabbaabbaabbaballlill

v
>ababbaabbaabbaabbaballlill

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77



PALINDROME Revisited (concluded)

e The running times of a 2-string TM and a single-string

TM are quadratically related: n? vs. n.

e This is consistent with the extended Church’s thesis.?

— “Reasonable” models are related polynomially in

running times.

@Recall p. 68.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78



Configurations and Yielding

e The concept of configuration and yielding is the same as

before except that a configuration is a (2k 4 1)-tuple

<Q7w17u17w27u27 .- '7wk7uk>'

— w;u; is the ith string.
— The ith cursor is reading the last symbol of w;.

— Recall that > is each w;’s first symbol.

e The k-string TM’s initial configuration is

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79



Time seemed to be

the most obvious measure

of complexity.
— Stephen Arthur Cook (1939-)

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80



Time Complexity

e The multistring TM is the basis of our notion of the

time expended by TMs.

o If a k-string TM M halts after ¢ steps on input x, then
the time required by M on input x is t.

o If M(x) =", then the time required by M on z is oc.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 81



Time Complexity (concluded)

e Machine M operates within time f(n) for f: N — N
if for any input string x, the time required by M on x is
at most f(|x]).

— | x| is the length of string x.

e Function f(n) is a time bound for M.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 82



Time Complexity Classes®
Suppose language L C (3 — {LU})* is decided by a
multistring TM operating in time f(n).
We say L € TIME(f(n)).
TIME(f(n)) is the set of languages decided by TMs

with multiple strings operating within time bound f(n).
TIME(f(n)) is a complexity class.

— PALINDROME is in TIME(f(n)), where f(n) = O(n).

) =
Trivially, TIME(f(n)) C TIME(g(n)) if f(n) < g(n) for

all n.

2Rabin (1963); Hartmanis & Stearns (1965); Hartmanis, Lewis, &
Stearns (1965).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 83



Michael O. Rabin® (1931-)

2Turing Award (1976).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 84



Juris Hartmanis® (1928-)

2Turing Award (1993).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 85



Richard Edwin Stearns® (1936-)

2Turing Award (1993).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 86



The Simulation Technique

Theorem 3 Given any k-string M operating within time
f(n), there exists a (single-string) M’ operating within time
O(f(n)?) such that M(x) = M'(x) for any input x.

e The single string of M’ implements the k strings of M.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 87



The Proof

e Represent configuration (q,wy, u1, wa, us, ..., Wk, ug) of
M by this configuration of M’:

(g, >, wiug S whug < -+ < wpuy < <).

— < is a special delimiter.

— w, is w; with the first® and last symbols “primed.”

— It serves the purpose of “,” in a configuration.?

aThe first symbol is of course [>.
PAn alternative is to use (g, >w]|ur < whluz < -+ < wl|ug < <) by

((|77

priming only > in w;, where is a new symbol.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 88



The Proof (continued)

e The first symbol of w); is the primed version of >: >’
— Cursors are not allowed to move to the left of .2
— So the cursor of M’ can move between the simulated

strings of M .P

e The “priming” of the last symbol of each w; ensures that
M’ knows which symbol is under each cursor of M .¢

aRecall p. 24.

PThanks to a lively discussion on September 22, 2009.
©Added because of comments made by Mr. Che-Wei Chang

(R95922093) on September 27, 2006.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 89



The Proof (continued)

e The initial configuration of M’ is

k — 1 pairs

\

(s,>,>"ra" <" <<).

— >’ is double-primed because it is the beginning and
the ending symbol as the cursor is reading it.?

— Again, think of it as a new symbol.

2Added after the class discussion on September 20, 2011.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 90



The Proof (continued)

e We simulate each move of M thus:

1. M’ scans the string to pick up the k symbols under
the cursors.
— The states of M’ must be enlarged to include

K x ¥F to remember them.?
— The transition functions of M’ must also reflect it.

2. M’ then changes the string to reflect the overwriting

of symbols and cursor movements of M.

@Recall the TM program on p. 36.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 91



The Proof (continued)

e It is possible that some strings of M need to be
lengthened (see next page).

— The linear-time algorithm on p. 39 can be used for

each such string.
e 'The simulation continues until M halts.

e )M’ then erases all strings of M except the last one.?

@Whatever remains on the tape of M’ before the first LI is considered

output by our convention. So >’s and >"'s must be removed.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 92



The Proof (continued)?

string 1 string 2 string 3 | string 4

string 1 string 2 string 3 I string 4

aIf we interleave the strings, the simulation may be easier. Con-
tributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September
22, 2015. This is similar to constructing a single-string multi-track TM
in, e.g., Hopcroft & Ullman (1969). Or one may do the insertion starting
from the last string by memorizing what needs to be inserted for each

string. Contributed by Mr. Hsi-Kang Hsu (R10922128) on September 30,
2021.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 93



The Proof (continued)

e Since M halts within time f(|z|), none of its strings

ever becomes longer than f(|x|).*
e The length of the string of M’ at any time is O(kf(|x|)).

e Simulating each step of M takes, per string of M,
O(kf(lx])) steps.
— O(f(|x|)) steps to collect information from this
string.
— O(kf(|z|)) steps to write and, if needed, to lengthen
the string.

@We tacitly assume f(n) > n.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 94



The Proof (concluded)

e There are k strings.

e So M’ takes O(k*f(|z]|)) steps to simulate each step of
M.

e As there are f(|x|) steps of M to simulate, M’ operates
within time O(k?f(|x ])?).?

2]s the time reduced to O(kf(| z |)?) if the interleaving data structure
is adopted?

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 95



Simulation with Two-String TMs

We can do better with two-string simulating T Ms.

Theorem 4 Given any k-string M operating within time

f(n), k> 2, there exists a two-string M’ operating within

time O(f(n)log f(n)) such that M (x) = M'(x) for any input
T.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 96



Linear Speedup?

Theorem 5 Let L € TIME(f(n)). Then for any € > 0,
L € TIME(f'(n)), where f'(n) = ef(n) +n+ 2.

See Theorem 2.2 of the textbook for a proof.

2Hartmanis & Stearns (1965).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 97



Proof ldeas
e Take the TM program on p. 36.

e It accepts if and only if the input contains two

consecutive 1’s.

e Assume M = (K, X, 4, s), where
K = {5,500, 801, 510, 511, - - -, “yes”, “no” },
% = {0,1,(00), (01), (10), (11), (0L3), (1L3), U, > }.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 98



Proof Ideas (continued)

First convert the input into 2-tuples onto the second
string.

11 6

A\

Ve

So T0011001110 becomes (10)(01)(10)(01)(11)(0L).

The length is therefore about halved.

The transition table below covers only the second string

for brevity.

It presents only the key lines of code.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 99



Proof Ideas (continued)

pe K

o€

o(p,0)

(s',(00), =)

(801, (01), %)

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 100



Proof Ideas (concluded)?®

S01

(“yes”, (10), —)

S01

(“yes”, (11), —)

S01

(801, (01), —>)

S01

(s',(00), =)

S01

(“no”, (1U), —)

S01

(“yes”, (1L)), =)

S01

(“DO”, |_|7 _)

aCorrected by Mr. Yu-Ming Lu (R06723032, D08922008) on September

30, 2021.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 101



Implications of the Speedup Theorem

e State size can be traded for speed.?

e If the running time is cn with ¢ > 1, then ¢ can be made

arbitrarily close to 1.

e If the running time is superlinear, say 14n? + 31n, then
the constant in the leading term (14 in this example)

can be made arbitrarily small.
— Arbitrary linear speedup can be achieved.”

— This justifies the big-O notation in the analysis of

algorithms.

amk . |33k fold increase to gain a speedup of O(m). No free lunch.
bPCan you apply the theorem multiple times to achieve superlinear

speedup? Thanks to a question by a student on September 21, 2010.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 102



P

e By the linear speedup theorem, any polynomial time

bound can be represented by its leading term n*.

o If L ¢ TIME(n*) for some k € N, it is a polynomially
decidable language.

— Clearly, TIME(n*) C TIME(n**1).

e The union of all polynomially decidable languages is
denoted by P:?

P2 | | TIME(n).
k>0

e P contains problems that can be efficiently solved.

2Cobham (1964).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103



Philosophers have explained space.

They have not explained time.
— Arnold Bennett (1867-1931),
How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation
attributed to me that says

640K of memory is enough.

— Bill Gates (1996)

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 104



Space Complexity

e Consider a k-string TM M with input .

e Assume non-Ll is never written over by LI.?

— The purpose is not to artificially reduce the space

needs (see below).

e If M halts in configuration
(H7 w1, Uy, W2, U2y - . -, wkauk)a

then the space required by M on input z is

k
i=1

2Corrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on
September 27, 2006.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105



Space Complexity (continued)

e Suppose we do not charge the space used only for input

and output.
e Let k£ > 2 be an integer.
e A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.
— The input string is read-only.?
— The cursor on the last string never moves to the left.
x The output string is essentially write-only.

— The cursor of the input string does not go beyond
the first L.

2Called an off-line TM in Hartmanis, Lewis, & Stearns (1965).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106



Space Complexity (concluded)

o If M is a TM with input and output, then the space
required by M on input x is

k—1

1=2

e Machine M operates within space bound f(n) for
f : N — N if for any input x, the space required by M
on x is at most f(|x|).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 107



Space Complexity Classes

Let L be a language.

Then
L € SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

SPACE(f(n)) is a set of languages.
— PALINDROME € SPACE(logn).?

A linear speedup theorem similar to the one on p. 97
exists, so constant coefficients do not matter.

aMaintain 3 counters.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 108



If she can hesitate as to “Yes,”
she ought to say “No” directly.

— Jane Austen (1775-1817),
Emma (1815)

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109



Nondeterminism?

e A nondeterministic Turing machine (NTM) is a
quadruple N = (K, X, A, s).

e K, >, s are as before.

e AC K xXx(KU{h, “yes”,“no”}) x ¥ x {<,—, —} is

a relation, not a function.®

— For each state-symbol combination (g, ), there may

be multiple valid next steps.
— Multiple lines of code may be applicable.

— But only one will be taken.

2Rabin & Scott (1959).
PCorrected by Mr. Jung-Ying Chen (D95723006) on September 23,

2008.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110



Nondeterminism (continued)

e As before, a program contains lines of code:

(q1,01,p1,p1,D1) € A,
(q2,02,p2,p2,D2) € A,

(qu?O_n)pn)pn)Dn) E A

e But we cannot write
6(qi,04) = (Pis pis D)

as in the deterministic case® anymore.

aRecall p. 25.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111



Nondeterminism (concluded)

e A configuration yields another configuration in one step
if there exists a rule in A that makes this happen.
e There remains only one thread of computation.?

— Nondeterminism is not parallelism, multiprocessing,

multithreading, or quantum computation.

@Thanks to a lively discussion on September 22, 2015.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112



Dana Stewart Scott® (1932-)

2Turing Award (1976).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 113



Computation Tree and Computation Path

\)

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 114



Decidability under Nondeterminism

e Let L be a language and N be an NTM.

e N decides L if for any x € ¥*, x € L if and only if there
is a sequence of valid configurations that ends in “yes.”
e In other words,

— If x € L, then N(x) = “yes” for some computation
path.

— If x ¢ L, then N(x) # “yes” for all computation
paths.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115



Decidability under Nondeterminism (continued)

It is not required that the deciding NTM halts in all

computation paths.?

If z ¢ L, no nondeterministic choices should lead to a

“yes” state.

The key is the algorithm’s overall behavior not whether

it gives a correct answer for each particular run.

Note that determinism is a special case of

nondeterminism.

aUnlike the deterministic case (p. 53). So “accepts” may be a more
proper term. Some books use “decides” only when the NTM always
halts.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116



Decidability under Nondeterminism (concluded)

e For example, suppose L is the set of primes.?

e Then we have the primality testing problem.

e An NTM N decides L if:

— If x is a prime, then N(z) = “yes” for some

computation path.

— If = is not a prime, then N(z) # “yes” for all
computation paths.

2Contributed by Mr. Yu-Ming Lu (R06723032, D08922008) on March
7.2019.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117



Complementing a TM's Halting States

e Let M decide L, and M’ be M after “yes” <> “no”.

o If M is deterministic, then M’ decides L.?
— So M and M’ decide languages that complement
each other.
e But if M is an NTM, then M’ may not decide L.
— It is possible that M and M’ accept the same input x

(see next page).

— So M and M’ may accept languages that are not

even disjoint.

@By the definition on p. 53, M must halt on all inputs.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118



©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119



A Nondeterministic Algorithm for Satisfiability

¢ is a boolean formula with n variables.
1: for:=1,2,....,ndo
Guess z; € {0,1}; {Nondeterministic choices.}
. end for
. {Verification:}
if ¢(x1,29,...,2,) =1 then

yes' |
. else

CCnO77 ;

2:
3
4
5
6: “ 7
7
8
9: end if

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 120



Computation Tree for Satisfiability

[13 b5 I 11 b5 I 11 L2 N 11 12N 13 L3 I 11 b2 I 1 L3 B 14 b3 BN 11 b3

N0 y&S N0 ¥&S V&S N0 N0 1NO V&S

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121



Analysis

e Recall that ¢ is satisfiable if and only if there is a truth

assignment that satisfies ¢.

e Think of the computation tree as a complete binary tree
of depth n.

e Lvery computation path corresponds to a particular

truth assignment® out of 2.

aEquivalently, a sequence of nondeterministic choices.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122



Analysis (concluded)

e The algorithm decides language
{ & : ¢ is satisfiable }.

— Suppose ¢ is satisfiable.

x There is a truth assignment that satisfies ¢.
*x So there is a computation path that results in

44 7

yes.

— Suppose ¢ is not satisfiable.

+x That means every truth assignment makes ¢ false.

x S0 every computation path results in “no.”

e General paradigm: Guess a “proof” then verify it.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 123



The Traveling Salesman Problem

We are given n cities 1,2, ..., n and integer distance d;;

between any two cities ¢ and j.
Assume d;; = d;; for convenience.

The traveling salesman problem (TsP) asks for the

total distance of the shortest tour of the cities.?

The decision version TSP (D) asks if there is a tour with

a total distance at most B, where B is an input.”

@Fach city is visited exactly once.
PBoth problems are extremely important. They are equally hard
(pp. 419 and 522).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 124



A Shortest Tour

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 125



A Nondeterministic Algorithm for TSP (D)
: fort=1,2,...,ndo
Guess x; € {1,2,...,n}; {The ith city.}*
: end for
: {Verification:}
. if z1, 22, ..., 2, are distinct and Z;:ll de;z;in < B then

“yeS” ;

. else

CCnO” ;

- end if

2Can be made into a series of log, n binary choices for each z; so

that the next-state count (2) is a constant, independent of input size.
Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 126



Analysis

e Suppose the input graph contains at least one tour of

the cities with a total distance at most B.
— Then there is a computation path for that tour.?
— And it leads to “yes.”

e Suppose the input graph contains no tour of the cities
with a total distance at most B.

— Then every computation path leads to “no.”

2t does not mean the algorithm will follow that path. It merely re-
quires that such a computation path (i.e., a sequence of nondeterministic

choices) exists.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 127



Time Complexity under Nondeterminism

e Nondeterministic machine N decides L in time f(n),
where f: N — N, if

— N decides L, and

— for any x € X*, N does not have a computation path
longer than f(|x|).

e We charge only the “depth” of the computation tree.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128



Time Complexity Classes under Nondeterminism

e NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

e NTIME(f(n)) is a complexity class.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 129



NP (“Nondeterministic Polynomial”)

Define
NP £ | | NTIME(n").
k>0

Clearly P C NP.

Think of NP as efficiently verifiable problems.?
— Boolean satisfiability (pp. 120 and 203), e.g.

The most important open problem in computer science
is whether P = NP.

aSee p. 347.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 130



Remarks on the P = NP Open Problem?

Many practical applications depend on answers to the

P = NP question.

Verification of password should be easy (so it is in NP).

— A computer should not take a long time to let a user
log in.

A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

It took 63 years to settle the Continuum Hypothesis;
how long will it take for this one?

2Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on
September 27, 2011.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 131



Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.?

Theorem 6 Suppose language L is decided by an NTM N
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(c/™), where ¢ > 1 is some constant
depending on N.

e On input x, M explores the computation tree of N (x)
using depth-first search.

— M does not need to know f(n).

— As N is time-bounded, the depth-first search will
halt.P

aLike finite-state automata, but unlike pushdown automata.
PIf there is no time bound, breadth-first search is safer.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 132



The Proof (concluded)

e If any path leads to “yes,” then M immediately enters
the “yes” state.

e If none of the paths lead to “yes,” then M enters the

“no” state.

e The simulation takes time O(c/(™) for some ¢ > 1

because the computation tree has that many nodes.

Corollary 7 NTIME(f(n)) C ., TIME(c/().2

aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015:
Uo7 TIME(c/ (") C NTIME(f(n)))?

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 133



NTIME vs. TIME

e Does converting an NTM into a TM require exploring all
computation paths of the NTM in the worst case as

done in Theorem 6 (p. 132)7?

e This is a key question in theory with important practical

implications.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 134



Nondeterministic Space Complexity Classes

Let L be a language.

Then
L € NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).
NSPACE(f(n)) is a set of languages.

As in the linear speedup theorem,® constant coefficients

do not matter.

aTheorem 5 (p. 97).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 135



Graph Reachability

Let G(V, E) be a directed graph (digraph).

REACHABILITY asks, given nodes a and b, does G
contain a path from a to b7

Can be easily solved in polynomial time by breadth-first

search.

How about its nondeterministic space complexity?

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 136



The First Try: NSPACE(n logn)
: Determine the number of nodes m; {Note m < n.}
: x1 := a; {Assume a # b.}
: fort=2,3,...,mdo
Guess x; € {v1,v2,...,0m }; {The ith node.}
: end for

. for1=2,3,...,m do

if (azi_l,azi) g E then

CCnO” ;

end if
if ©; = b then

44 7

yes
end if

- end for

. “no” :

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 137



In Fact, REACHABILITY € NSPACE(logn)

: Determine the number of nodes m; {Note m < n.}
T = a;
: fort=2,3,...,mdo
Guess y € {v1,v2,...,Um }; {The next node.}
if (z,y) € E then
“no”;
end if
if y =06 then
“yes”;
end if

x := y; {Recycle the space.}

1

2:
3

4:
5:
6:
7
8:
9:

—_ =
= O

- end for

. “no” :

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 138



Space Analysis

e Variables m, i, x, and y each require O(logn) bits.

e Testing (z,y) € F is accomplished by consulting the
input string with counters of O(logn) bits long.

e Hence
REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node
also has the same complexity.

— In fact, REACHABILITY for undirected graphs is in
SPACE(logn).?

e It is well-known that REACHABILITY € P.P

2Reingold (2004).
PSee, e.g., p. 248.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 139



