Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta : K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \rhd.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (kth) string.
A 2-String TM

\[\delta \]

\[\rightarrow 1000110000111001110001110 \]

\[\rightarrow 111110000 \]

\[\rightarrow 111110000 \]
PALINDROME Revisited

- A 2-string TM can decide PALINDROME in $O(n)$ steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The symbols under the cursors are then compared.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.
PALINDROME Revisited (concluded)

- The running times of a 2-string TM and a single-string TM are quadratically related: n^2 vs. n.

- This is consistent with the extended Church’s thesis.\(^a\)
 - “Reasonable” models are related polynomially in running times.

\(^a\)Recall p. 68.
Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a \((2k + 1)\)-tuple
 \[(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).\]
 - \(w_iu_i\) is the \(i\)th string.
 - The \(i\)th cursor is reading the last symbol of \(w_i\).
 - Recall that \(\triangleright\) is each \(w_i\)'s first symbol.

- The \(k\)-string TM's initial configuration is

\[
(s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \ldots, \triangleright, \epsilon).
\]

\[
\text{with } 1 \leq i \leq k.
\]
Time seemed to be the most obvious measure of complexity.

— Stephen Arthur Cook (1939–)
Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.

- If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.

- If $M(x) = \uparrow$, then the time required by M on x is ∞.
Time Complexity (concluded)

- Machine M operates within time $f(n)$ for $f : \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
 - $|x|$ is the length of string x.
- Function $f(n)$ is a **time bound** for M.
Time Complexity Classesa

• Suppose language $L \subseteq (\Sigma - \{\square\})^*$ is decided by a multistring TM operating in time $f(n)$.

• We say $L \in \text{TIME}(f(n))$.

• \text{TIME}(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.

• \text{TIME}(f(n)) is a complexity class.

 – \text{PALINDROME} is in \text{TIME}(f(n)) \text{, where } f(n) = O(n)$.

• Trivially, \text{TIME}(f(n)) \subseteq \text{TIME}(g(n)) \text{ if } f(n) \leq g(n) \text{ for all } n$.

aRabin (1963); Hartmanis & Stearns (1965); Hartmanis, Lewis, & Stearns (1965).
Michael O. Rabina (1931–)

aTuring Award (1976).
Juris Hartmanisa (1928–)

aTuring Award (1993).
Richard Edwin Stearnsa (1936–)

aTuring Award (1993).
The Simulation Technique

Theorem 3 Given any \(k \)-string \(M \) operating within time \(f(n) \), there exists a (single-string) \(M' \) operating within time \(O(f(n)^2) \) such that \(M(x) = M'(x) \) for any input \(x \).

- The single string of \(M' \) implements the \(k \) strings of \(M \).
The Proof

• Represent configuration \((q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)\) of \(M\) by this configuration of \(M'\):

\[
(q, \triangleright, w'_1 u_1 \triangleleft w'_2 u_2 \triangleleft \cdots \triangleleft w'_k u_k \triangleleft \triangleleft).
\]

– \(\triangleleft\) is a special delimiter.
– \(w'_i\) is \(w_i\) with the first\(^a\) and last symbols “primed.”
– It serves the purpose of “,” in a configuration.\(^b\)

\(^a\)The first symbol is of course \(\triangleright\).
\(^b\)An alternative is to use \((q, \triangleright w'_1 | u_1 < w'_2 | u_2 < \cdots < w'_k | u_k < \triangleleft)\) by priming only \(\triangleright\) in \(w_i\), where “\(|\)” is a new symbol.
The Proof (continued)

• The first symbol of w'_i is the primed version of \triangleright: \triangleright'.
 – Cursors are not allowed to move to the left of \triangleright.\(^a\)
 – So the cursor of M' can move *between* the simulated strings of M.\(^b\)

• The “priming” of the last symbol of each w_i ensures that M' knows which symbol is under each cursor of M.\(^c\)

\(^a\)Recall p. 24.
\(^b\)Thanks to a lively discussion on September 22, 2009.
\(^c\)Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
The Proof (continued)

• The initial configuration of M' is

$$ (s, \triangleright, \triangleright''x \triangleleft \triangleright'' \triangleleft \cdots \triangleright'' \triangleleft \lhd). $$

 – \triangleright'' is double-primed because it is the beginning and the ending symbol as the cursor is reading it.\(^a\)

 – Again, think of it as a new symbol.

\(^a\)Added after the class discussion on September 20, 2011.
The Proof (continued)

• We simulate each move of M thus:

1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.a
 - The transition functions of M' must also reflect it.

2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

aRecall the TM program on p. 36.
The Proof (continued)

• It is possible that some strings of M need to be lengthened (see next page).
 – The linear-time algorithm on p. 39 can be used for each such string.

• The simulation continues until M halts.

• M' then erases all strings of M except the last one.\(^a\)

\(^a\)Whatever remains on the tape of M' before the first \square is considered output by our convention. So \triangleright's and \triangleright'''s must be removed.
The Proof (continued)a

If we interleave the strings, the simulation may be easier. Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015. This is similar to constructing a single-string \textit{multi-track} TM in, e.g., Hopcroft & Ullman (1969). Or one may do the insertion starting from the last string by memorizing what needs to be inserted for each string. Contributed by Mr. Hsi-Kang Hsu (R10922128) on September 30, 2021.
The Proof (continued)

- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|)$.

- The length of the string of M' at any time is $O(kf(|x|))$.

- Simulating each step of M takes, per string of M, $O(kf(|x|))$ steps.
 - $O(f(|x|))$ steps to collect information from this string.
 - $O(kf(|x|))$ steps to write and, if needed, to lengthen the string.

\(^{a}\)We tacitly assume $f(n) \geq n$.
The Proof (concluded)

- There are k strings.
- So M' takes $O(k^2 f(|x|))$ steps to simulate each step of M.
- As there are $f(|x|)$ steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.

\[a \]

\[a \text{Is the time reduced to } O(kf(|x|)^2) \text{ if the interleaving data structure is adopted?} \]
Simulation with Two-String TMs

We can do better with two-string simulating TMs.

Theorem 4 Given any k-string M operating within time $f(n)$, $k > 2$, there exists a two-string M' operating within time $O(f(n) \log f(n))$ such that $M(x) = M'(x)$ for any input x.
Linear Speedupa

Theorem 5 Let $L \in \text{TIME}(f(n))$. Then for any $\epsilon > 0$, $L \in \text{TIME}(f'(n))$, where $f'(n) \triangleq \epsilon f(n) + n + 2$.

See Theorem 2.2 of the textbook for a proof.

aHartmanis & Stearns (1965).
Proof Ideas

• Take the TM program on p. 36.

• It accepts if and only if the input contains two consecutive 1’s.

• Assume $M = (K, \Sigma, \delta, s)$, where
 \[K = \{ s', s_{00}, s_{01}, s_{10}, s_{11}, \ldots, \text{"yes"}, \text{"no"} \}, \]
 \[\Sigma = \{ 0, 1, (00), (01), (10), (11), (0\sqcup), (1\sqcup), \sqcup, \triangleright \}. \]
Proof Ideas (continued)

• First convert the input into 2-tuples onto the second string.

\[
\begin{align*}
\underbrace{1011001110} & \rightarrow \underbrace{10} \underbrace{(01)} \underbrace{(10)} \underbrace{(01)} \underbrace{(11)} \underbrace{(0\Box)}.
\end{align*}
\]

• The length is therefore about halved.

• The transition table below covers only the second string for brevity.

• It presents only the key lines of code.
Proof Ideas (continued)

<table>
<thead>
<tr>
<th>$p \in K$</th>
<th>$\sigma \in \Sigma$</th>
<th>$\delta(p, \sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>s'</td>
<td>(00)</td>
<td>$(s', (00), \rightarrow)$</td>
</tr>
<tr>
<td>s'</td>
<td>(01)</td>
<td>$(s_{01}, (01), \rightarrow)$</td>
</tr>
<tr>
<td>s'</td>
<td>(10)</td>
<td>$(s', (10), \rightarrow)$</td>
</tr>
<tr>
<td>s'</td>
<td>(11)</td>
<td>("yes", (11), $-$)</td>
</tr>
<tr>
<td>s'</td>
<td>(01)</td>
<td>("no", (01), $-$)</td>
</tr>
<tr>
<td>s'</td>
<td>(11)</td>
<td>("no", (11), $-$)</td>
</tr>
<tr>
<td>s'</td>
<td>\square</td>
<td>("no", \square, $-$)</td>
</tr>
</tbody>
</table>
Proof Ideas (concluded)a

<table>
<thead>
<tr>
<th>s_{01}</th>
<th>(10)</th>
<th>(“yes”, (10), −)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_{01}</td>
<td>(11)</td>
<td>(“yes”, (11), −)</td>
</tr>
<tr>
<td>s_{01}</td>
<td>(01)</td>
<td>(s_{01}, (01), →)</td>
</tr>
<tr>
<td>s_{01}</td>
<td>(00)</td>
<td>(s', (00), →)</td>
</tr>
<tr>
<td>s_{01}</td>
<td>(0□)</td>
<td>(“no”, (1□), −)</td>
</tr>
<tr>
<td>s_{01}</td>
<td>(1□)</td>
<td>(“yes”, (1□), −)</td>
</tr>
<tr>
<td>s_{01}</td>
<td>□</td>
<td>(“no”, □, −)</td>
</tr>
<tr>
<td>∙</td>
<td>∙</td>
<td>∙</td>
</tr>
</tbody>
</table>

aCorrected by Mr. Yu-Ming Lu (R06723032, D08922008) on September 30, 2021.
Implications of the Speedup Theorem

- State size can be traded for speed.\(^a\)

- If the running time is \(cn\) with \(c > 1\), then \(c\) can be made arbitrarily close to 1.

- If the running time is superlinear, say \(14n^2 + 31n\), then the constant in the leading term (14 in this example) can be made arbitrarily small.

 - *Arbitrary* linear speedup can be achieved.\(^b\)

 - This justifies the big-O notation in the analysis of algorithms.

\(^a\)\(m^k \cdot |\Sigma|^{3mk}\)-fold increase to gain a speedup of \(O(m)\). No free lunch.

\(^b\)Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.
By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k.

If $L \in \text{TIME}(n^k)$ for some $k \in \mathbb{N}$, it is a **polynomially decidable language**.

- Clearly, $\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})$.

The union of all polynomially decidable languages is denoted by P:\(^a\)

$$P \triangleq \bigcup_{k>0} \text{TIME}(n^k).$$

P contains problems that can be efficiently solved.

\(^a\)Cobham (1964).
Philosophers have explained space. They have not explained time.
— Arnold Bennett (1867–1931), How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation attributed to me that says 640K of memory is enough.
— Bill Gates (1996)
Space Complexity

- Consider a k-string TM M with input x.
- Assume non-\sqcup is never written over by \sqcup.\(^a\)
 - The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration
 $$(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k),$$
 then the space required by M on input x is
 $$\sum_{i=1}^{k} |w_iu_i|.$$

\(^a\)Corrected by Ms. Chuan-Ju Wang (R95922018, F95922018) on September 27, 2006.
Space Complexity (continued)

- Suppose we do not charge the space used only for input and output.

- Let $k > 2$ be an integer.

- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
 - The input string is \textit{read-only}.\footnote{Called an \textbf{off-line TM} in Hartmanis, Lewis, & Stearns (1965).}
 - The cursor on the last string never moves to the left.
 - The output string is essentially \textit{write-only}.
 - The cursor of the input string does not go beyond the first \sqcup.}
Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is
 \[
 \sum_{i=2}^{k-1} |w_i u_i|.
 \]

- Machine M operates within space bound $f(n)$ for $f : \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.
Space Complexity Classes

- Let L be a language.

- Then

 $L \in \text{SPACE}(f(n))$

 if there is a TM with input and output that decides L and operates within space bound $f(n)$.

- $\text{SPACE}(f(n))$ is a set of languages.
 - $\text{PALINDROME} \in \text{SPACE}(\log n)$.

- A linear speedup theorem similar to the one on p. 97 exists, so constant coefficients do not matter.

\[a\] Maintain 3 counters.
If she can hesitate as to “Yes,”
she ought to say “No” directly.
— Jane Austen (1775–1817),

Emma (1815)
Nondeterminism\(^a\)

- A nondeterministic Turing machine (NTM) is a quadruple \(N = (K, \Sigma, \Delta, s)\).
- \(K, \Sigma, s\) are as before.
- \(\Delta \subseteq K \times \Sigma \times (K \cup \{h, \text{“yes”}, \text{“no”}\}) \times \Sigma \times \{←, →, −\}\) is a relation, not a function.\(^b\)
 - For each state-symbol combination \((q, \sigma)\), there may be multiple valid next steps.
 - Multiple lines of code may be applicable.
 - But only one will be taken.

\(^a\)Rabin & Scott (1959).
\(^b\)Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.
Nondeterminism (continued)

• As before, a program contains lines of code:

\[(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,\]
\[(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,\]
\[\vdots\]
\[(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.\]

• But we cannot write

\[\delta(q_i, \sigma_i) = (p_i, \rho_i, D_i)\]

as in the deterministic case\(^a\) anymore.

\(^a\)Recall p. 25.
Nondeterminism (concluded)

- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.
- There remains only one thread of computation.a
 - Nondeterminism is not parallelism, multiprocessing, multithreading, or quantum computation.

aThanks to a lively discussion on September 22, 2015.
Dana Stewart Scotta (1932–)

aTuring Award (1976).
Computation Tree and Computation Path

The figure illustrates a computation tree with the root node labeled as \(s \). The tree branches out with decisions labeled as "yes" and "no". Nodes are labeled as \(h \). The tree structure shows a decision process with possible outcomes.
Decidability under Nondeterminism

• Let \(L \) be a language and \(N \) be an NTM.

• \(N \) decides \(L \) if for any \(x \in \Sigma^* \), \(x \in L \) if and only if there is a sequence of valid configurations that ends in “yes.”

• In other words,
 - If \(x \in L \), then \(N(x) = \text{“yes”} \) for some computation path.
 - If \(x \not\in L \), then \(N(x) \neq \text{“yes”} \) for all computation paths.
Decidability under Nondeterminism (continued)

- It is not required that the deciding NTM halts in all computation paths.\(^a\)

- If \(x \notin L\), no nondeterministic choices should lead to a “yes” state.

- The key is the algorithm’s overall behavior not whether it gives a correct answer for each particular run.

- Note that determinism is a special case of nondeterminism.

\(^a\)Unlike the deterministic case (p. 53). So “accepts” may be a more proper term. Some books use “decides” only when the NTM always halts.
Decidability under Nondeterminism (concluded)

• For example, suppose L is the set of primes.a

• Then we have the primality testing problem.

• An NTM N decides L if:
 – If x is a prime, then $N(x) =$ “yes” for some computation path.
 – If x is not a prime, then $N(x) \neq$ “yes” for all computation paths.

aContributed by Mr. Yu-Ming Lu (R06723032, D08922008) on March 7, 2019.
Complementing a TM’s Halting States

• Let M decide L, and M' be M after “yes” \leftrightarrow “no”.

• If M is deterministic, then M' decides \overline{L}.\(^a\)
 – So M and M' decide languages that complement each other.

• But if M is an NTM, then M' may not decide \overline{L}.
 – It is possible that M and M' accept the same input x (see next page).
 – So M and M' may accept languages that are not even disjoint.

\(^a\)By the definition on p. 53, M must halt on all inputs.
The diagram illustrates a decision-making process represented by a decision tree. The tree starts with a root node labeled 'x', which splits into two branches. Each branch then further splits into sub-branches, each labeled with either 'h', 'no', 'yes', or an empty node. The arrows indicate the decision path from the root to the leaf nodes, which represent the final outcomes. The process involves making a decision based on the conditions represented by the branches until a final decision is reached.
A Nondeterministic Algorithm for Satisfiability

φ is a boolean formula with \(n \) variables.

1: \textbf{for} \(i = 1, 2, \ldots, n \) \textbf{do}
2: \hspace{1em} \text{Guess} \(x_i \in \{0, 1\} \); \{Nondeterministic choices.\}
3: \hspace{1em} \textbf{end for}
4: \{Verification:\}
5: \hspace{1em} \textbf{if} \(\phi(x_1, x_2, \ldots, x_n) = 1 \) \textbf{then}
6: \hspace{2em} \text{“yes”;}
7: \hspace{1em} \textbf{else}
8: \hspace{2em} \text{“no”;}
9: \hspace{1em} \textbf{end if}
Computation Tree for Satisfiability

- $x_1 = 0$
- $x_2 = 1$
- $x_3 = 1$
- $x_4 = 0$
- $x_5 = 0$
- $x_6 = 1$
- $x_7 = 1$
- $x_8 = 0$

States: "no" "yes" "no" "yes" "yes" "no" "no" "no" "yes"
Analysis

- Recall that ϕ is satisfiable if and only if there is a truth assignment that satisfies ϕ.
- Think of the computation tree as a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignmenta out of 2^n.

aEquivalently, a sequence of nondeterministic choices.
Analysis (concluded)

• The algorithm decides language

\[\{ \phi : \phi \text{ is satisfiable} \}. \]

– Suppose \(\phi \) is satisfiable.
 * There is a truth assignment that satisfies \(\phi \).
 * So there is a computation path that results in “yes.”

– Suppose \(\phi \) is not satisfiable.
 * That means every truth assignment makes \(\phi \) false.
 * So every computation path results in “no.”

• General paradigm: Guess a “proof” then verify it.
The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distance d_{ij} between any two cities i and j.

- Assume $d_{ij} = d_{ji}$ for convenience.

- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.\(^a\)

- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.\(^b\)

\(^a\)Each city is visited exactly once.

\(^b\)Both problems are extremely important. They are equally hard (pp. 419 and 522).
A Shortest Tour
A Nondeterministic Algorithm for TSP (D)

1: for $i = 1, 2, \ldots, n$ do
2: Guess $x_i \in \{1, 2, \ldots, n\}$; {The ith city.}\(^a\)
3: end for
4: {Verification:}
5: if x_1, x_2, \ldots, x_n are distinct and $\sum_{i=1}^{n-1} d_{x_i, x_{i+1}} \leq B$ then
6: “yes”;
7: else
8: “no”;
9: end if

\(^a\)Can be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
Analysis

• Suppose the input graph contains at least one tour of the cities with a total distance at most B.
 – Then there is a computation path for that tour.\(^a\)
 – And it leads to “yes.”

• Suppose the input graph contains no tour of the cities with a total distance at most B.
 – Then every computation path leads to “no.”

\(^a\)It does not mean the algorithm will follow that path. It merely requires that such a computation path (i.e., a sequence of nondeterministic choices) exists.
Time Complexity under Nondeterminism

- Nondeterministic machine \(N \) decides \(L \) in time \(f(n) \), where \(f : \mathbb{N} \rightarrow \mathbb{N} \), if
 - \(N \) decides \(L \), and
 - for any \(x \in \Sigma^* \), \(N \) does not have a computation path longer than \(f(|x|) \).

- We charge only the “depth” of the computation tree.
Time Complexity Classes under Nondeterminism

- $\text{NTIME}(f(n))$ is the set of languages decided by NTMs within time $f(n)$.
- $\text{NTIME}(f(n))$ is a complexity class.
NP ("Nondeterministic Polynomial")

- Define
 \[\text{NP} \triangleq \bigcup_{k>0} \text{NTIME}(n^k). \]

- Clearly \(\text{P} \subseteq \text{NP} \).

- Think of \(\text{NP} \) as efficiently verifiable problems.\(^a\)
 - Boolean satisfiability (pp. 120 and 203), e.g.

- The most important open problem in computer science is whether \(\text{P} = \text{NP} \).

\(^a\)See p. 347.
Remarks on the P ?= NP Open Problema

- Many practical applications depend on answers to the P ?= NP question.
- Verification of password should be easy (so it is in NP).
 - A computer should not take a long time to let a user log in.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took 63 years to settle the Continuum Hypothesis; how long will it take for this one?

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.
Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.\(^a\)

Theorem 6 Suppose language \(L\) is decided by an NTM \(N\) in time \(f(n)\). Then it is decided by a 3-string deterministic TM \(M\) in time \(O(c f(n))\), where \(c > 1\) is some constant depending on \(N\).

- On input \(x\), \(M\) explores the computation tree of \(N(x)\) using depth-first search.
 - \(M\) does *not* need to know \(f(n)\).
 - As \(N\) is time-bounded, the depth-first search will halt.\(^b\)

\(^a\)Like finite-state automata, but unlike pushdown automata.

\(^b\)If there is no time bound, breadth-first search is safer.
The Proof (concluded)

- If any path leads to “yes,” then M immediately enters the “yes” state.

- If none of the paths lead to “yes,” then M enters the “no” state.

- The simulation takes time $O(c^f(n))$ for some $c > 1$ because the computation tree has that many nodes.

Corollary 7 $\text{NTIME}(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^f(n)).$a

aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\bigcup_{c>1} \text{TIME}(c^f(n)) \subseteq \text{NTIME}(f(n))$?
NTIME vs. TIME

- Does converting an NTM into a TM require exploring all computation paths of the NTM in the worst case as done in Theorem 6 (p. 132)?

- This is a key question in theory with important practical implications.
Nondeterministic Space Complexity Classes

- Let \(L \) be a language.

- Then

 \[
 L \in \text{NSPACE}(f(n))
 \]

 if there is an NTM with input and output that decides \(L \) and operates within space bound \(f(n) \).

- \(\text{NSPACE}(f(n)) \) is a set of languages.

- As in the linear speedup theorem,\(^a\) constant coefficients do not matter.

\(^a\)Theorem 5 (p. 97).
Graph Reachability

• Let $G(V, E)$ be a directed graph (digraph).

• REACHABILITY asks, given nodes a and b, does G contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first search.

• How about its nondeterministic space complexity?
The First Try: NSPACE($n \log n$)

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x_1 := a$; \{Assume $a \neq b$.\}
3: \textbf{for} $i = 2, 3, \ldots, m$ \textbf{do}
4: \hspace{1em} Guess $x_i \in \{v_1, v_2, \ldots, v_m\}$; \{The ith node.\}
5: \textbf{end for}
6: \textbf{for} $i = 2, 3, \ldots, m$ \textbf{do}
7: \hspace{1em} \textbf{if} $(x_{i-1}, x_i) \notin E$ \textbf{then}
8: \hspace{2em} “no”;
9: \hspace{1em} \textbf{end if}
10: \hspace{1em} \textbf{if} $x_i = b$ \textbf{then}
11: \hspace{2em} “yes”;
12: \hspace{1em} \textbf{end if}
13: \textbf{end for}
14: “no”;

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University
In Fact, \textsc{reachability} $\in \text{NSPACE}(\log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}

2: $x := a$;

3: \textbf{for} $i = 2, 3, \ldots, m$ \textbf{do}

4: \quad \text{Guess } y \in \{v_1, v_2, \ldots, v_m\}; \text{ \{The next node.\}}

5: \quad \textbf{if } (x, y) \notin E \text{ \textbf{then}}

6: \quad \quad \text{“no”;}

7: \quad \textbf{end if}

8: \quad \textbf{if } y = b \text{ \textbf{then}}

9: \quad \quad \text{“yes”;}

10: \quad \textbf{end if}

11: \quad x := y; \{Recycle the space.\}

12: \textbf{end for}

13: “no”;
Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence
 \[
 \text{reachability} \in \text{NSPACE}(\log n).
 \]
 - reachability with more than one terminal node also has the same complexity.
 - In fact, reachability for undirected graphs is in $\text{SPACE}(\log n)$.

- It is well-known that reachability $\in P$.\(^a\)

\(^a\)Reingold (2004).
\(^b\)See, e.g., p. 248.