Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s).$
- K, Σ, s are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k.$
- All strings start with a \triangleright .
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is the last (*kth*) string.

PALINDROME Revisited

- A 2-string TM can decide PALINDROME in O(n) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The symbols under the cursors are then compared.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.

PALINDROME Revisited (concluded)

- The running times of a 2-string TM and a single-string TM are quadratically related: n^2 vs. n.
- This is consistent with the extended Church's thesis.^a
 - "Reasonable" models are related polynomially in running times.

^aRecall p. 68.

Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$

- $-w_iu_i$ is the *i*th string.
- The *i*th cursor is reading the last symbol of w_i .
- Recall that \triangleright is each w_i 's first symbol.
- The k-string TM's initial configuration is

Time seemed to be the most obvious measure of complexity. — Stephen Arthur Cook (1939–)

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.
- If a k-string TM M halts after t steps on input x, then the **time required by** M **on input** x is t.
- If $M(x) = \nearrow$, then the time required by M on x is ∞ .

Time Complexity (concluded)

- Machine M operates within time f(n) for $f : \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most f(|x|).
 - |x| is the length of string x.
- Function f(n) is a **time bound** for M.

Time Complexity $Classes^{a}$

- Suppose language $L \subseteq (\Sigma \{\sqcup\})^*$ is decided by a multistring TM operating in time f(n).
- We say $L \in \text{TIME}(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a complexity class.

- PALINDROME is in TIME(f(n)), where f(n) = O(n).

• Trivially, $\text{TIME}(f(n)) \subseteq \text{TIME}(g(n))$ if $f(n) \leq g(n)$ for all n.

^aRabin (1963); Hartmanis & Stearns (1965); Hartmanis, Lewis, & Stearns (1965).

Michael O. Rabin^a (1931–)

^aTuring Award (1976).

O2022 Prof. Yuh-Dauh Lyuu, National Taiwan University

Juris Hartmanis^a (1928–) ^aTuring Award (1993).

Richard Edwin Stearns^a (1936–)

^aTuring Award (1993).

O2022 Prof. Yuh-Dauh Lyuu, National Taiwan University

The Simulation Technique

Theorem 3 Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time $O(f(n)^2)$ such that M(x) = M'(x) for any input x.

• The single string of M' implements the k strings of M.

The Proof

• Represent configuration $(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of M by this configuration of M':

$$(q, \rhd, w_1'u_1 \lhd w_2'u_2 \lhd \cdots \lhd w_k'u_k \lhd \lhd).$$

 $- \triangleleft$ is a special delimiter.

 $-w'_i$ is w_i with the first^a and last symbols "primed."

– It serves the purpose of "," in a configuration.^b

^aThe first symbol is of course \triangleright .

^bAn alternative is to use $(q, \triangleright w'_1 | u_1 \triangleleft w'_2 | u_2 \triangleleft \cdots \triangleleft w'_k | u_k \triangleleft \triangleleft)$ by priming only \triangleright in w_i , where "|" is a new symbol.

- The first symbol of w'_i is the primed version of $\triangleright : \triangleright'$.
 - Cursors are not allowed to move to the left of \triangleright .^a
 - So the cursor of M' can move *between* the simulated strings of M.^b
- The "priming" of the last symbol of each w_i ensures that M' knows which symbol is under each cursor of M.^c

^bThanks to a lively discussion on September 22, 2009.

^cAdded because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

^aRecall p. 24.

• The initial configuration of M' is

$$(s, \rhd, \rhd'' x \triangleleft \overleftarrow{\rhd'' \triangleleft \cdots \rhd'' \triangleleft} \triangleleft).$$

 $- \triangleright''$ is double-primed because it is the beginning and the ending symbol as the cursor is reading it.^a

- Again, think of it as a new symbol.

^aAdded after the class discussion on September 20, 2011.

- We simulate each move of M thus:
 - 1. M' scans the string to pick up the k symbols under the cursors.
 - The states of M' must be enlarged to include $K \times \Sigma^k$ to remember them.^a
 - The transition functions of M' must also reflect it.
 - 2. M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

^aRecall the TM program on p. 36.

- It is possible that some strings of M need to be lengthened (see next page).
 - The linear-time algorithm on p. 39 can be used for each such string.
- The simulation continues until M halts.
- M' then erases all strings of M except the last one.^a

^aWhatever remains on the tape of M' before the first \sqcup is considered output by our convention. So \triangleright 's and \triangleright ''s must be removed.

string 1string 2string 3string 4			string 1	string 2	string 3	string 4
----------------------------------	--	--	----------	----------	----------	----------

string 1	string 2	string 3	string 4
----------	----------	----------	----------

^aIf we interleave the strings, the simulation may be easier. Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on September 22, 2015. This is similar to constructing a single-string *multi-track* TM in, e.g., Hopcroft & Ullman (1969). Or one may do the insertion starting from the last string by memorizing what needs to be inserted for each string. Contributed by Mr. Hsi-Kang Hsu (R10922128) on September 30, 2021.

- Since *M* halts within time f(|x|), none of its strings ever becomes longer than f(|x|).^a
- The length of the string of M' at any time is O(kf(|x|)).
- Simulating each step of M takes, per string of M,
 O(kf(|x|)) steps.
 - O(f(|x|)) steps to collect information from this string.
 - O(kf(|x|)) steps to write and, if needed, to lengthen the string.

^aWe tacitly assume $f(n) \ge n$.

The Proof (concluded)

- There are k strings.
- So M' takes O(k²f(|x|)) steps to simulate each step of M.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.^a

^aIs the time reduced to $O(kf(|x|)^2)$ if the interleaving data structure is adopted?

Simulation with Two-String TMs

We can do better with two-string simulating TMs.

Theorem 4 Given any k-string M operating within time f(n), k > 2, there exists a two-string M' operating within time $O(f(n) \log f(n))$ such that M(x) = M'(x) for any input x.

${\sf Linear} ~ {\sf Speedup}^{\rm a}$

Theorem 5 Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$, $L \in TIME(f'(n))$, where $f'(n) \stackrel{\Delta}{=} \epsilon f(n) + n + 2$.

See Theorem 2.2 of the textbook for a proof.

^aHartmanis & Stearns (1965).

Proof Ideas

- Take the TM program on p. 36.
- It accepts if and only if the input contains two consecutive 1's.
- Assume $M = (K, \Sigma, \delta, s)$, where $K = \{ s', s_{00}, s_{01}, s_{10}, s_{11}, \dots, \text{"yes", "no"} \},$ $\Sigma = \{ 0, 1, (00), (01), (10), (11), (0 \sqcup), (1 \sqcup), \sqcup, \triangleright \}.$

Proof Ideas (continued)

• First convert the input into 2-tuples onto the second string.

• So
$$\underbrace{10011001110}^{11}$$
 becomes $\underbrace{(10)(01)(10)(01)(11)(0\sqcup)}^{6}$.

• The length is therefore about halved.

- The transition table below covers only the second string for brevity.
- It presents only the key lines of code.

		(continued)
$p \in K$	$\sigma \in \Sigma$	$\delta(p,\sigma)$
•	•	• •
s'	(00)	(s',(00), ightarrow)
s'	(01)	$(s_{01},(01),\rightarrow)$
s'	(10)	$(s',(10),\rightarrow)$
s'	(11)	("yes", (11), -)
s'	$(\Box \sqcup)$	$("no", (0\sqcup), -)$
s'	$(1\sqcup)$	$("no", (1\sqcup), -)$
s'		$("no", \sqcup, -)$

Pro	Proof Ideas (concluded) ^a			
s_{01}	(10)	("yes", (10), -)		
s_{01}	(11)	("yes", (11), -)		
s_{01}	(01)	$(s_{01}, (01), \rightarrow)$		
s_{01}	(00)	(s',(00), ightarrow)		
s_{01}	$(0\sqcup)$	$("no", (1\sqcup), -)$		
s_{01}	$(1\sqcup)$	$("yes", (1\sqcup), -)$		
s_{01}		$("no", \sqcup, -)$		
•	•	•		

 $^{\rm a}{\rm Corrected}$ by Mr. Yu-Ming Lu (R06723032, D08922008) on September 30, 2021.

Implications of the Speedup Theorem

- State size can be traded for speed.^a
- If the running time is cn with c > 1, then c can be made arbitrarily close to 1.
- If the running time is superlinear, say $14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.^b
 - This justifies the big-O notation in the analysis of algorithms.

 ${}^{a}m^{k} \cdot |\Sigma|^{3mk}$ -fold increase to gain a speedup of O(m). No free lunch. ^bCan you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.

Ρ

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k .
- If L ∈ TIME(n^k) for some k ∈ N, it is a polynomially decidable language.

- Clearly, $\text{TIME}(n^k) \subseteq \text{TIME}(n^{k+1})$.

• The union of all polynomially decidable languages is denoted by P:^a

$$\mathbf{P} \stackrel{\Delta}{=} \bigcup_{k>0} \mathrm{TIME}(n^k).$$

• P contains problems that can be efficiently solved.

^aCobham (1964).

Philosophers have explained space.
They have not explained time.
— Arnold Bennett (1867–1931),
How To Live on 24 Hours a Day (1910)

I keep bumping into that silly quotation attributed to me that says 640K of memory is enough. — Bill Gates (1996)

Space Complexity

- Consider a k-string TM M with input x.
- Assume non- \sqcup is never written over by \sqcup .^a
 - The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration

$$(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k),$$

then the space required by M on input x is

$$\sum_{i=1}^{k} |w_i u_i|.$$

 $^{\rm a}{\rm Corrected}$ by Ms. Chuan-Ju Wang (R95922018, F95922018) on September 27, 2006.

Space Complexity (continued)

- Suppose we do not charge the space used only for input and output.
- Let k > 2 be an integer.
- A *k*-string Turing machine with input and output is a *k*-string TM that satisfies the following conditions.
 - The input string is *read-only*.^a
 - The cursor on the last string never moves to the left.
 - * The output string is essentially *write-only*.
 - The cursor of the input string does not go beyond the first \sqcup .

^aCalled an **off-line TM** in Hartmanis, Lewis, & Stearns (1965).

Space Complexity (concluded)

• If M is a TM with input and output, then the space required by M on input x is

$$\sum_{i=2}^{k-1} |w_i u_i|.$$

Machine M operates within space bound f(n) for f: N → N if for any input x, the space required by M on x is at most f(|x|).

Space Complexity Classes

- Let L be a language.
- Then

```
L \in SPACE(f(n))
```

if there is a TM with input and output that decides Land operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

- Palindrome \in SPACE $(\log n)$.^a

• A linear speedup theorem similar to the one on p. 97 exists, so constant coefficients do not matter.

^aMaintain 3 counters.

If she can hesitate as to "Yes," she ought to say "No" directly. — Jane Austen (1775–1817), *Emma* (1815)

$Nondeterminism^{\rm a}$

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \times (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a relation, not a function.^b
 - For each state-symbol combination (q, σ) , there may be *multiple* valid next steps.
 - Multiple lines of code may be applicable.
 - But only one will be taken.

^aRabin & Scott (1959).

^bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.

Nondeterminism (continued)

• As before, a program contains lines of code:

$$(q_1, \sigma_1, p_1, \rho_1, D_1) \in \Delta,$$

$$(q_2, \sigma_2, p_2, \rho_2, D_2) \in \Delta,$$

•

$$(q_n, \sigma_n, p_n, \rho_n, D_n) \in \Delta.$$

• But we cannot write

$$\delta(q_i, \sigma_i) = (p_i, \rho_i, D_i)$$

as in the deterministic case^a anymore.

^aRecall p. 25.

Nondeterminism (concluded)

- A configuration yields another configuration in one step if there *exists* a rule in Δ that makes this happen.
- There remains only one thread of computation.^a
 - Nondeterminism is *not* parallelism, multiprocessing, multithreading, or quantum computation.

^aThanks to a lively discussion on September 22, 2015.

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any x ∈ Σ*, x ∈ L if and only if there is a sequence of valid configurations that ends in "yes."
- In other words,
 - If $x \in L$, then N(x) = "yes" for some computation path.
 - If $x \notin L$, then $N(x) \neq$ "yes" for all computation paths.

Decidability under Nondeterminism (continued)

- It is not required that the deciding NTM halts in all computation paths.^a
- If x ∉ L, no nondeterministic choices should lead to a "yes" state.
- The key is the algorithm's *overall* behavior not whether it gives a correct answer for each particular run.
- Note that determinism is a special case of nondeterminism.

^aUnlike the deterministic case (p. 53). So "accepts" may be a more proper term. Some books use "decides" only when the NTM always halts.

Decidability under Nondeterminism (concluded)

- For example, suppose L is the set of primes.^a
- Then we have the primality testing problem.
- An NTM N decides L if:
 - If x is a prime, then N(x) = "yes" for some computation path.
 - If x is not a prime, then $N(x) \neq$ "yes" for all computation paths.

a
Contributed by Mr. Yu-Ming Lu ($R06723032,\,D08922008)$ on March
 7, 2019.

Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is deterministic, then M' decides \overline{L} .^a
 - So M and M' decide languages that complement each other.
- But if M is an NTM, then M' may not decide \overline{L} .
 - It is possible that M and M' accept the same input x (see next page).
 - So M and M' may accept languages that are *not* even disjoint.

^aBy the definition on p. 53, M must halt on all inputs.

A Nondeterministic Algorithm for Satisfiability ϕ is a boolean formula with *n* variables. 1: for i = 1, 2, ..., n do Guess $x_i \in \{0, 1\}$; {Nondeterministic choices.} 2: 3: end for 4: {Verification:} 5: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then** "yes"; 6: 7: **else** "no"; 8: 9: **end if**

Analysis

- Recall that ϕ is satisfiable if and only if there is a truth assignment that satisfies ϕ .
- Think of the computation tree as a complete binary tree of depth *n*.
- Every computation path corresponds to a particular truth assignment^a out of 2^n .

^aEquivalently, a sequence of nondeterministic choices.

Analysis (concluded)

• The algorithm decides language

 $\{\phi: \phi \text{ is satisfiable}\}.$

- Suppose ϕ is satisfiable.
 - * There is a truth assignment that satisfies ϕ .
 - * So there is a computation path that results in "yes."
- Suppose ϕ is not satisfiable.
 - * That means every truth assignment makes ϕ false.
 - * So every computation path results in "no."
- General paradigm: Guess a "proof" then verify it.

The Traveling Salesman Problem

- We are given n cities 1, 2, ..., n and integer distance d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.^a
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.^b

^aEach city is visited exactly once.

^bBoth problems are extremely important. They are equally hard (pp. 419 and 522).

^aCan be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most *B*.
 - Then there is a computation path for that tour.^a

- And it leads to "yes."

• Suppose the input graph contains no tour of the cities with a total distance at most *B*.

- Then every computation path leads to "no."

^aIt does not mean the algorithm will follow that path. It merely requires that such a computation path (i.e., a sequence of nondeterministic choices) exists.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- $\operatorname{NTIME}(f(n))$ is a complexity class.

NP ("Nondeterministic Polynomial")

• Define

$$NP \stackrel{\Delta}{=} \bigcup_{k>0} NTIME(n^k).$$

- Clearly $P \subseteq NP$.
- Think of NP as efficiently *verifiable* problems.^a

- Boolean satisfiability (pp. 120 and 203), e.g.

• The most important open problem in computer science is whether P = NP.

^aSee p. 347.

Remarks on the $P \stackrel{?}{=} NP$ Open Problem^a

- Many practical applications depend on answers to the $P \stackrel{?}{=} NP$ question.
- Verification of password should be easy (so it is in NP).
 - A computer should not take a long time to let a user log in.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P).
- It took 63 years to settle the Continuum Hypothesis; how long will it take for this one?

 $^{^{\}rm a}{\rm Contributed}$ by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.

Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.^a

Theorem 6 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic TM M in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

• On input x, M explores the computation tree of N(x) using depth-first search.

-M does not need to know f(n).

– As N is time-bounded, the depth-first search will halt.^b

^aLike finite-state automata, but unlike pushdown automata. ^bIf there is no time bound, breadth-first search is safer.

The Proof (concluded)

- If any path leads to "yes," then M immediately enters the "yes" state.
- If none of the paths lead to "yes," then M enters the "no" state.
- The simulation takes time $O(c^{f(n)})$ for some c > 1 because the computation tree has that many nodes.

Corollary 7 NTIME $(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)}).^{a}$

^aMr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\bigcup_{c>1} \text{TIME}(c^{f(n)}) \subseteq \text{NTIME}(f(n)))?$

NTIME vs. TIME

- Does converting an NTM into a TM *require* exploring all computation paths of the NTM in the worst case as done in Theorem 6 (p. 132)?
- This is a key question in theory with important practical implications.

Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$L \in \mathrm{NSPACE}(f(n))$$

if there is an NTM with input and output that decides Land operates within space bound f(n).

- NSPACE(f(n)) is a set of languages.
- As in the linear speedup theorem,^a constant coefficients do not matter.

^aTheorem 5 (p. 97).

Graph Reachability

- Let G(V, E) be a directed graph (**digraph**).
- REACHABILITY asks, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about its *nondeterministic* space complexity?

The First Try: NSPACE
$$(n \log n)$$

1: Determine the number of nodes m ; {Note $m \le n$.}
2: $x_1 := a$; {Assume $a \ne b$.}
3: for $i = 2, 3, ..., m$ do
4: Guess $x_i \in \{v_1, v_2, ..., v_m\}$; {The *i*th node.}
5: end for
6: for $i = 2, 3, ..., m$ do
7: if $(x_{i-1}, x_i) \notin E$ then
8: "no";
9: end if
10: if $x_i = b$ then
11: "yes";
12: end if
13: end for
14: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

```
REACHABILITY \in NSPACE(\log n).
```

- REACHABILITY with more than one terminal node also has the same complexity.
- In fact, REACHABILITY for *undirected* graphs is in $SPACE(\log n)$.^a
- It is well-known that REACHABILITY $\in P.^{b}$
- ^aReingold (2004). ^bSee, e.g., p. 248.