
Theory of Computation Lecture
Notes

Prof. Yuh-Dauh Lyuu

Dept. Computer Science & Information Engineering

and

Department of Finance

National Taiwan University

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1



Class Information

• Papadimitriou. Computational Complexity. 2nd

printing. Addison-Wesley. 1995.

– We more or less follow the topics of the book.

– Extra materials may be added.

• You may want to review discrete mathematics.a

awww.csie.ntu.edu.tw/~lyuu/dm.html

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 2



Class Information (continued)

• More information and lecture notes can be found at

www.csie.ntu.edu.tw/~lyuu/complexity.html

– (Homeworks,) exams, solutions and teaching

assistants will be announced there.

– Past homeworks and solutions to past exams can be

found there, too.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 3



Class Information (concluded)

• Please ask many questions in class.

– This is the best way for me to remember you in a

large class.a

aLawrence H. Summers, “[A] science concentrator [...] said that in his

eighth semester of [Harvard] college, there was not a single science pro-

fessor who could identify him by name.” (New York Times, September

3, 2003.)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 4



Grading

• Three exams.

• You must show up for the exams in person.

• If you cannot make it to an exam for a legitimate

reason, please email me or a TA beforehand to the

extent possible.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 5



Problems and Algorithms

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 6



I have never done anything “useful.”

— Godfrey Harold Hardy (1877–1947),

A Mathematician’s Apology (1940)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 7



What This Course Is All About

Computation: What is computation?

Computability: What can be computed?

• There are problems that cannot be computed.

• In fact, most problems cannot be computed.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 8



What This Course Is All About (continued)

Complexity: What is a computable problem’s inherent

complexity?

• Some computable problems require at least

exponential time and/or space.

– They are said to be intractable.

• Some practical problems require superpolynomiala

resources unless certain conjectures are disproved.

• Resources besides time and space: Circuit size,

circuit layout area, program size, number of random

bits, number of queries, etc.

aThe prefix “super” means “above, beyond.”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 9



What This Course Is All About (concluded)

Applications: Intractability results can be very useful.

• Cryptography, digital currency, and security.

• Approximations.

• Pseudorandom number generation and

derandomization.

• Even conjectures about nature.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 10



Tractability and Intractability

• Tractability means polynomial in terms of the input size

n.

– n, n logn, n2, n90.

• It results in a fruitful and practical theory of complexity.

• Few practical, tractable problems require a large degree.

• Superpolynomial-time algorithms are seldom practical.

– nlogn, 2
√
n,a 2n, n! ∼ √2πn (n/e)n.

aSize of depth-3 circuits to compute the majority function (Wolfovitz,

2006) and certain stochastic models used in finance (Dai (R86526008,

D8852600) & Lyuu, 2007; Lyuu & Wang (F95922018), 2011; Chiu

(R98723059), 2012).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 11



Exponential Growth of E. Colia

• Under ideal conditions, E. Coli bacteria divide every 20

minutes.

• In two days, a single E. Coli bacterium would become

2144 bacteria.

• They would weigh 2,664 times the Earth!

aNick Lane (2005), Power, Sex, Suicide: Mitochondria and the Mean-

ing of Life.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 12



Growth of Factorials

n n! n n!

1 1 9 362,880

2 2 10 3,628,800

3 6 11 39,916,800

4 24 12 479,001,600

5 120 13 6,227,020,800

6 720 14 87,178,291,200

7 5040 15 1,307,674,368,000

8 40320 16 20,922,789,888,000

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 13



Moore’s Law to the Rescue?a

• One version of Moore’s law says the computing power

doubles every 1.5 years.b

• So the computing power grows like

4y/3,

where y is the number of years from now.

• Assume Moore’s law holds forever.

• Can we let the law tame exponential complexity?

aContributed by Ms. Amy Liu (J94922016) on May 15, 2006. Thanks

also to a lively discussion on September 14, 2010.
bMoore (1965). Bitcoin implicitly assumes computing power doubles

every 4 years (Nakamoto, 2009).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 14



Moore’s Law to the Rescue (continued)?

• Suppose a problem takes an seconds of CPU time to

solve now, where n is the input length and a > 1.

• The same problem will take

an

4y/3

seconds to solve y years from now.

• In particular, the hardware 3n log4 a years from now

takes 1 second to solve it.

• The overall complexity becomes linear in n!a

a3n log4 a years plus 1 second.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 15



Moore’s Law to the Rescue (concluded)?

• Potential objections:

– Moore’s law may not hold forever.

– The total number of operations is the same; so the

algorithm remains exponential in complexity.a

• What is a “good” theory on computational complexity?

– Should it be based on technology?

– Or should it be based on mathematics?

aContributed by Mr. Hung-Jr Shiu (D00921020) on September 14,

2011.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 16



Turing Machines

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 17



Tarski has stressed in his lecture

(and I think justly)

the great importance of

the concept of general recursiveness

(or Turing’s computability).

— Kurt Gödel (1946)

Either mathematics is too big

for the human mind, or the human mind

is more than a machine.

— Kurt Gödela

aGoldblatt (1979).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 18



What Is Computation?

• That can be coded in an algorithm.a

• An algorithm is a detailed step-by-step method for

solving a problem.

– The Euclidean algorithm for the greatest common

divisor is an algorithm.

– Addition, multiplication, and division can be solved

by algorithms.

– How about passing the Turing test?

aMuhammad ibn Mūsā Al-Khwārizmī (780–850).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 19



Turing Machinesa

• A Turing machine (TM) is a quadruple M = (K,Σ, δ, s).

• K is a finite set of states.b

• s ∈ K is the initial state.

• Σ is a finite set of symbols (disjoint from K).

– Σ includes � (blank) and � (first symbol).c

aTuring (1936, 1937); Post (1936).
bTuring (1936), “If we admitted an infinity of states of mind, some

of them will be ‘arbitrarily close’ and will be confused.” In any case,

every physical device (lens, microscope, sensor, etc.) has limited resolving

power. Thanks to a lively discussion on February 21, 2019.
cTwo special symbols as we will see.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 20



Turing Machines (concluded)

• δ : K ×Σ→ (K ∪ {h, “yes”, “no”})×Σ× {←,→,−} is a
transition function.

– ← (left), → (right), and − (stay) signify cursor

movements.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 21



A TM Schema

δ

�1000110000111001110001110���

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 22



An Open-Reel Recorder

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 23



More on δ

• The program has the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

• Given current state q ∈ K and current symbol σ ∈ Σ,

δ(q, σ) = (p, ρ,D).

– It specifies:

∗ The next state p;

∗ The symbol ρ to be written over σ;

∗ The direction D the cursor will move afterwards.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 24



More on δ (continued)

• For convenience, δ(q,�) = (·,�,→) for every q ∈ K.

– So the cursor never falls off the left end of the string.

• Think of the program as (a soup of) lines of codes:

δ(q1, σ1) = (p1, ρ1, D1),

δ(q2, σ2) = (p2, ρ2, D2),

...

δ(qn, σn) = (pn, ρn, Dn).

• Their order is unimportant.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 25



More on δ (concluded)

• Assume the state is q and the symbol under the cursor σ.

• The line of code that matches (q, σ) is

fired/triggered/executed.a

• Then the process is repeated.

aSo there should be at most one instruction for every possible pair

(q, σ). Contributed by Mr. Ya-Hsun Chang (B96902025, R00922044) on

September 13, 2011.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 26



The Operations of TMs

• Initially the state is s.

• The string on the tape is initialized to a �, followed by a

finite-length string x ∈ (Σ− {�})∗.a

• x is the input of the TM.

– The input must not contain �s (why?)!
• The cursor is pointing to the first symbol, always a �.

• The TM takes each step according to δ.

• The cursor may overwrite � to lengthen the string.

• Writing down a � amounts to erasure.

aSee p. 50 for the definition of ∗.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 27



“Physical” Correspondences

• The tape: computer memory and registers.

– Except that the tape can be lengthened on demand.

• δ: program.

– A program has a finite size.

• K: instruction numbers.

• s: “main()” in the C programming language.

• Σ: alphabet, much like the ASCII code.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 28



Alan Turing (1912–1954)

Richard Dawkins (2006), “Tur-

ing arguably made a greater

contribution to defeating the

Nazis than Eisenhower or

Churchill.”

Michael Peck (2014), “But UL-

TRA didn’t detect German

preparations, which was taken

as an indication that nothing

was happening.”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 29



The Halting of a TM

• A TM M may halt in three cases.

“yes”: M accepts its input x, and M(x) = “yes”.

“no”: M rejects its input x, and M(x) = “no”.

h: M(x) = y means the string (tape) consists of a �,

followed by the finite string y which contains no �s,
followed by a �.
– y is the output of the computation.

– y may be empty denoted by ε.

• If M never halts on x, then write M(x) =↗.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 30



0110011 1001 � 

δ

• y = 0110011.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 31



The First TM Programa

• Assume M = (K,Σ, δ, s), where K = { s, h },
Σ = { 0, 1,�, � }, and

p ∈ K σ ∈ Σ δ(p, σ)

s � (s, �,→)

s 1 (s, 0,→)

s 0 (s, 1,→)

s � (h,�,−)
• This TM converts all 1’s in the input string to 0’s and

vice versa.

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 32



The Second TM Programa

• Assume M = (K,Σ, δ, s), where K = { s, s1, h },
Σ = { 0, 1,�, � }, and

aContributed by Mr. Zheyuan (Jeffrey) Gao (R01922142) on Septem-

ber 21, 2013.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 33



p ∈ K σ ∈ Σ δ(p, σ)

s � (s, �,→)

s 0 (s, 0,→)

s 1 (s1, 1,→)

s1 0 (s, 0,→)

s1 1 (h, 1,−)
s � (h,�,−)
s1 � (h,�,−)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 34



The Second TM Program (concluded)

• This TM scans to the right until it finds two consecutive

1’s and then halts.

• Otherwise, it halts at the end of the input string.

• But it does not tell you its findings.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 35



The Third TM Program

• Assume M = (K,Σ, δ, s), where

K = { s, s1, “yes”, “no” }, Σ = { 0, 1,�, � }, and
p ∈ K σ ∈ Σ δ(p, σ)

s � (s, �,→)

s 0 (s, 0,→)

s 1 (s1, 1,→)

s1 0 (s, 0,→)

s1 1 (“yes”, 1,−)
s � (“no”,�,−)
s1 � (“no”,�,−)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36



The Third TM Program (concluded)

• This TM accepts the input if there are two consecutive

1’s.

• Otherwise, it rejects the input string.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37



Why Turing Machines?

• Because of the simplicity of the TM, the model has the

advantage when it comes to complexity issues.

• One can conceivably develop a complexity theory based

on something similar to C, Python, or Java.

• But the added complexity does not yield additional

fundamental insights.

• We will describe TMs in pseudocode only.a

aBut you are strongly encouraged to read and understand the TM

codes in the textbook to gain insight on its subtleties.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38



A TM Program To Insert a Symbol

• We want to compute f(x) = ax.

– The TM moves its cursor to the last symbol.

– It moves the last symbol of x to the right by one

position.

– It moves the next to last symbol to the right, and so

on.

– The TM finally writes a in the first position.

• The total number of steps is O(n), where n is the length

of x.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39



Remarks

• A computation model should be “physically” realizable.

– E.g., our brain, at least as powerful as a Turing

machine, is physical.

• A TM requires a tape of unbounded length, which is not

realizable.

• But it is not a major conceptual issue.a

– Imagine you (“the program”) live next to a paper

mill while carrying out a TM code using pencil (“the

cursor”) and paper (“the tape”).

– The mill will produce extra paper if needed.

aThanks to a lively discussion on September 20, 2006.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40



Remarks (concluded)

• Even our computer is only an approximation of a TM.

• But it is easy to imagine our computer with more and

more address space, memory space, and disk space.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41



The Concept of Configuration

• A configurationa is a complete description of the

current state of the computation.

• The specification of a configuration is sufficient for the

computation to continue as if it had not been stopped.

– What does your PC save before it sleeps or

hibernates?

– Enough for it to resume the work later.

• Similar to the concept of state in Markov chains.

aThis term was due to Turing (1936).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42



Configurations (concluded)

• A configuration is a triple (q, w, u):

– q ∈ K.

– w ∈ Σ∗ is the string to the left of the cursor

(inclusive).

– u ∈ Σ∗ is the string to the right of the cursor.

∗ Again, u has a finite length because the trailing �s
are not needed.a

• Note that (w, u) describes both the string and the cursor

position (implicitly).

aThanks to a lively discussion on September 23, 2021.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43



�

�1000110000111001110001110���

• w = �1000110000.

• u = 111001110001110.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44



Yielding

• Fix a TM M .

• Configuration (q, w, u) yields configuration (q′, w′, u′) in one

step,

(q, w, u)
M−→ (q′, w′, u′),

if a step of M from configuration (q, w, u) results in

configuration (q′, w′, u′).

• (q, w, u)
Mk−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′) after k ∈ N steps.

• (q, w, u)
M∗−→ (q′, w′, u′): Configuration (q, w, u) yields

configuration (q′, w′, u′).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45



Palindromesa

• A string is a palindrome if it reads the same forwards

and backwards (e.g., 001100).

• A TM program can be written to recognize palindromes:

– It matches the first character with the last character.

– It matches the second character with the next to last

character, etc. (see next page).

– “yes” for palindromes and “no” for nonpalindromes.

• This program takes O(n2) steps.

• Can we do better?

aBryson (2001), “Possibly the most demanding form of wordplay in

English[.]”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46



100011000000100111

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47



A Matching Lower Bound for palindrome

Theorem 1 (Hennie, 1965) palindrome on single-string

TMs takes Ω(n2) steps in the worst case.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 48



Comments on Lower-Bound Proofs

• They are usually difficult.

– Worthy of a Ph.D. degree.

• An algorithm whose running time matches a lower

bound means it is optimal.

– The simple O(n2) algorithm for palindrome is

optimal.

• This happens rarely and is model dependent.

– Searching, sorting, palindrome, matrix-vector

multiplication, etc.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 49



The Kleene Stara ∗
• Let A be a set.

• The Kleene star of A, denoted by A∗, is the set of all

strings obtained by concatenating zero or more strings

from A.

– For example, suppose A = { 0, 1 }.
– Then

A∗ = { ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

– Note that every string in A∗ is of finite length.

aKleene (1956).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 50



Stephen Kleene (1909–1994)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51



The two words in the language I most respect

are Yes and No.

— Henry James (1843–1916),

The Portrait of a Lady (1881)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52



Decidability and Recursive Languages

• Let L ⊆ (Σ− {�})∗ be a language, i.e., a set of strings

of non-� symbols, with a finite length.

– For example, { 2, 3, 5, 7, 11, . . . } (the primes).

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x �∈ L, then M(x) = “no.”

• We say M decides L.

• If there exists a TM that decides L, then L is said to be

recursivea or decidable.

aLittle to do with the concept of “recursive” calls.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53



Recursive and Nonrecursive Languages: Examples

• The set of palindromes over any alphabet is recursive.a

– palindrome cannot be solved by finite state

automata.

– In fact, finite-state automata are equivalent to

read-only, right-moving TMs.b

• The set of prime numbers { 2, 3, 5, 7, 11, 13, 17, . . .} is
recursive.c

aThere is a program that will halt and it returns “yes” if and only if

the input is a palindrome.
bThanks to a lively discussion on September 15, 2015.
cThere is a program that will halt and it returns “yes” if the input is

a prime and “no” othrerwise.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54



Recursive and Nonrecursive Languages: Examples
(concluded)

• The set of C programs that do not contain a while, a

for, or a goto is recursive.a

• But, the set of C programs that do not contain an

infinite loop is not recursive.b

aThere is a program that will halt and it returns “yes” if and only if

the input C code does not contain any of the keywords.
bSo there is no algorithm that will answer correctly in a finite amount

of time if a C program will run into an infinite loop on some inputs (see

p. 145).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55



Acceptability and Recursively Enumerable Languages

• Let L ⊆ (Σ− {�})∗ be a language.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x �∈ L, then M(x) =↗.a

• We say M accepts L.

• If L is accepted by some TM, then L is said to be

recursively enumerable or semidecidable.b

aThis part differs from recursive languages.
bPost (1944).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56



Acceptability and Recursively Enumerable Languages
(concluded)

• A recursively enumerable language can be generated by

a TM, thus the name.a

– It means there is a program such that every x ∈ L

(and only they) will be printed out eventually.

• Of course, if L is infinite in size, this program will not

terminate.

aProposition 3.5 on p. 61 of the textbook proves it. Thanks to lively

class discussions on September 20, 2011, and September 12, 2017.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57



Emil Post (1897–1954)

W. V. Quine (1985), “E.

L. Post worked alone in

New York, little heeded.”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58



Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively

enumerable.

• Let TM M decide L.

• Need to design a TM that accepts L.

• We will modify M to obtain an M ′ that accepts L.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59



The Proof (concluded)

• M ′ is identical to M except that when M is about to

halt with a “no” state, M ′ goes into an infinite loop.

– Simply replace every instruction that results in a

“no” state with ones that move the cursor to the

right forever and never halts.

• M ′ accepts L.

– If x ∈ L, then M ′(x) = M(x) = “yes.”

– If x �∈ L, then M(x) = “no” and so M ′(x) =↗.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60



Recursively Enumerable Languages: Examples

• The set of C program-input pairs that do not run into

an infinite loop is recursively enumerable.

– Just run its binary code in a simulator environment.

– Then the simulator will terminate if and only if the C

program will terminate.

– When the C program terminates, the simulator

simply exits with a “yes” state.

• The set of C programs that can run into an infinite loop

is not recursively enumerable.a

aSee p. 165.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61



Turing-Computable Functions

• Let f : (Σ− {�})∗ → Σ∗.

– Optimization problems, root finding problems, etc.

• Let M be a TM with alphabet Σ.

• M computes f if for any string x ∈ (Σ− {�})∗,
M(x) = f(x).

– f may be a partial function.

– Then f(x) is undefined if M(x) diverges.

• We call f a (partial) recursive functiona if such an

M exists.

aGödel (1931, 1934); Kleene (1936).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62



Kurt Gödela (1906–1978)

Quine (1978), “this the-

orem [· · · ] sealed his im-

mortality.”

aThis photo was taken by Alfred Eisenstaedt (1898–1995).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63



Church’s Thesis

• What is computable is Turing-computable; TMs are

algorithms.a

• No “intuitively computable” problems have been shown

not to be Turing-computable (yet).b

aChurch (1936); Kleene (1943, 1953).
bQuantum computer of Manin (1980) and Feynman (1982); DNA

computer of Adleman (1994).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64



Church’s Thesis (continued)

• Many other computation models have been proposed.

– Recursive function,a λ calculus,b boolean

circuits,c formal language,d assembly

language-like RAM,e cellular automaton,f

recurrent neural network,g and extensions of the

Turing machine (more strings, two-dimensional

strings, etc.).

aSkolem (1923); Gödel (1934); Kleene (1936).
bChurch (1936).
cShannon (1937).
dPost (1943).
eShepherdson & Sturgis (1963).
fConway (1970).
gSiegelmann & Sontag (1991).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65



Church’s Thesis (concluded)

• All have been proved to be equivalent.

• Church’s thesis is also called the Church-Turing

Thesis.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66



Alonso Church (1903–1995)

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67



Extended Church’s Thesisa

• All “reasonably succinct encodings” of problems are

polynomially related (e.g., n2 vs. n6).

– Representations of a graph as an adjacency matrix

and as a linked list are both succinct.

– The unary representation of numbers is not succinct.

– The binary representation of numbers is succinct.

∗ 10012 vs. 1111111111.

• All numbers for TMs will be binary from now on.

aSome call it “polynomial Church’s thesis,” which Lószló Lovász at-

tributed to Leonid Levin (1948–).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68



Extended Church’s Thesis (concluded)

• Representations that are not succinct may give

misleadingly low complexities.

– Consider an algorithm with binary inputs that runs

in 2n steps.

– Suppose the input uses unary representation instead.

– Then the same algorithm runs in linear time because

the input length is now 2n!

• So a succinct representation means honest accounting.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 69



Physical Church-Turing Thesis

• The physical Church-Turing thesis states that:

Anything computable in physics can also be

computed on a Turing machine.a

• The universe is a Turing machine.b

aCooper (2012).
bEdward Fredkin’s (1992) digital physics.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70



The Strong Church-Turing Thesisa

• The strong Church-Turing thesis states that:b

A Turing machine can compute any function

computable by any “reasonable” physical device

with only polynomial slowdown.c

• A CPU, a GPU, and a DSP chip are good examples of

physical devices.d

aVergis, Steiglitz, & Dickinson (1986).
bhttp://ocw.mit.edu/courses/mathematics/18-405j-advanced

-complexity-theory-fall-2001/lecture-notes/lecture10.pdf
cOr speedup.
dThanks to a lively discussion on September 23, 2014.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71



The Strong Church-Turing Thesis (continued)

• Factoring is believed to be a hard problem for Turing

machines (but there is no proof yet).

• But a quantum computer can factor numbers in

probabilistic polynomial time.a

• If a large-scale stable quantum computer can be reliably

built, the strong Church-Turing thesis may be refuted.b

aShor (1994).
bContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

September 22, 2015.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72



The Strong Church-Turing Thesis (concluded)

• As of 2019,a

There is no publicly known application of

commercial interest based upon quantum

algorithms that could be run on a near-term

analog or digital NISQb computer that would

provide an advantage over classical approaches.

aGrumbling & Horowitz (2019).
b“Noisy, Intermediate-Scale Quantum.”

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73


