
Theory of Computation

Final Examination on January 13, 2022

Fall Semester, 2021

Problem 1 (15 points) Prove that validity is coNP-complete. You need to de-

scribe the reduction and prove that it works. (Recall that language L is in coNP

when there is a nondeterministic polynomial-time algorithm M such that (1) if

x ∈ L, then M(x) = “yes” for all computation paths, and (2) if x ̸∈ L, then

M(x) = “no” for some computation path.)

Proof: See p. 481 of the lecture notes.

Problem 2 (20 points) Suppose that algorithm C runs in expected time T (n) and

always gives the right answer. Describe how to turn it into a randomized algorithm

which runs within time O(T (n)) and gives a wrong answer with probability at most,

say, 1/3?

Proof: Consider an algorithm which runs C for time kT (n). If C stops before the

time bound, output its answer; otherwise, reject the input (alternatively, accept the

input). By Markov’s inequality, this new algorithm runs in time kT (n) and gives

the wrong answer with probability ≤ 1/k. Pick k = 3.

Problem 3 (20 points) A randomized algorithm runs in polynomial time T (n) by

flipping O(log n) coins. Furthermore, this algorithm makes an error with probability

at most 1/4. How to turn it into a deterministic polynomial-time algorithm which

is always correct?

Proof: Try all possible coin clips. There are only polynomially many random

sequences. Count the number of “yes” and that of “no”. Output the majority

answer. This algorithm is always correct because the original algorithm promises

the number of paths leading to the majority answer is the correct one.

Problem 4 (20 points) The following interactive proof of qr for x ∈ Z∗
n differs

from the one given in the lecture by swapping two statements. Why does it not work

as an interactive proof? (Recall that an interactive proof for language L requires,

besides those requirements on running times, that (1) (completeness) if x ∈ L, then

x is accepted by the verifier with high probability, and (2) (soundness) if x ̸∈ L,

then x is accepted by the verifier with any prover with low probability.)

Algorithm 1

1: for m = 1, 2, . . . , log2 n do

2: Victor chooses a random bit i and sends it to Peggy;

3: Peggy chooses a random v ∈ Z∗
n and sends y = v2 mod n to Victor;

4: Peggy sends z = uiv mod n, where u is a square root of x;

5: Victor checks if z2 ≡ xiy mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;

Proof: Because Victor sends i first before Peggy sends z, a malicious Peggy can

pick a random z then solve z2 ≡ xiy mod n for y. Thus when x is a quadratic

nonresidue, Peggy may still convince Victor that x is a quadratic residue with prob-

ability one. This violates the soundness condition of ip.

Problem 5 (25 points) Let V be a set of points and d(u, v) be the distance be-

tween u, v ∈ V . Assume that the distances satisfy the triangle inequality. The

k-center problem is to find a subset S ⊆ V with size k > 0 that minimizes the

maximum distance from any point v ∈ V to the closest point u ∈ S:

S = argmin
S⊆V,|S |=k

(
max
v∈V

d(v, S)

)
,

where d(v, S) = minu∈S d(v, u). Note that d(v, S) = 0 if v ∈ S. Prove that the

following greedy algorithm is a 0.5-approximation algorithm: It produces a subset

S whose maximum distance from any point v ∈ V to the closest point u ∈ S is at

most 2 times the optimal subset’s. (The following definitions may help the analysis:

Let O = { o1, o2, . . . , ok } be an optimal solution with the optimal distance OPT. O

partitions V into k clusters Ci = { v ∈ V | d(v,O) = d(v, oi) } for i = 1, 2, 3, . . . , k.

What if Ci contains one member of S or at least 2 members of S?)

Algorithm 2

1: Let S start with { s1 } for an arbitrary node s1 ∈ V ;

2: while |S | < k do

3: Find a node v ∈ V which maximizes d(v, S);

4: Add v to S;

5: end while

Proof: Let O = { o1, o2, . . . , ok } be an optimal solution with the optimal distance

OPT. By definition, d(v,O) ≤ OPT for any v ∈ V . O partitions V into k clusters

Cj = { v ∈ V | d(v,O) = d(v, oj) } for j = 1, 2, 3, . . . , k. Note that
⋃

j Cj = V . Let

the algorithm add s1, s2, . . . , sk to S in that sequence. We now proceed to consider

the two cases.

(1) Suppose that each cluster contains exactly one point from the algorithm’s

output S. Fix a cluster Cj. Any point v ∈ Cj is at most OPT away from

oj by the definition of Cj. Note also that d(s, oj) ≤ d(s,O) ≤ OPT for

s ∈ S ∩ Cj by the definition of Cj. The triangle inequality implies that

d(v, s) ≤ d(v, oj) + d(oj, s) ≤ 2×OPT. As every node belongs in exactly one

cluster, the claim is proved.

(2) Otherwise, there are two points sm, sn ∈ S, where 1 ≤ m < n ≤ k, from S

lying in some cluster, say Cj. If v ∈ S, then d(v, S) = 0 ≤ 2 × OPT and

we are done. So assume v ̸∈ S from now on. Define Si = { s1, s2, s3, . . . , si }
for i = 1, 2, 3, . . . , k, the S after the ith iteration of the while loop. Note

that Sk is the final output S. Any point v ∈ V \ S has distance d(v, S) ≤
d(sn, Sn−1); otherwise, sn would not have been added to S. Note that

d(sj, Sj−1) ≤ d(sj, Si) ≤ d(sj, si) for 1 ≤ i < j ≤ k because the algorithm

added the point sj to S which was farthest away from Sj−1 and adding more

points to S does not increase the distance of any point to S. In summary,

d(v, S) ≤ d(sn, Sn−1) ≤ d(sn, sm) ≤ d(sn, oj) + d(oj, sm) ≤ 2 × OPT. This

completes the proof.

