Circuit Complexity

Circuit complexity is based on boolean circuits instead

of Turing machines.

A boolean circuit with n inputs computes a boolean

function of n variables.
Now, identify true/1 with “yes” and false/0 with “no.”

Then a boolean circuit with n inputs accepts certain
strings in { 0,1 }".

To relate circuits with an arbitrary language, we need

one circuit for each possible input length n.
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Formal Definitions
The size of a circuit is the number of gates in it.

A family of circuits is an infinite sequence
C = (Cy, Cq,...) of boolean circuits, where C,, has n

boolean inputs.

For input = € {0,1}*, (|, outputs 1 if and only if
x € L.

In other words,

Cp, accepts LN{0,1}".
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Formal Definitions (concluded)

e L. C {0,1}* has polynomial circuits if there is a

family of circuits C such that:

— The size of C,, is at most p(n) for some fixed

polynomial p.

— (), accepts LN {0,1}".
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Exponential Circuits Suffice for All Languages

e Theorem 16 (p. 221) implies that there are languages

that cannot be solved by circuits of size 2" /(2n).

e But surprisingly, circuits of size 2*12 can solve all

problems, decidable or otherwise!
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Exponential Circuits Suffice for All Languages
(continued)

Proposition 79 All decision problems (decidable or

otherwise) can be solved by a circuit of size 22 and depth
2n.

e We will show that for any language L C {0,1 }*,
LN{0,1}" can be decided by a circuit of size 272,

e Define boolean function f: {0,1}" — {0,1}, where

X1Xo - Ty € L,

T1xo Xy € L.
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The Proof (concluded)

Clearly, any circuit that implements f decides
LN{0,1}™.

Now,

Flzims - an) = (@1 A f(lzs - 2n)) V (=21 A f(025 - - - 20))-

The circuit size s(n) for f(zi1xs---x,) hence satisfies
s(n) =44+ 2s(n—1)

with s(1) = 1.

Solve it to obtain s(n) =5 x 271 —4 < 272,

The longest path consists of an alternating sequence of
Vs and As.
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The Circuit Complexity of P

Proposition 80 All languages in P have polynomzial

circuits.

e Let L € P be decided by a TM in time p(n).

e By Corollary 35 (p. 330), there is a circuit with
O(p(n)?) gates that accepts LN {0,1}".

e The size of that circuit depends only on L and the
length of the input.

e The size of that circuit is polynomial in n.
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Polynomial Circuits vs. P

e Is the converse of Proposition 80 true?

— Do polynomial circuits accept only languages in P?
e No.

e Polynomial circuits can accept undecidable languages!®

aSee p. 268 of the textbook.
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BPP's Circuit Complexity: Adleman’s Theorem

Theorem 81 (Adleman, 1978) All languages in BPP

have polynomaial circuits.

e Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.
— Recall our proof of Theorem 16 (p. 221).
— Something exists if its probability of existence is
NONZero.
e It is not known how to efficiently generate circuit C),.

— If the construction of C,, can be made efficient, then
P = BPP, an unlikely result.
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The Proof

Let L € BPP be decided by a precise polynomial-time
NTM N by clear majority.

We shall prove that L has polynomial circuits Cyp, C1, .. ..

— These deterministic circuits do not err.

Suppose N runs in time p(n), where p(n) is a

polynomial.

Let A, = {ai,as,...,a, }, where a; € {0,1}P(™),

Each a; € A,, represents a sequence of nondeterministic

choices (i.e., a computation path) for N.

Pick m = 12(n + 1).
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The Proof (continued)

e Let x be an input with |z | = n.

e Circuit C,, simulates N on x with all sequences of
choices in A,, and then takes the majority of the m

outcomes.®
— Note that each A,, yields a circuit.

e As N with a; is a polynomial-time deterministic TM, it
can be simulated by polynomial circuits of size O(p(n)?).

— See the proof of Proposition 80 (p. 640).

@As m is even, there may be no clear majority. Still, the probability
of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.
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The Circuit

Majority logic
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The Proof (continued)

The size of C,, is therefore O(mp(n)?)

— This is a polynomial.

We now confirm the existence of an A,, making C,,

correct on all n-bit inputs.

Call a; bad if it leads N to an error (a false positive or a
false negative) for x.

Select A,, uniformly randomly.
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The Proof (continued)

For each z € {0,1}", 1/4 of the computations of N are

erroneous.

Because the sequences in A,, are chosen randomly and

independently, the expected number of bad a;’s is m /4.2

Also note after fixing the input «x, the circuit is a

function of the random bits.

aSo the proof will not work for NP. Contributed by Mr. Ching-Hua
Yu (D00921025) on December 11, 2012.
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The Proof (continued)
e By the Chernoff bound (p. 619), the probability that the

number of bad a;’s is m/2 or more is at most

e—m/12 < 2—(n—|—1) .

e The error probability of using the majority rule is thus

< 2—(n—|—1)

for each x € {0,1 }".
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The Proof (continued)

The probability that there is an x such that A,, results

In an incorrect answer is

< 2r2m () = 91

by the union bound (Boole’s inequality).?

We just showed that at least half of the random A,, are

correct.

So with probability > 0.5, a random A,, produces a
correct C,, for all inputs of length n.

— Of course, verifying this fact may take a long time.

2That is, probl AU BU---] < prob[ A] + prob[B| + ---.
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The Proof (concluded)

Because this probability exceeds 0, an A,, that makes

majority vote work for all inputs of length n exists.
Hence a correct C,, exists.?

We have used the probabilistic method® popularized
by Erdos (1947).°

e This result answers the question on p. 550 with a “yes.”

2Quine (1948), “To be is to be the value of a bound variable.”

PA counting argument in the probabilistic language.
°Szele (1943) and Turdn (1934) were earlier.
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Leonard Adleman® (1945-)

2Turing Award (2002).
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Paul Erd6s (1913-1996)

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 652



Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.
— Johann Wolfgang von Goethe (1749-1832)
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Cryptography

e Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

e The protocol should be such that the message is known
only to Alice and Bob.

e The art and science of keeping messages secure is

cryptography.
Eve

Alice

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655



Encryption and Decryption

Alice and Bob agree on two algorithms £ and D—the
encryption and the decryption algorithms.

Both E and D are known to the public in the analysis.
Alice runs F and wants to send a message x to Bob.

Bob operates D.
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Encryption and Decryption (concluded)

e Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

e Alice sends y = E(e, x) to Bob, who then performs

D(d,y) = x to recover .

e 1 is called plaintext, and y is called ciphertext.?

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

e D should be an inverse of F given e and d.

e D and E must both run in (probabilistic) polynomial

time.

e Eve should not be able to recover x from y without
knowing d.
— As D is public, d must be kept secret.

— e may or may not be a secret.
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Degree of Security

e Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the

interception.

— The probability that plaintext P occurs is
independent of the ciphertext C being observed.

— So knowing C yields no advantage in recovering P.
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Degree of Security (concluded)

e Such systems are said to be informationally secure.

e A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660



Conditions for Perfect Secrecy?

e Consider a cryptosystem where:
— The space of ciphertext is as large as that of keys.
— Every plaintext has a nonzero probability of being
used.
e It is perfectly secure if and only if the following hold.
— A key is chosen with uniform distribution.

— For each plaintext x and ciphertext y, there exists a

unique key e such that E(e,x) = y.

aShannon (1949).
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The One-Time Pad?

. Alice generates a random string r as long as x;

. Alice sends r to Bob over a secret channel;
. Alice sends x @ r to Bob over a public channel;
: Bob receives y;

: Bob recovers x :=y & r;

@Mauborgne & Vernam (1917); Shannon (1949). It was allegedly used
for the hotline between Russia and the U.S.
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Analysis

The one-time pad uses e =d = r.
This is said to be a private-key cryptosystem.
Knowing = and knowing r are equivalent.

Because r is random and private, the one-time pad

achieves perfect secrecy.?

The random bit string must be new for each round of

communication.

e But the assumption of a private channel is problematic.

aSee p. 661.
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Public-Key Cryptography?

Suppose only d is private to Bob, whereas e is public

knowledge.
Bob generates the (e, d) pair and publishes e.
Anybody like Alice can send F(e,z) to Bob.

Knowing d, Bob can recover x via

D(d, E(e,x)) = x.

aDiffie & Hellman (1976).
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Public-Key Cryptography (concluded)

e The assumptions are complexity-theoretic.
— It is computationally difficult to compute d from e.

— It is computationally difficult to compute x from y
without knowing d.
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Whitfield Diffie* (1944-)

aTuring Award (2016).
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Martin Hellman® (1945-)

2Turing Award (2016).
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Complexity Issues

Given y and z, it is easy to verify whether E(e,z) = v.
Hence one can always guess an x and verify.
Cracking a public-key cryptosystem is thus in NP.

A necessary condition for the existence of secure

public-key cryptosystems is P # NP.
But more is needed than P # NP.

For instance, it is not sufficient that D is hard to

compute in the worst case.

It should be hard in “most” or “average” cases.
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One-Way Functions
A function f is a one-way function if the following hold.?

1. f is one-to-one.

2. For all x € ¥*, |z |V* < |f(x)| < |z |* for some k > 0.

e f is said to be honest.
3. f can be computed in polynomial time.

4. f~! cannot be computed in polynomial time.

e Exhaustive search works, but it must be slow.

aDiffie & Hellman (1976); Boppana & Lagarias (1986); Grollmann &
Selman (1988); Ko (1985); Ko, Long, & Du (1986); Watanabe (1985);
Young (1983).
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Existence of One-Way Functions (OWFs)

e Even if P # NP, there is no guarantee that one-way

functions exist.
e No functions have been proved to be one-way.

e [s breaking glass a one-way function?
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Candidates of One-Way Functions

e Modular exponentiation f(x) = ¢g” mod p, where g is a

primitive root of p.
— Discrete logarithm is hard.?
e The RSAP function f(x) = x¢ mod pq for an odd e
relatively prime to ¢(pq).
— Breaking the RSA function is hard.

@Conjectured to be 27 for some € > 0 in both the worst-case sense
and average sense. Doable in time n©1°8 ") for finite fields of small char-
acteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann

& Selman, 1988).
PRivest, Shamir, & Adleman (1978).

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 671



Candidates of One-Way Functions (concluded)

e Modular squaring f(z) = 2% mod pq.

— Determining if a number with a Jacobi symbol 1 is a
quadratic residue is hard—the quadratic
residuacity assumption (QRA).?

— Breaking it is as hard as factorization when
p=q=3mod4.>

2Due to Gauss.
PRabin (1979).
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The Secret-Key Agreement Problem

Exchanging messages securely using a private-key

cryptosystem requires Alice and Bob have the same

a

key.

— An example is the r in the one-time pad.”

How can they agree on the same secret key when the

channel is insecure?

This is called the secret-key agreement problem.

It was solved by Diffie and Hellman (1976) using

one-way functions.

aSee p. 663.
bPSee p. 662.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 673



The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}

. Alice chooses a large number a at random:;

. Alice computes a = g% mod p;

: Bob chooses a large number b at random:;

. Bob computes 8 = ¢® mod p;

. Alice sends o to Bob, and Bob sends £ to Alice;

. Alice computes her key 5% mod p;

. Bob computes his key a® mod p;
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Analysis

The keys computed by Alice and Bob are identical as

Ba, _ gba _ ga,b _ Cl{b mod D.

To compute the common key from p, g, o, 5 is known as
the Diffie-Hellman problem.

It is conjectured to be hard.?

If discrete logarithm is easy, then one can solve the
Diffie-Hellman problem.

— Because a and b can then be obtained by Eve.

e But the other direction is still open.

2This is the computational Diffie-Hellman assumption (CDH).
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The RSA Function

e Let p, g be two distinct primes.

The RSA function is ¢ mod pq for an odd e relatively
prime to ¢(pq).
— By Lemma 59 (p. 502),

Qb(PQ):PC](l—l) (1—1> =pq—p—q+1. (16)

p q

e As ged(e, ¢(pq)) = 1, there is a d such that
ed = 1 mod ¢(pq),

which can be found by the Euclidean algorithm.?

a0One can think of d as e~ 1.
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A Public-Key Cryptosystem Based on RSA

e Bob generates p and q.

e Bob publishes pg and the encryption key e, a number
relatively prime to ¢(pq).

— The encryption function is
y = x° mod pq.

— Bob calculates ¢(pq) by Eq. (16) (p. 676).

— Bob then calculates d such that ed = 1+ k¢(pq) for
some k € Z.
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A Public-Key Cryptosystem Based on RSA
(continued)

e The decryption function is
yd mod pgq.
e It works because
yd _ ped _ L1+ké(Pd) — o 110 nq

by the Fermat-Euler theorem when ged(x, pq) = 1
(p- 507).
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A Public-Key Cryptosystem Based on RSA
(continued)

What if z is not relatively prime to pq??
As ¢(pg) = (p —1)(g — 1),

ed=14+k(p—1)(¢—1).
Say x = 0 mod p.

Then

y? = 2 =0 = 2 mod p.

20f course, one would be unlucky here.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 679



A Public-Key Cryptosystem Based on RSA
(continued)

e On the other hand, either = 0 mod ¢ or x = 0 mod g.
e If x # 0 mod ¢, then

gl = o= ged-ly = sR=1)(¢=1) . — (xq—l)k(p_D .

= z mod q.
by Fermat’s “little” theorem (p. 505).

e If x =0 mod ¢, then

d xed —

ye = 0 = z mod gq.
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A Public-Key Cryptosystem Based on RSA
(concluded)

e By the Chinese remainder theorem (p. 504),

yd = xed

= 0 = x mod pgq,
even when x is not relatively prime to p.

e When x is not relatively prime to ¢, the same conclusion
holds.
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The “Security” of the RSA Function

e Factoring pq or calculating d from (e, pq) seems hard.

e Breaking the last bit of RSA is as hard as breaking the
RSA.2

e Recommended RSA key sizes:P

— 1024 bits up to 2010.
— 2048 bits up to 2030.
— 3072 bits up to 2031 and beyond.

2Alexi, Chor, Goldreich, & Schnorr (1988).
PRSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US

dollars.
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The “Security” of the RSA Function (continued)

e Recall that problem A is “harder than” problem B if

solving A results in solving B.
— Factorization is “harder than” breaking the RSA.

— It is not hard to show that calculating FEuler’s phi
function® is “harder than” breaking the RSA.

— Factorization is “harder than” calculating Euler’s phi

function (see Lemma 59 on p. 502).

— So factorization is harder than calculating Euler’s phi
function, which is harder than breaking the RSA.

@When the input is not factorized!
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The “Security” of the RSA Function (concluded)
e Factorization cannot be NP-hard unless NP = coNP.?
e So breaking the RSA is unlikely to imply P = NP.

e But numbers can be factorized efficiently by quantum

computers.b

e RSA was alleged to have received 10 million US dollars

from the government to promote unsecure p and ¢.°

2Brassard (1979).

bShor (1994).
“Menn (2013).
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Adi Shamir, Ron Rivest, and Leonard Adleman
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Ron Rivest® (1947-)

2Turing Award (2002).
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Adi Shamir® (1952-)
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2Turing Award (2002).
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A Parallel History

e Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

e In 1973, the RSA public-key cryptosystem was invented
in Britain before the Diffie-Hellman secret-key

agreement scheme.?

aEllis, Cocks, and Williamson of the Communications Electronics Se-

curity Group of the British Government Communications Head Quarters

(GCHQ).

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 688



Is a forged signature the same sort of thing
as a genuine signature,

or is it a different sort of thing?

— Gilbert Ryle (1900-1976),

The Concept of Mind (1949)

“Katherine, I gave him the code.
He verified the code.”

“But did you verify him?”

— The Numbers Station (2013)
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Digital Signatures®

Alice wants to send Bob a signed document x.
The signature must unmistakably identifies the sender.

Both Alice and Bob have public and private keys
€Alice, €EBob, dAlice, dBob-

Every cryptosystem guarantees D(d, E(e,x)) = .

Assume the cryptosystem also satisfies the commutative

property
E(e,D(d,z)) = D(d, E(e, x)).

— E.g., the RSA system satisfies it as (z%)¢ = (2°)%.

aDiffie & Hellman (1976).
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Digital Signatures Based on Public-Key Systems

e Alice signs x as
(33, D<dAliCG7 ZIZ))

e Bob receives (x,y) and verifies the signature by checking
E(eAlicea y) — E(eAIicea D(dAlice7 ZU)) — X
based on Eq. (17).

e The claim of authenticity is founded on the difficulty of
inverting Eajice Without knowing the key dajice.
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Blind Signatures®

There are applications where the document author

(Alice) and the signer (Bob) are different parties.
Sender privacy: We do not want Bob to see the
document.

— Anonymous electronic voting systems, digital cash

schemes, anonymous payments, etc.

Idea: The document is blinded by Alice before it is
signed by Bob.

The resulting blind signature can be publicly verified

against the original, unblinded document x as before.

2Chaum (1983).
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Blind Signatures Based on RSA

Blinding by Alice:
1: Pick r € Z” randomly;
2: Send

' = xr® mod n

to Bob; {x is blinded by r°.}

e Note that »r — r® mod n is a one-to-one correspondence.
e Hence r7° mod n is a random number, too.

e As a result, 2’ is random and leaks no information, even

if x has any structure.
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Blind Signatures Based on RSA (continued)

Signing by Bob with his private decryption key d:
1: Send the blinded signature

to Alice;
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Blind Signatures Based on RSA (continued)

The RSA signature of Alice:

1: Alice obtains the signature s = s'r~!

mod n;

e 'This works because
(x’)dr_l — (xre)dr_l = p4ped=1 = 2d mod n
by the properties of the RSA function.

e Note that only Alice knows r.
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Blind Signatures Based on RSA (concluded)

e Anyone can verify the document was signed by Bob by

checking with Bob’s encryption key e the following:

s® = x mod n.

e But Bob does not know s is related to ' (thus Alice).
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Probabilistic Encryption?®

A deterministic cryptosystem can be broken if the

plaintext has a distribution that favors the “easy” cases.

The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security
weakness if those strings were the probable ones!

A scheme may also “leak” partial information.

— Parity of the plaintext, e.g.

The first solution to the problems of skewed distribution

and partial information was based on the QRA.

2Goldwasser & Micali (1982). This paper “laid the framework for
modern cryptography” (2013).
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Shafi Goldwasser® (1958—-)

2Turing Award (2013).
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Silvio Micali* (1954-)

2Turing Award (2013).
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Goldwasser and Micali
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A Useful Lemma

Lemma 82 Let n = pq be a product of two distinct primes.

Then a number y € Z is a quadratic residue modulo n if

and only if (y|p) = (y[q) = 1.
e The “only if” part:

— Let z be a solution to 2 = y mod pyg.

— Then 2? = y mod p and 2 = y mod ¢ also hold.

— Hence y is a quadratic modulo p and a quadratic
residue modulo g.
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The Proof (concluded)

e The “if” part:
— Let a® = y mod p and a3 = y mod q.

— Solve

r = a; modp,

r = ag modgq,

for x with the Chinese remainder theorem (p. 504).

— As 2° = y mod p, * = y mod ¢, and ged(p,q) =1,
2

we must have x“ = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

e The Legendre symbol can be used as a test for quadratic
residuacity by Lemma 69 (p. 574).

Lemma 82 (p. 701) says this is not the case with the

Jacobi symbol in general.
Suppose n = pq is a product of two distinct primes.

A number y € Z* with Jacobi symbol (y|pg) =1 is a

quadratic nonresidue modulo n when

(ylp) = (ylq) = —1,

because (y|pq) = (y[p)(y|q).
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