Square Roots Modulo a Prime

- Equation $x^2 \equiv a \mod p$ has at most two (distinct) roots by Lemma 64 (p. 510).
 - The roots are called square roots.
 - Numbers a with square roots and $\gcd(a, p) = 1$ are called quadratic residues.
 * They are
 $$1^2 \mod p, 2^2 \mod p, \ldots, (p - 1)^2 \mod p.$$

- We shall show that a number either has two roots or has none, and testing which is the case is trivial.\(^a\)

\(^a\)But no efficient deterministic general-purpose square-root-extracting algorithms are known yet.
Euler’s Test

Lemma 69 (Euler) Let p be an odd prime and $a \neq 0 \mod p$.

1. If
 \[a^{(p-1)/2} \equiv 1 \mod p, \]
 then $x^2 \equiv a \mod p$ has two roots.

2. If
 \[a^{(p-1)/2} \neq 1 \mod p, \]
 then
 \[a^{(p-1)/2} \equiv -1 \mod p \]
 and $x^2 \equiv a \mod p$ has no roots.
The Proof (continued)

• Let \(r \) be a primitive root of \(p \).

• Fermat’s “little” theorem says \(r^{p-1} \equiv 1 \mod p \), so

\[
r^{(p-1)/2}
\]

is a square root of 1.

• In particular,

\[
r^{(p-1)/2} \equiv 1 \text{ or } -1 \mod p.
\]

• But as \(r \) is a primitive root, \(r^{(p-1)/2} \not\equiv 1 \mod p \).

• Hence \(r^{(p-1)/2} \equiv -1 \mod p \).
The Proof (continued)

• Let $a \equiv r^k \mod p$ for some k.
• Suppose $a^{(p-1)/2} \equiv 1 \mod p$.
• Then

 \[1 \equiv a^{(p-1)/2} \equiv r^{k(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^k \equiv (-1)^k \mod p. \]

• So k must be even.
The Proof (continued)

- Suppose \(a \equiv r^{2j} \mod p \) for some \(1 \leq j \leq (p - 1)/2 \).
- Then
 \[
a^{(p-1)/2} \equiv r^{j(p-1)} \equiv 1 \mod p.
 \]
- The two distinct roots of \(a \) are
 \[
r^j, -r^j \equiv r^j + (p-1)/2 \mod p.
 \]
 - If \(r^j \equiv -r^j \mod p \), then \(2r^j \equiv 0 \mod p \), which implies \(r^j \equiv 0 \mod p \), a contradiction as \(r \) is a primitive root.
The Proof (continued)

- As $1 \leq j \leq (p - 1)/2$, there are $(p - 1)/2$ such a's.
- Each such $a \equiv r^{2j} \mod p$ has 2 distinct square roots.
- The square roots of all these a's are distinct.
 - The square roots of different a's must be different.
- Hence the set of square roots is $\{1, 2, \ldots, p - 1\}$.
- As a result,
 \[a = r^{2j} \mod p, \ 1 \leq j \leq (p - 1)/2, \]
 exhaust all the quadratic residues.
The Proof (concluded)

• Suppose \(a = r^{2^j+1} \mod p \) now.

• Then it has no square roots because all the square roots have been taken.

• Finally,

\[
a^{(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^{2^j+1} \equiv (-1)^{2^j+1} \equiv -1 \mod p.
\]
The Legendre Symbol\(^a\) and Quadratic Residuacity Test

- By Lemma 69 (p. 574),

\[a^{(p-1)/2} \equiv \pm 1 \mod p \]

for \(a \not\equiv 0 \mod p \).

- For odd prime \(p \), define the **Legendre symbol** \((a \mid p)\) as

\[
(a \mid p) \overset{\Delta}{=} \begin{cases}
0, & \text{if } p \mid a, \\
1, & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1, & \text{if } a \text{ is a quadratic nonresidue modulo } p.
\end{cases}
\]

- It is sometimes pronounced “a over p.”

\(^a\)Andrien-Marie Legendre (1752–1833).
The Legendre Symbol and Quadratic Residuacity Test (concluded)

• Euler’s test (p. 574) implies

\[a^{(p-1)/2} \equiv (a \mid p) \mod p \]

for any odd prime \(p \) and any integer \(a \).

• Note that \((ab \mid p) = (a \mid p)(b \mid p)\).
Gauss’s Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd primes. Then $(q \mid p) = (-1)^m$, where m is the number of residues in $R \triangleq \{ iq \mod p : 1 \leq i \leq (p - 1)/2 \}$ that are greater than $(p - 1)/2$.

- All residues in R are distinct.
 - If $iq = jq \mod p$, then $p \mid (j - i)$ or $p \mid q$.
 - But neither is possible.

- No two elements of R add up to p.
 - If $iq + jq \equiv 0 \mod p$, then $p \mid (i + j)$ or $p \mid q$.
 - But neither is possible.
The Proof (continued)

• Replace each of the \(m \) elements \(a \in R \) such that \(a > (p - 1)/2 \) by \(p - a \).

 – This is equivalent to performing \(-a \mod p\).

• Call the resulting set of residues \(R' \).

• All numbers in \(R' \) are at most \((p - 1)/2 \).

• In fact, \(R' = \{1, 2, \ldots, (p - 1)/2\} \) (see illustration next page).

 – Otherwise, two elements of \(R \) would add up to \(p \), which has been shown to be impossible.

\[^a \text{Because then } iq \equiv -jq \mod p \text{ for some } i \neq j. \]
\[p = 7 \text{ and } q = 5. \]
The Proof (concluded)

• Alternatively, \(R' = \{ \pm iq \mod p : 1 \leq i \leq (p - 1)/2 \} \), where exactly \(m \) of the elements have the minus sign.

• Take the product of all elements in the two representations of \(R' \).

• So

\[
[(p - 1)/2]! \equiv (-1)^m q^{(p-1)/2} [(p - 1)/2]! \mod p.
\]

• Because \(\gcd([(p - 1)/2]!, p) = 1 \), the above implies

\[
1 = (-1)^m q^{(p-1)/2} \mod p.
\]
Legendre’s Law of Quadratic Reciprocity

- Let p and q be two distinct odd primes.
- The next result says $(p \mid q)$ and $(q \mid p)$ are distinct if and only if both p and q are 3 mod 4.

Lemma 71 (Legendre, 1785; Gauss)

$$ (p \mid q)(q \mid p) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}. $$

First stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990). As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum.”
The Proof (continued)

- Sum the elements of R' on p. 585 in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

\[
mp + \sum_{i=1}^{(p-1)/2} \left(iq - p \left\lfloor \frac{iq}{p} \right\rfloor \right)
\equiv mp + \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2.
\]

- m of the $iq \mod p$ are replaced by $p - iq \mod p$.
- But signs are irrelevant under mod 2.
- m is as in Lemma 70 (p. 582).
The Proof (continued)

• Ignore odd multipliers to make the sum equal

\[m + \left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2. \]

• Equate the above with \(\sum_{i=1}^{(p-1)/2} i \) modulo 2.

• Now simplify to obtain

\[m \equiv \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2. \]
The Proof (continued)

- \(\sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \) is the number of integral points below the line
 \[y = \left(\frac{q}{p} \right) x \]
 for \(1 \leq x \leq (p - 1)/2 \).
- Gauss’s lemma (p. 582) says \((q \mid p) = (-1)^m \).
- Repeat the proof with \(p \) and \(q \) reversed.
- Then \((p \mid q) = (-1)^{m'} \), where \(m' \) is the number of integral points above the line \(y = \left(\frac{q}{p} \right) x \) for
 \(1 \leq y \leq (q - 1)/2 \).
The Proof (concluded)

- As a result,
 \[(p \mid q)(q \mid p) = (-1)^{m+m'}\.

- But \(m + m'\) is the total number of integral points in the
 \([1, \frac{p-1}{2}] \times [1, \frac{q-1}{2}]\) rectangle, which is
 \[
 \frac{p - 1}{2} \frac{q - 1}{2}.
 \]
Eisenstein’s Rectangle

Above, $p = 11$, $q = 7$, $m = 7$, $m' = 8$.
The Jacobi Symbol\(^a\)

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol \((a \mid m)\) extends it to cases where \(m\) is not prime.
 - \(a\) is sometimes called the numerator and \(m\) the denominator.
- Trivially, \((1 \mid m) = 1\).
- Define \((a \mid 1) = 1\).

\(^a\)Carl Jacobi (1804–1851).
The Jacobi Symbol (concluded)

- Let \(m = p_1 p_2 \cdots p_k \) be the prime factorization of \(m \).
- When \(m > 1 \) is odd and \(\gcd(a, m) = 1 \), then
 \[
 (a \mid m) \triangleq \prod_{i=1}^{k} (a \mid p_i).
 \]
 - Note that the Jacobi symbol equals \(\pm 1 \).
 - It reduces to the Legendre symbol when \(m \) is a prime.
Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1. \((ab \mid m) = (a \mid m)(b \mid m)\).

2. \((a \mid m_1m_2) = (a \mid m_1)(a \mid m_2)\).

3. If \(a \equiv b \mod m\), then \((a \mid m) = (b \mid m)\).

4. \((-1 \mid m) = (-1)^{(m-1)/2}\) (by Lemma 70 on p. 582).

5. \((2 \mid m) = (-1)^{(m^2-1)/8}\).

6. If \(a\) and \(m\) are both odd, then
 \[(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}.
 \]

\(^a\)By Lemma 70 (p. 582) and some parity arguments.
Properties of the Jacobi Symbol (concluded)

• Properties 3–6 allow us to calculate the Jacobi symbol without factorization.
 – It will also yield the same result as Euler’s testa when \(m \) is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that \((a \mid m) = 1/(a \mid m) \) because \((a \mid m) = \pm 1 \).b

aRecall p. 574.

bContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.
Calculation of \((2200 \ | \ 999)\)

\[
(2200 \ | \ 999) = (202 \ | \ 999) = (2 \ | \ 999)(101 \ | \ 999) = (-1)^{(999^2 - 1)/8}(101 \ | \ 999) = (-1)^{124750}(101 \ | \ 999) = (101 \ | \ 999) = (999 \ | \ 101) = (90 \ | \ 101) = (-1)^{(101^2 - 1)/8}(45 \ | \ 101) = (-1)^{1275}(45 \ | \ 101) = -(45 \ | \ 101) = -(-1)^{(44)(100)/4}(101 \ | \ 45) = -(101 \ | \ 45) = -(11 \ | \ 45) = -(-1)^{(10)(44)/4}(45 \ | \ 11) = -(45 \ | \ 11) = -(1 \ | \ 11) = -1.
\]
A Result Generalizing Proposition 10.3 in the Textbook

Theorem 72 The group of set $\Phi(n)$ under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, p^k, or $2p^k$ for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.
The Jacobi Symbol and Primality Test

Lemma 73 If \((M \mid N) \equiv M^{(N-1)/2} \mod N\) for all \(M \in \Phi(N)\), then \(N\) is a prime. (Assume \(N\) is odd.)

- Assume \(N = mp\), where \(p\) is an odd prime, gcd\((m, p) = 1\), and \(m > 1\) (not necessarily prime).
- Let \(r \in \Phi(p)\) such that \((r \mid p) = -1\).
- The Chinese remainder theorem says that there is an \(M \in \Phi(N)\) such that

\[
M = r \mod p, \\
M = 1 \mod m.
\]

\(^{a}\)Mr. Clement Hsiao (B4506061, R88526067) pointed out that the textbook’s proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.
The Proof (continued)

• By the hypothesis,

\[M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N. \]

• Hence

\[M^{(N-1)/2} = -1 \mod m. \]

• But because \(M = 1 \mod m, \)

\[M^{(N-1)/2} = 1 \mod m, \]

a contradiction.
The Proof (continued)

- Second, assume that $N = p^a$, where p is an odd prime and $a \geq 2$.
- By Theorem 72 (p. 597), there exists a primitive root r modulo p^a.
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.
The Proof (continued)

- As \(r \in \Phi(N) \) (prove it), we have
 \[r^{N-1} = 1 \mod N. \]

- As \(r \)'s exponent modulo \(N = p^a \) is \(\phi(N) = p^{a-1}(p - 1) \),
 \[p^{a-1}(p - 1) \mid (N - 1), \]
 which implies that \(p \mid (N - 1) \).

- But this is impossible given that \(p \mid N \).
The Proof (continued)

• Third, assume that $N = mp^a$, where p is an odd prime, $\gcd(m, p) = 1$, $m > 1$ (not necessarily prime), and a is even.

• The proof mimics that of the second case.

• By Theorem 72 (p. 597), there exists a primitive root r modulo p^a.

• From the assumption,

\[M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N \]

for all $M \in \Phi(N)$.
The Proof (continued)

- In particular,
 \[M^{N-1} = 1 \mod p^a \]
 (15)
 for all \(M \in \Phi(N) \).

- The Chinese remainder theorem says that there is an \(M \in \Phi(N) \) such that
 \[M = r \mod p^a, \]
 \[M = 1 \mod m. \]

- Because \(M = r \mod p^a \) and Eq. (15),
 \[r^{N-1} = 1 \mod p^a. \]
The Proof (concluded)

• As r’s exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p - 1)$,

$$p^{a-1}(p - 1) \mid (N - 1),$$

which implies that $p \mid (N - 1)$.

• But this is impossible given that $p \mid N$.
The Number of Witnesses to Compositeness

Theorem 74 (Solovay & Strassen, 1977) If N is an odd composite, then $(M \mid N) \equiv M^{(N-1)/2} \mod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 73 (p. 598) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \neq a^{(N-1)/2} \mod N$.

- Let $B \triangleq \{ b_1, b_2, \ldots, b_k \} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i \mid N) \equiv b_i^{(N-1)/2} \mod N$.

- Let $aB \triangleq \{ ab_i \mod N : i = 1, 2, \ldots, k \}$.

- Clearly, $aB \subseteq \Phi(N)$, too.
The Proof (concluded)

- $|aB| = k$.

 - $ab_i \equiv ab_j \mod N$ implies $N | a(b_i - b_j)$, which is impossible because $\gcd(a, N) = 1$ and $N > |b_i - b_j|$.

- $aB \cap B = \emptyset$ because

 \[
 (ab_i)^{(N-1)/2} \mod 2 = a^{(N-1)/2}b_i^{(N-1)/2} \mod 2 \\
 \neq (a \mid N)(b_i \mid N) = (ab_i \mid N).
 \]

- Combining the above two results, we know

 \[
 \frac{|B|}{\phi(N)} \leq \frac{|B|}{|B \cup aB|} = 0.5.
 \]
1: if N is even but $N \neq 2$ then
2: return “N is composite”;
3: else if $N = 2$ then
4: return “N is a prime”;
5: end if
6: Pick $M \in \{2, 3, \ldots, N-1\}$ randomly;
7: if $\gcd(M, N) > 1$ then
8: return “N is composite”;
9: else
10: if $(M | N) \equiv M^{(N-1)/2} \mod N$ then
11: return “N is (probably) a prime”;
12: else
13: return “N is composite”;
14: end if
15: end if
Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for COMPOSITENESS).
 - When the algorithm says the number is composite, it is always correct.
Analysis (concluded)

- The probability of a false negative (again, for COMPOSITENESS) is at most one half.
 - Suppose the input is composite.
 - By Theorem 74 (p. 605),
 \[
 \text{prob}[\text{algorithm answers “no” | N is composite}] \leq 0.5.
 \]
 - Note that we are not referring to the probability that \(N\) is composite when the algorithm says “no.”

- So it is a Monte Carlo algorithm for COMPOSITENESS\(^a\) by the definition on p. 552.

\(^a\)Not primes.
The Improved Density Attack for COMPOSITENESS

All numbers \(< N\)

Witnesses to compositeness of \(N\) via common factor

Witnesses to compositeness of \(N\) via Jacobi
Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.

- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
 - If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with “yes” where $n = |x|$.
 - If $x \not\in L$, then all computation paths halt with “no.”

- The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time).\(^a\)

\(^a\)Adleman & Manders (1977).
Comments on RP

- In analogy to Proposition 41 (p. 346), a “yes” instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of probability.
 - If \(x \in L \), then \(N(x) \) halts with “yes” with probability at least 0.5.
 - If \(x \not\in L \), then \(N(x) \) halts with “no.”
Comments on RP (concluded)

• The probability of false negatives is ≤ 0.5.

• But any constant ϵ between 0 and 1 can replace 0.5.
 – Repeat the algorithm
 $$k \triangleq \left\lceil -\frac{1}{\log_2 \epsilon} \right\rceil$$
 times.
 – Answer “no” only if all the runs answer “no.”
 – The probability of false negatives becomes $\epsilon^k \leq 0.5$.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University
Where RP Fits

- $P \subseteq RP \subseteq NP$.
 - A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 - A Monte Carlo TM is an NTM with more demands on the number of accepting paths.

- $\text{COMPOSITENESS} \in RP$;\(^a\) $\text{PRIMES} \in \text{coRP}$;
 $\text{PRIMES} \in RP$.\(^b\)
 - In fact, $\text{PRIMES} \in P$.\(^c\)

- $RP \cup \text{coRP}$ is an alternative “plausible” notion of efficient computation.

\(^a\)Rabin (1976); Solovay & Strassen (1977).
\(^b\)Adleman & Huang (1987).
\(^c\)Agrawal, Kayal, & Saxena (2002).
ZPP\(^a\) (Zero Probabilistic Polynomial)

- The class **ZPP** is defined as $\text{RP} \cap \text{coRP}$.

- A language in ZPP has *two* Monte Carlo algorithms, one with no false positives (RP) and the other with no false negatives (coRP).

- If we repeatedly run both Monte Carlo algorithms, *eventually* one definite answer will come (unlike RP).
 - A *positive* answer from the one without false positives.
 - A *negative* answer from the one without false negatives.

\(^a\)Gill (1977).
The ZPP Algorithm (Las Vegas)

1: {Suppose $L \in \text{ZPP}.}$
2: { N_1 has no false positives, and N_2 has no false negatives.}
3: while true do
4: if $N_1(x) =$ “yes” then
5: return “yes”;
6: end if
7: if $N_2(x) =$ “no” then
8: return “no”;
9: end if
10: end while
ZPP (concluded)

- The *expected* running time for the correct answer to emerge is polynomial.
 - The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
 - Let $p(n)$ be the running time of each run of the while-loop.
 - The expected running time for a definite answer is
 \[
 \sum_{i=1}^{\infty} 0.5^i p(n) = 2p(n).
 \]

- Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.
Large Deviations

• Suppose you have a *biased* coin.

• One side has probability $0.5 + \epsilon$ to appear and the other $0.5 - \epsilon$, for some $0 < \epsilon < 0.5$.

• But you do not know which is which.

• How to decide which side is the more likely side—with high confidence?

• Answer: Flip the coin many times and pick the side that appeared the most times.

• Question: Can you quantify your confidence?
The (Improved) Chernoff Bounda

\textbf{Theorem 75 (Chernoff, 1952)} \textit{Suppose} \(x_1, x_2, \ldots, x_n\) \textit{are independent random variables taking the values 1 and 0 with probabilities} \(p\) \textit{and} \(1 - p\), \textit{respectively. Let} \(X = \sum_{i=1}^{n} x_i\). \textit{Then for any constant} \(0 \leq \theta \leq 1\),

\[
\text{prob} [X \geq (1 + \theta) pn] \leq e^{-\theta^2 pn/3}.
\]

\begin{itemize}
\item The probability that the deviate of a \textbf{binomial random variable} from its expected value \(E[X] = E[\sum_{i=1}^{n} x_i] = pn\) decreases exponentially with the deviation.
\end{itemize}

aHerman Chernoff (1923–). This bound is asymptotically optimal. The original bound is \(e^{-2\theta^2 p^2 n}\) (McDiarmid, 1998).
The Proof

• Let t be any positive real number.

• Then

\[\text{prob}\left[X \geq (1 + \theta) pn \right] = \text{prob}\left[e^{tX} \geq e^{t(1+\theta)pn} \right]. \]

• Markov’s inequality (p. 555) generalized to real-valued random variables says that

\[\text{prob}\left[e^{tX} \geq k \cdot E[e^{tX}] \right] \leq \frac{1}{k}. \]

• With $k = e^{t(1+\theta)pn} / E[e^{tX}]$, we have\(^a\)

\[\text{prob}\left[X \geq (1 + \theta) pn \right] \leq e^{-t(1+\theta)pn} E[e^{tX}]. \]

\(^a\)Note that X does not appear in k. Contributed by Mr. Ao Sun (R05922147) on December 20, 2016.
The Proof (continued)

• Because \(X = \sum_{i=1}^{n} x_i \) and \(x_i \)'s are independent,

\[
E[e^{tX}] = (E[e^{tx_i}])^n = [1 + p(e^t - 1)]^n.
\]

• Substituting, we obtain

\[
\text{prob}\{X \geq (1 + \theta)pn\} \leq e^{-t(1+\theta)pn}[1 + p(e^t - 1)]^n
\leq e^{-t(1+\theta)pn}e^{pn(e^t - 1)}
\]

as \((1 + a)^n \leq e^{an}\) for all \(a > 0\).
The Proof (concluded)

• With the choice of \(t = \ln(1 + \theta) \), the above becomes

\[
\text{prob}[X \geq (1 + \theta) pn] \leq e^{pn[\theta-(1+\theta)\ln(1+\theta)]}.
\]

• The exponent expands to\(^a\)

\[
-\frac{\theta^2}{2} + \frac{\theta^3}{6} - \frac{\theta^4}{12} + \cdots
\]

for \(0 \leq \theta \leq 1 \).

• But it is less than

\[
-\frac{\theta^2}{2} + \frac{\theta^3}{6} \leq \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \leq \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\frac{\theta^2}{3}.
\]

\(^a\)Or McDiarmid (1998): \(x - (1 + x) \ln(1 + x) \leq -3x^2/(6 + 2x) \) for all \(x \geq 0 \).
How Good Is the Bound?

Chernoff bound

true probability

n
Other Variations of the Chernoff Bound

The following can be proved similarly (prove it).

Theorem 76 *Given the same terms as Theorem 75 (p. 619),*

\[
\text{prob}[X \leq (1 - \theta)pn] \leq e^{-\theta^2pn/2}.
\]

The following slightly looser inequalities achieve symmetry.

Theorem 77 (Karp, Luby, & Madras, 1989) *Given the same terms as Theorem 75 (p. 619) except with \(0 \leq \theta \leq 2,*

\[
\text{prob}[X \geq (1 + \theta)pn] \leq e^{-\theta^2pn/4},
\]

\[
\text{prob}[X \leq (1 - \theta)pn] \leq e^{-\theta^2pn/4}.
\]
Power of the Majority Rule

The next result follows from Theorem 76 (p. 624).

Corollary 78 If $p = (1/2) + \epsilon$ for some $0 \leq \epsilon \leq 1/2$, then

$$\text{prob} \left[\sum_{i=1}^{n} x_i \leq n/2 \right] \leq e^{-\epsilon^2 n/2}.$$

- The textbook’s corollary to Lemma 11.9 seems too loose, at $e^{-\epsilon^2 n/6}$.

- Our original problem (p. 618) hence demands, e.g., $n \approx 1.4k/\epsilon^2$ independent coin flips to guarantee making an error with probability $\leq 2^{-k}$ with the majority rule.

\[a\] See Dubhashi & Panconesi (2012) for many Chernoff-type bounds.
BPPa (Bounded Probabilistic Polynomial)

- The class BPP contains all languages \(L \) for which there is a precise polynomial-time NTM \(N \) such that:
 - If \(x \in L \), then at least \(3/4 \) of the computation paths of \(N \) on \(x \) lead to “yes.”
 - If \(x \notin L \), then at least \(3/4 \) of the computation paths of \(N \) on \(x \) lead to “no.”

- So \(N \) accepts or rejects by a \textit{clear} majority.

aGill (1977).
Magic 3/4?

- The number 3/4 bounds the probability (ratio) of a right answer away from 1/2.

- Any constant strictly between 1/2 and 1 can be used without affecting the class BPP.

- In fact, as with RP,

\[
\frac{1}{2} + \frac{1}{q(n)}
\]

for any polynomial \(q(n) \) can replace 3/4.

- The next algorithm shows why.
The Majority Vote Algorithm

Suppose L is decided by N by majority $(1/2) + \epsilon$.

1: for $i = 1, 2, \ldots, 2k + 1$ do
2: Run N on input x;
3: end for
4: if “yes” is the majority answer then
5: “yes”;
6: else
7: “no”;
8: end if
Analysis

- By Corollary 78 (p. 625), the probability of a false answer is at most $e^{-\epsilon^2 k}$.

- By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most $1/4$.

- Even if ϵ is any inverse polynomial, k remains a polynomial in n.

- The running time remains polynomial: $2k + 1$ times N’s running time.
Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.

- \((\mathsf{RP} \cup \mathsf{coRP}) \subseteq (\mathsf{NP} \cup \mathsf{coNP})\).

- \((\mathsf{RP} \cup \mathsf{coRP}) \subseteq \mathsf{BPP}\).

- Whether \(\mathsf{BPP} \subseteq (\mathsf{NP} \cup \mathsf{coNP})\) is unknown.

- But it is unlikely that \(\mathsf{NP} \subseteq \mathsf{BPP}\).\(^a\)

\(^a\)See p. 642.
coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in \text{BPP}$ becomes one for \bar{L} by reversing the answer.
- So $\bar{L} \in \text{BPP}$ and $\text{BPP} \subseteq \text{coBPP}$.
- Similarly $\text{coBPP} \subseteq \text{BPP}$.
- Hence $\text{BPP} = \text{coBPP}$.
- This approach does not work for RP.\(^{a}\)

\(^{a}\)It did not work for NP either.
BPP and coBPP
“The Good, the Bad, and the Ugly”