Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- **Function problems** require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?
Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP (D) is in P.
- But we shall see that decision problems can be as hard as the corresponding function problems. immediately.
FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return “no.”

- We next show that if \textsc{sat} $\in \mathcal{P}$, then \textsc{fsat} has a polynomial-time algorithm.

- \textsc{SAT} is a subroutine (black box) that returns “yes” or “no” on the satisfiability of the input.
An Algorithm for FSAT Using SAT

1: \(t := \epsilon; \) \{Truth assignment.\}
2: if \(\phi \in \text{SAT} \) then
3: \hspace{1em} for \(i = 1, 2, \ldots, n \) do
4: \hspace{2em} if \(\phi[x_i = \text{true}] \in \text{SAT} \) then
5: \hspace{3em} \(t := t \cup \{ x_i = \text{true} \}; \)
6: \hspace{3em} \(\phi := \phi[x_i = \text{true}]; \)
7: \hspace{2em} else
8: \hspace{3em} \(t := t \cup \{ x_i = \text{false} \}; \)
9: \hspace{3em} \(\phi := \phi[x_i = \text{false}]; \)
10: \hspace{1em} end if
11: end for
12: return \(t; \)
13: else
14: return “no”;
15: end if
Analysis

• If SAT can be solved in polynomial time, so can FSAT.
 – There are $\leq n + 1$ calls to the algorithm for SAT.a
 – Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.

• Hence SAT and FSAT are equally hard (or easy).

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
Analysis (concluded)

• Note that this reduction from FSAT to SAT is not a Karp reduction.\(^a\)

 – Will the set of NP-complete problems differ under different reductions?\(^b\)

• Instead, it calls SAT multiple times as a subroutine, and its answers guide the search on the computation tree.

\(^a\)Recall p. 275 and p. 280.

\(^b\)Contributed by Mr. Yu-Ming Lu (R06723032, D08922008) and Mr. Han-Ting Chen (R10922073) on December 9, 2021.
TSP and TSP (D) Revisited

- We are given \(n \) cities 1, 2, \ldots, \(n \) and integer distances \(d_{ij} = d_{ji} \) between any two cities \(i \) and \(j \).
- TSP (D) asks if there is a tour with a total distance at most \(B \).
- TSP asks for a tour with the shortest total distance.
 - The shortest total distance is at most \(\sum_{i,j} d_{ij} \).
 * Recall that the input string contains \(d_{11}, \ldots, d_{nn} \).
- Thus the shortest total distance is less than \(2|x| \) in magnitude, where \(x \) is the input (why?).
- We next show that if TSP (D) \(\in \mathbb{P} \), then TSP has a polynomial-time algorithm.
An Algorithm for TSP Using TSP (D)

1: Perform a binary search over interval \([0, 2|x|]\) by calling TSP (D) to obtain the shortest distance, \(C\);

2: \textbf{for} \(i, j = 1, 2, \ldots, n\) \textbf{do}

3: \hspace{1em} Call TSP (D) with \(B = C\) and \(d_{ij} = C + 1\);

4: \hspace{1em} \textbf{if} “no” \textbf{then}

5: \hspace{2em} Restore \(d_{ij}\) to its old value; \{Edge \([i, j]\) is critical.\}

6: \hspace{1em} \textbf{end if}

7: \textbf{end for}

8: \textbf{return} the tour with edges whose \(d_{ij} \leq C\);
Analysis

• An edge which is not on any remaining optimal tours will be eliminated, with its d_{ij} set to $C + 1$.

• So the algorithm ends with n edges which are not eliminated (why?).

• This is true even if there are multiple optimal tours!\(^a\)

\(^a\)Thanks to a lively class discussion on November 12, 2013 and December 9, 2021.
Analysis (concluded)

• There are $O(|x| + n^2)$ calls to the algorithm for TSP (D).

• Each call has an input length of $O(|x|)$.

• So if TSP (D) can be solved in polynomial time, so can TSP.

• Hence TSP (D) and TSP are equally hard (or easy).\(^a\)

\(^a\)How about counting the number of optimal TSP tours? This is related to \#P-completeness (p. 874). Contributed by Mr. Vincent Hwang (R10922138) on December 9, 2021.
Randomized Computation
I know that half my advertising works,
I just don’t know which half.
— John Wanamaker

I know that half my advertising is a waste of money,
I just don’t know which half!
— McGraw-Hill ad.
Randomized Algorithms\(^{a}\)

- Randomized algorithms flip unbiased coins.

- There are important problems for which there are no known efficient \textit{deterministic} algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.

- There are problems where randomization is \textit{necessary}.
 - Secure protocols.

- Randomized version can be more efficient.
 - Parallel algorithms for maximal independent set.\(^{b}\)

\(^{a}\)Rabin (1976); Solovay & Strassen (1977).

\(^{b}\)“Maximal” (a local maximum) not “maximum” (a global maximum).
Randomized Algorithms (concluded)

- Are randomized algorithms algorithms?a

- Coin flips are occasionally used in politics.b

aPascal, “Truth is so delicate that one has only to depart the least bit from it to fall into error.”

bIn the 2016 Iowa Democratic caucuses, e.g. (see http://edition.cnn.com/2016/02/02/politics/hillary-clinton-coin-flip-iowa-bernie-sanders/index.html).
“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).

bRabin (1976); Solovay & Strassen (1977).

cAleliunas, Karp, Lipton, Lovász, & Rackoff (1979).

dSchwartz (1980); Zippel (1979).

eSinclair & Jerrum (1989).
Bipartite Perfect Matching

• We are given a bipartite graph \(G = (U, V, E) \).
 - \(U = \{ u_1, u_2, \ldots, u_n \} \).
 - \(V = \{ v_1, v_2, \ldots, v_n \} \).
 - \(E \subseteq U \times V \).

• We are asked if there is a perfect matching.
 - A permutation \(\pi \) of \(\{ 1, 2, \ldots, n \} \) such that
 \[
 (u_i, v_{\pi(i)}) \in E
 \]
 for all \(i \in \{ 1, 2, \ldots, n \} \).

• A perfect matching contains \(n \) edges.
A Perfect Matching in a Bipartite Graph
Symbolic Determinants

- We are given a bipartite graph G.

- Construct the $n \times n$ matrix A^G whose (i, j)th entry A^G_{ij} is a symbolic variable x_{ij} if $(u_i, v_j) \in E$ and 0 otherwise:

$$A^G_{ij} = \begin{cases}
 x_{ij}, & \text{if } (u_i, v_j) \in E, \\
 0, & \text{otherwise}.
\end{cases}$$
Symbolic Determinants (continued)

- The matrix for the bipartite graph G on p. 533 is\(^a\)

$$A^G = \begin{bmatrix}
0 & 0 & x_{13} & x_{14} & 0 \\
0 & x_{22} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & x_{35} \\
x_{41} & 0 & x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{bmatrix}.$$

\(^a\)The idea is similar to the Tanner (1981) graph in coding theory.
Symbolic Determinants (concluded)

• The determinant of A^G is

$$\det(A^G) = \sum_{\pi} \text{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^G.$$ \hspace{1cm} (9)

- π ranges over all permutations of n elements.
- $\text{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.\(^a\)

• $\det(A^G)$ contains $n!$ terms, many of which may be 0s.

\(^a\)Equivalently, $\text{sgn}(\pi) = 1$ if the number of (i, j)s such that $i < j$ and $\pi(i) > \pi(j)$ is even. Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.
Determinant and Bipartite Perfect Matching

• In $\sum_{\pi} \text{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible perfect matching π.
 - Nonzero summands $\prod_{i=1}^{n} A_{i,\pi(i)}^{G}$ are distinct monomials and will not cancel.

• $\det(A^{G})$ is essentially an exhaustive enumeration.

Proposition 65 (Edmonds, 1967) G has a perfect matching if and only if $\det(A^{G})$ is not identically zero.
Perfect Matching and Determinant (p. 533)
Perfect Matching and Determinant (concluded)

- The matrix is (p. 535)

\[
A^G = \begin{bmatrix}
0 & 0 & x_{13} & x_{14} & 0 \\
0 & x_{22} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & x_{35} \\
x_{41} & 0 & x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{bmatrix}
\]

- \(\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} - x_{13}x_{22}x_{31}x_{44}x_{55}\).

- Each nonzero term denotes a perfect matching, and vice versa.
How To Test If a Polynomial Is Identically Zero?

- \(\det(A^G) \) is a polynomial in \(n^2 \) variables.
- It has, potentially, exponentially many terms.
- Expanding the determinant polynomial is thus infeasible.
- If \(\det(A^G) \equiv 0 \), then it remains zero if we substitute arbitrary integers for the variables \(x_{11}, \ldots, x_{nn} \).
- When \(\det(A^G) \not\equiv 0 \), what is the likelihood of obtaining a zero?
Number of Roots of a Polynomial

Lemma 66 (Schwartz, 1980) Let \(p(x_1, x_2, \ldots, x_m) \neq 0 \) be a polynomial in \(m \) variables each of degree at most \(d \). Let \(M \in \mathbb{Z}^+ \). Then the number of \(m \)-tuples

\[
(x_1, x_2, \ldots, x_m) \in \{0, 1, \ldots, M - 1\}^m
\]

such that \(p(x_1, x_2, \ldots, x_m) = 0 \) is

\[
\leq mdM^{m-1}.
\]

• By induction on \(m \) (consult the textbook).
Density Attack

• The density of roots in the domain is at most

\[
\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.
\]

(10)

• So suppose \(p(x_1, x_2, \ldots, x_m) \neq 0 \).

• Then a random

\[(x_1, x_2, \ldots, x_m) \in \{0, 1, \ldots, M-1\}^m\]

has a probability of \(\leq \frac{md}{M} \) of being a root of \(p \).

• Note that \(M \) is under our control!

 – One can raise \(M \) to lower the error probability, e.g.
Density Attack (concluded)

Here is a sampling algorithm to test if \(p(x_1, x_2, \ldots, x_m) \neq 0 \).

1: Choose \(i_1, \ldots, i_m \) from \(\{0, 1, \ldots, M - 1\} \) randomly;
2: \textbf{if} \(p(i_1, i_2, \ldots, i_m) \neq 0 \) \textbf{then}
3: \hspace{1em} \textbf{return} “\(p \) is not identically zero”;
4: \textbf{else}
5: \hspace{1em} \textbf{return} “\(p \) is (probably) identically zero”;
6: \textbf{end if}
Analysis

- If \(p(x_1, x_2, \ldots, x_m) \equiv 0 \), the algorithm will always be correct as \(p(i_1, i_2, \ldots, i_m) = 0 \).

- Suppose \(p(x_1, x_2, \ldots, x_m) \neq 0 \).
 - The algorithm will answer incorrectly with probability at most \(md/M \) by Eq. (10) on p. 542.

- We next return to the original problem of bipartite perfect matching.
A Randomized Bipartite Perfect Matching Algorithma

1: Choose n^2 integers i_{11}, \ldots, i_{nn} from $\{0, 1, \ldots, 2n^2 - 1\}$ randomly; \{So $M = 2n^2$.\}

2: Calculate $\det(A^G(i_{11}, \ldots, i_{nn}))$ by Gaussian elimination;

3: \textbf{if} $\det(A^G(i_{11}, \ldots, i_{nn})) \neq 0$ \textbf{then}

4: \hspace{1em} \textbf{return} “G has a perfect matching”;

5: \hspace{1em} \textbf{else}

6: \hspace{2em} \textbf{return} “G has (probably) no perfect matchings”;

7: \textbf{end if}

aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper “at the ripe old age of 17.”
Analysis

• If G has no perfect matchings, the algorithm will always be correct as $\det(A^G(i_{11}, \ldots, i_{nn})) = 0$.

• Suppose G has a perfect matching.
 – The algorithm will answer incorrectly with probability at most $md/M = 0.5$ with $m = n^2$, $d = 1$ and $M = 2n^2$ in Eq. (10) on p. 542.

• Run the algorithm *independently* k times.

• Output “G has no perfect matchings” if and only if all say “(probably) no perfect matchings.”

• The error probability is now reduced to at most 2^{-k}.
Lószló Lovász (1948–)
Remarksa

- Note that we calculated
 \[
 \text{prob[algorithm answers “no” | } G \text{ has no perfect matchings]},
 \]
 \[
 \text{prob[algorithm answers “yes” | } G \text{ has a perfect matching]}.
 \]
 - And they are 1 and $\geq 1/2$, respectively.

- We did not calculateb

 \[
 \text{prob[} G \text{ has no perfect matchings | algorithm answers “no”]},
 \]
 \[
 \text{prob[} G \text{ has a perfect matching | algorithm answers “yes”]}.
 \]

aThanks to a lively class discussion on May 1, 2008.

bNumerical Recipes in C (1988), “statistics is not a branch of mathematics!” Similar issues arise in MAP (maximum a posteriori) estimates and ML (maximum likelihood) estimates.
But How Large Can \(\det(A^G(i_{11}, \ldots, i_{nn})) \) Be?

- It is at most\(^a\)

\[
n! (2n^2)^n.
\]

- Stirling’s formula says \(n! \sim \sqrt{2\pi n} (n/e)^n \).

- Hence

\[
\log_2 \det(A^G(i_{11}, \ldots, i_{nn})) = O(n \log_2 n)
\]

bits are sufficient for representing the determinant.

- We skip the details about how to make sure that all intermediate results are of polynomial size.

\(^a\)In fact, it can be lowered to \(2^{O(\log^2 n)} \) (Csanky, 1975)!
An Intriguing Questiona

- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for the algorithm on p. 545?

- A theorem on p. 642 shows that such an (i_{11}, \ldots, i_{nn}) exists!
 - Whether it can be found efficiently is another matter.

- Once (i_{11}, \ldots, i_{nn}) is available, the algorithm can be made deterministic.
 - Is it an algorithm for bipartite perfect matching?b

aThanks to a lively class discussion on November 24, 2004.

bWe have one algorithm for each n — unless there is an algorithm to generate such (i_{11}, \ldots, i_{nn}) for all n. Contributed by Mr. Han-Ting Chen (R10922073) on December 9, 2021.
Randomization vs. Nondeterminisma

- What are the differences between randomized algorithms and nondeterministic algorithms?
- Think of a randomized algorithm as a nondeterministic one but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.
Monte Carlo Algorithmsa

- The randomized bipartite perfect matching algorithm is called a \textbf{Monte Carlo algorithm} in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no \textit{false positives}; no \textit{type I errors}).
 - If the algorithm answers in the negative, then it may make an error (\textit{false negatives}; \textit{type II errors}).

* And the error probability must be small.

aMetropolis & Ulam (1949).
Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability \(\leq 0.5 \).\(^a\)

- Again, this probability refers to\(^b\)

\[
\text{prob[algorithm answers “no” | } G \text{ has a perfect matching]}
\]

not

\[
\text{prob[} G \text{ has a perfect matching | algorithm answers “no” }].
\]

\(^a\)Equivalently, among the coin flip sequences, at most half of them lead to the wrong answer.

\(^b\)In general, \(\text{prob[algorithm answers “no” | input is a yes instance]}.\)
Monte Carlo Algorithms (concluded)

• This probability 0.5 is not over the space of all graphs or determinants, but over the algorithm’s own coin flips.
 – It holds for any bipartite graph.

• In contrast, to calculate

\[\text{prob}[G \text{ has a perfect matching} | \text{algorithm answers “no”}] \]

we will need the distribution of \(G \).

• But it is an empirical statement that is very hard to verify.
The Markov Inequalitya

Lemma 67 Let x be a random variable taking nonnegative integer values. Then for any $k > 0$,

$$\text{prob}[x \geq kE[x]] \leq 1/k.$$

- Let p_i denote the probability that $x = i$.

\[
E[x] = \sum_i ip_i = \sum_{i < kE[x]} ip_i + \sum_{i \geq kE[x]} ip_i \\
\geq \sum_{i \geq kE[x]} ip_i \geq kE[x] \sum_{i \geq kE[x]} p_i \\
\geq kE[x] \times \text{prob}[x \geq kE[x]].
\]

aAndrei Andreyevich Markov (1856–1922).
Andrei Andreyevich Markov (1856–1922)
FSAT for k-SAT Formulas (p. 519)

- Let $\phi(x_1, x_2, \ldots, x_n)$ be a k-SAT formula.

- If ϕ is satisfiable, then return a satisfying truth assignment.

- Otherwise, return “no.”

- We next propose a randomized algorithm for this problem.
A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T;
2: for $i = 1, 2, \ldots, r$ do
3: if $T \models \phi$ then
4: return “ϕ is satisfiable with T”;
5: else
6: Let c be an unsatisfied clause in ϕ under T; \{All of its literals are false under T.\}
7: Pick any x of these literals at random;
8: Modify T to make x true;
9: end if
10: end for
11: return “ϕ is unsatisfiable”;
3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will answer “unsatisfiable.”

- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333 \cdots + \epsilon)^n)$ time with $r = 3n$, much better than $O(2^n)$.

- We will show immediately that it works well for 2SAT.

- The state of the art as of 2014 is expected $O(1.30704^n)$ time for 3SAT and expected $O(1.46899^n)$ time for 4SAT.

a Use this setting per run of the algorithm.

b Schöning (1999). Makino, Tamaki, & Yamamoto (2011) improve the bound to deterministic $O(1.3303^n)$.

c Hertli (2014).
Random Walk Works for 2SATa

Theorem 68 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in i values.
 - Their Hamming distance is i.
- Recall T is arbitrary.

aPapadimitriou (1991).
The Proof

• Let $t(i)$ denote the expected number of repetitions of the flipping step\(^a\) until a satisfying truth assignment is found.

• It can be shown that $t(i)$ is finite.

• $t(0) = 0$ because it means that $T = \hat{T}$ and hence $T \models \phi$.

• If $T \neq \hat{T}$ or any other satisfying truth assignment, then we need to flip the coin at least once.

• We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.

• At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.

\(^a\)That is, Statement 7.
The Proof (continued)

• So we have at least a 50% chance of moving closer to \hat{T}.

• Thus

$$t(i) \leq \frac{t(i - 1) + t(i + 1)}{2} + 1$$

for $0 < i < n$.

 – Inequality is used because, for example, T may differ from \hat{T} in both literals.

• It must also hold that

$$t(n) \leq t(n - 1) + 1$$

because at $i = n$, we can only decrease i.
The Proof (continued)

• Now, put the necessary relations together:

\[
\begin{align*}
t(0) &= 0, \\
t(i) &\leq \frac{t(i-1) + t(i+1)}{2} + 1, \quad 0 < i < n, \\
t(n) &\leq t(n-1) + 1.
\end{align*}
\]

• Technically, this is a one-dimensional random walk with an absorbing barrier at \(i = 0\) and a reflecting barrier at \(i = n\) (if we replace “\(\leq\)” with “\(=\)”).\(^a\)

\(^a\)The proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.
The Proof (continued)

• Add up the relations for
 \[2t(1), 2t(2), 2t(3), \ldots, 2t(n - 1), t(n) \] to obtain\(^a\)

 \[
 2t(1) + 2t(2) + \cdots + 2t(n - 1) + t(n) \\
 \leq t(0) + t(1) + 2t(2) + \cdots + 2t(n - 2) + 2t(n - 1) + t(n) \\
 + 2(n - 1) + 1.
 \]

• Simplify it to yield

 \[t(1) \leq 2n - 1. \] (14)

\(^a\)Adding up the relations for \(t(1), t(2), t(3), \ldots, t(n - 1)\) will also work, thanks to Mr. Yen-Wu Ti (D91922010).
The Proof (continued)

• Add up the relations for $2t(2), 2t(3), \ldots, 2t(n - 1), t(n)$ to obtain

$$2t(2) + \cdots + 2t(n - 1) + t(n) \leq t(1) + t(2) + 2t(3) + \cdots + 2t(n - 2) + 2t(n - 1) + t(n) + 2(n - 2) + 1.$$

• Simplify it to yield

$$t(2) \leq t(1) + 2n - 3 \leq 2n - 1 + 2n - 3 = 4n - 4$$

by Eq. (14) on p. 564.
The Proof (continued)

• Continuing the process, we shall obtain

\[t(i) \leq 2in - i^2. \]

• The worst upper bound happens when \(i = n \), in which case

\[t(n) \leq n^2. \]

• We conclude that

\[t(i) \leq t(n) \leq n^2 \]

for \(0 \leq i \leq n. \)

\(^a\)See also Feller (1968).
The Proof (concluded)

• So the expected number of steps is at most n^2.

• The algorithm picks $r = 2n^2$.

• Apply the Markov inequality (p. 555) with $k = 2$ to yield the desired probability of 0.5.

• The proof does not yield a polynomial bound for 3SAT.\(^a\)

\(^a\)Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.
Boosting the Performance

- We can pick $r = 2mn^2$ to have an error probability of
 \[\leq \frac{1}{2m} \]
 by Markov’s inequality.

- Alternatively, with the same running time, we can run the “$r = 2n^2$” algorithm m times.

- The error probability is now reduced to
 \[\leq 2^{-m}. \]
Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k | N$ for $k = 2, 3, \ldots, \sqrt{N}$.
- But it runs in $\Omega(2^{(\log_2 N)/2})$ steps.
- COMPOSITENESS asks if a number is composite.
The Fermat Test for Primality

Fermat’s “little” theorem (p. 505) suggests the following primality test for any given number N:

1. Pick a number a randomly from $\{1, 2, \ldots, N - 1\}$;
2. if $a^{N-1} \not\equiv 1 \mod N$ then
3. return “N is composite”;
4. else
5. return “N is (probably) a prime”;
6. end if
The Fermat Test for Primality (continued)

- **Carmichael numbers** are composite numbers that will pass the Fermat test for all \(a \in \{1, 2, \ldots, N - 1\} \).\(^a\)
 - The Fermat test will return “\(N \) is a prime” for all Carmichael numbers \(N \).

- If there are finitely many Carmichael numbers, store them for matches before running the Fermat test.

- Unfortunately, there are infinitely many such numbers.\(^b\)
 - The number of Carmichael numbers less than \(N \) exceeds \(N^{2/7} \) for \(N \) large enough.

\(^a\)Carmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!

\(^b\)Alford, Granville, & Pomerance (1992).
The Fermat Test for Primality (concluded)

- The Fermat test will fail all of them.
- So the Fermat test is an *incorrect* algorithm for PRIMES.
- Even suppose N is not a Carmichael number but remains composite.
- We need many $a \in \{1, 2, \ldots, N - 1\}$ such that $a^{N-1} \not\equiv 1 \mod N$.
- Otherwise, the correct answer will come only with a vanishing probability (say $1/N$).\(^a\)

\(^a\)Contributed by Mr. Vincent Hwang (R10922138) on December 9, 2021.