Theory of Computation

Midterm Examination on December 2, 2021
Fall Semester, 2021

Problem 1 (20 points) It is well-known that 3SAT is NP-complete. 1-IN-3 SAT asks if each clause contains exactly one true literal in a truth assignment. Prove that 1-IN-3 SAT is NP-Complete.

Proof: First, 1-IN-k SAT is in NP because a random guess of truth assignment ϕ can be verified in polynomial time. We then reduce 3SAT to $1-\mathrm{IN}-\mathrm{K}$ SAT as follows. For each clause $p \vee p^{\prime} \vee p^{\prime \prime}$, create three clauses $\neg p \vee a \vee b, p^{\prime} \vee b \vee c$, and $\neg p^{\prime \prime} \vee c \vee d$. Call this new instance ϕ^{\prime} as the input of 1-IN-3 SAT. Clearly, ϕ is satisfiable if and only if ϕ^{\prime} is 1 -in- 3 satisfiable. So $1-\mathrm{IN}-3$ SAT is NP-complete.

Problem 2 (20 points) Given a graph $G(V, E)$ with a positive integer K, 2CLIQue asks if there are two disjoint sets $C_{1}, C_{2} \subseteq V$, each with exact K nodes, such that both are cliques. It is clear that 2Clique is in NP. Prove that 2Clique is NPcomplete.

Proof: We only need to show that 2Clique is NP-hard by reducing clique to 2clique. The reduction can be done by adding a complete graph (i.e., clique) of size K together with the input G, called G^{\prime}. Clearly, G has a clique if and only if G^{\prime} has two disjoint cliques. The claim holds.

Problem 3 (20 points) A cut in an undirected graph $G=(V, E)$ is a partition of the nodes into two nonempty sets S and $V-S$. max bisection asks if there is a cut so that $|S|=|V-S|$. Prove that max bisection is NP-complete by completing the argument in the lecture notes.

Proof: See pp. 413-414 of the slides.

Problem 4 (20 points) Edge Covering asks if there exists a set of edges C such that each vertex in G is incident with at least one edge in C. Prove that edge covering is NP-complete.

Proof: We first show that edge covering is in NP: guess a set of edges C and then check if C covers all vertices. It can be done in polynomial time. We proceed to reduce independent set to edge covering. On the input graph $G(V, E)$ with the vertex set S, C collects all adjacency edges of all vertices in S. This reduction can be done in polynomial time. Clearly, S is an independent set of G if and only if C is an edge cover of G. Hence edge covering is NP-hard.

Problem 5 (20 points) IP asks whether a system of linear inequalities with integer coefficients has an integer solution. Reduce 3sat to IP to show that IP is NP-hard.

Proof: The reduction can be done as follows. Add $0 \leq x_{i} \leq 1$ for each boolean variable x_{i} in the 3sat formula ϕ. For each clause $\alpha \vee \beta \vee \gamma$, create the inequality $x_{\alpha}+x_{\beta}+x_{\gamma} \geq 1$, where a boolean variable x_{i} is mapped to x_{i} and a negated boolean variable $\neg x_{i}$ is mapped to ($1-x_{i}$). Clearly, ϕ is satisfiable if and only if the resulting system of linear inequalities has an integer solution.

