INTEGER PROGRAMMING (IP)

e 1P asks whether a system of linear inequalities with

integer coefficients has an integer solution.

e In contrast, LINEAR PROGRAMMING (LP) asks whether a
system of linear inequalities with integer coeflicients has

a rational solution.

— LP is solvable in polynomial time.?

2Khachiyan (1979).
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IP Is NP-Complete®

e SET COVERING can be expressed by the inequalities
Az > T, > .io1%i < B,0<z; <1, where

— x; = 1 if and only if S; is in the cover.

A is the matrix whose columns are the bit vectors of
the sets 51, 59, .. ..

1 is the vector of 1s.
The operations in Ax are standard matrix operations.

Item 7 is covered if the sum of the ith row of Ax is at
least 1.

aKarp (1972); Borosh & Treybig (1976); Papadimitriou (1981).
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1P Is NP-Complete (concluded)

This shows 1P is NP-hard.

Many NP-complete problems can be expressed as an 1P

problem.

To show that 1P € NP is nontrivial.

— It will not work if we simply guess x; unless this guess
provabably needs only a polynomial number of bits.?

e 1P with a fixed number of variables is in P.P

@Thanks to a lively class discussion on November 25, 2021.
PLenstra (1983).
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Christos Papadimitriou (1949-)
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Easier or Harder?®
e Adding restrictions on the allowable problem instances
will not make a problem harder.

— We are now solving a subset of problem instances or

special cases.

The INDEPENDENT SET proof (p. 383) and the
KNAPSACK proof (p. 442): equally hard.

CIRCUIT VALUE to MONOTONE CIRCUIT VALUE
(p. 332): equally hard.

SAT to 2SAT (p. 364): easier.

@Thanks to a lively class discussion on October 29, 2003.
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Easier or Harder? (concluded)

e Adding restrictions on the allowable solutions (the
solution space) may make a problem harder, equally
hard, or easier.

e [t is problem dependent.

MIN CUT to BISECTION WIDTH (p. 416): harder.
LP to IP (p. 461): harder.

SAT to NAESAT (p. 376) and MAX CUT to MAX
BISECTION (p. 414): equally hard.

3-COLORING to 2-COLORING (p. 426): easier.
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coNP and Function Problems
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I frankly confess

I do not know what he means.

— St. Augustin (354-430),
City of God (426)
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coNP

By definition, coNP is the class of problems whose

complement is in NP.

— L € coNP if and only if L € NP.

NP problems have succinct certificates.?

coNP is therefore the class of problems that have

succinct disqualifications:”

— A “no” instance possesses a short proof of its being a

“no” instance.

— Only “no” instances have such proofs.

2Recall Proposition 41 (p. 346).
PTo be proved in Proposition 54 (p. 478).
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coNP (continued)

e Suppose L is a coNP problem.
e There exists a nondeterministic polynomial-time
algorithm M such that:

— If x € L, then M (x) = “yes” for all computation
paths.

— If x € L, then M (x) = “no” for some computation

path.

o If we swap “yes” and “no” in M, the new algorithm
decides L € NP in the classic sense (p. 115).
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coNP (continued)

e So there are 3 major approaches to proving L € coNP.

1. Prove L € NP,
— Especially when you already knew L € NP.

. Prove that only “no” instances possess short proofs
(for their not being in L).?

3. Write an algorithm for it directly.

2Recall Proposition 41 (p. 346).
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coNP (concluded)
e Clearly P C coNP.

e [t is not known if
P = NP N coNP.
— Contrast this with

R = RE N coRE

(see p. 164).
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Some coNP Problems

e SAT COMPLEMENT & coNP.

— SAT COMPLEMENT is the complement of SAT.?

— Or, the disqualification is a truth assignment that

satisfies it.

e HAMILTONIAN PATH COMPLEMENT &€ coNP.

— HAMILTONIAN PATH COMPLEMENT is the complement
of HAMILTONIAN PATH.

— Or, the disqualification is a Hamiltonian path.

@Recall p. 209.
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Some coNP Problems (concluded)

e VALIDITY € coNP.
— If ¢ is not valid, it can be disqualified very succinctly:
a truth assignment that does not satisty it.
e TSP COMPLEMENT (D) € coNP.

— TSP COMPLEMENT (D) asks if the optimal tour has a

total distance of > B, where B is an input.?

— The disqualification is a tour with a distance < B.

aDefined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
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A Nondeterministic Algorithm for SAT COMPLEMENT
(See also p. 120)

¢ is a boolean formula with n variables.
for:=1,2,...,ndo
Guess z; € {0,1}; {Nondeterministic choice.}

end for

{Verification: }
if ¢(x1,22,...,2,) =0 then

44 29

yes™ |
else

CCnO77 ;

end if

1:
2:
3:
4:
5:
6:
T
8:
9:
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Analysis

e The algorithm decides language { ¢ : ¢ is unsatisfiable }.

— The computation tree is a complete binary tree of
depth n.

Every computation path corresponds to a particular
truth assignment out of 2.

¢ is unsatisfiable if and only if every truth
assignment falsifies ¢.

But every truth assignment falsifies ¢ if and only if

every computation path results in “yes.”
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An Alternative Characterization of coNP

Proposition 54 Let L C X* be a language. Then L € coNP
of and only if there is a polynomially decidable and

polynomially balanced relation R such that

L={x:Yy(z,y) € R}.

(As on p. 345, we assume |y| < |z |¥ for some k.)

e L={x:3y(x,y) € "R}2

e Because —R remains polynomially balanced, L € NP by
Proposition 41 (p. 346).

e Hence L € coNP by definition.

2So a certificate y for L is a disqualification for L, and vice versa.
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coNP-Completeness

Proposition 55 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the < part is symmetric)
e Let L’ be any coNP language.
e Hence L’ € NP.
Let R be the reduction from L’ to L.
So z € L' if and only if R(z) € L.

By the law of transposition, = ¢ L’ if and only if
R(z) € L.
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coNP Completeness (concluded)

So x € L' if and only if R(z) € L.

The same R is a reduction from L’ to L.
This shows L is coNP-hard.

But L € coNP.

This shows L is coNP-complete.
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Some coNP-Complete Problems

SAT COMPLEMENT is coNP-complete.
HAMILTONIAN PATH COMPLEMENT is coNP-complete.
TSP COMPLEMENT (D) is coNP-complete.

VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.
— ¢ € VALIDITY if and only if —¢ € SAT COMPLEMENT.

— The reduction from SAT COMPLEMENT to VALIDITY
is hence easy: R(¢) = —¢.
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Possible Relations between P, NP, coNP?

1. P = NP = coNP.
2. NP = coNP but P # NP.

3. NP £ coNP and P # NP.

e Furthermore, NP ¢ coNP and coNP ¢ NP.

e This is the current consensus.?

@Thanks to a lively class discussion on November 25, 2021.
PCarl Friedrich Gauss (1777-1855), “I could easily lay down a mul-

titude of such propositions, which one could neither prove nor dispose
of.”
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The Primality Problem

An integer p is prime if p > 1 and all positive numbers

other than 1 and p itself cannot divide it.
PRIMES asks if an integer IV is a prime number.

Dividing N by 2,3,...,VN is not efficient.
— The length of N is only log N, but v N = 20-5leg N

— It is an exponential-time algorithm.

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxena)

The running time is O(log”™> N).

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 483



if n = a® for some a,b > 1 then

return “composite”;
end if
for r=2,3,...,n—1do
if gcd(n,r) > 1 then
return “composite”;
end if
if r is a prime then
Let g be the largest prime factor of r — 1;
if ¢ > 4y/rlogn and n(""1/9 £ 1 mod r then
break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 44/rlogn.}
: fora=1,2,...,2y/rlogn do
if (x —a)” # ("™ —a) mod (" — 1) in Z,[x] then
return “composite”;
end if
: end for

—_ =
N =

: return “prime”; {The only place with “prime” output.}
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The Primality Problem (concluded)

e Later, we will focus on efficient “randomized” algorithms
for PRIMES (used in Mathematica, e.g.).

e NP N coNP is the class of problems that have succinct
certificates and succinct disqualifications.
— Each “yes” instance has a succinct certificate.
— Each “no” instance has a succinct disqualification.

— No instances have both.

e We will see that PRIMES € NP N coNP.

— In fact, PRIMES € P as mentioned earlier.
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Basic Modular Arithmetics®
Let m,n € Z™.
m | n means m divides n; m is n’s divisor.

We call the numbers 0,1,...,n — 1 the residue modulo

n.

The greatest common divisor of m and n is denoted

ged(m, n).

a(Carl Friedrich Gauss.
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Basic Modular Arithmetics (concluded)

e We use

a=b modn
if n|(a—0).
— So 25 = 38 mod 13.

e We use

a=>bmodn

if b is the remainder of a divided by n.

— So 25 =12 mod 13.
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Primitive Roots in Finite Fields

Theorem 56 (Lucas & Lehmer, 1927) * A number
p > 1 1is a prime if and only if there is a number 1 <r <p
such that

1. v~ =1 mod p, and

2. r(P=1/a £ 1 mod p for all prime divisors q of p — 1.

e This r is called a primitive root or generator of p.

e We will prove one direction of the theorem later.”

2Frangois Edouard Anatole Lucas (1842-1891); Derrick Henry

Lehmer (1905-1991).
bSee pp. 499f.
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Derrick Lehmer® (1905-1991)

Inventor of the linear congruential generator in 1951.
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Pratt's Theorem
Theorem 57 (Pratt, 1975) PRIMES € NPN coNP.

e PRIMES € coNP because a succinct disqualification is a

proper divisor.

— A proper divisor of a number means it is not a prime.

e Now suppose p is a prime.

e p’s certificate includes the r in Theorem 56 (p. 488).

— There may be multiple choices for r.
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The Proof (continued)

Use recursive doubling to check if r?~! =1 mod p in

time polynomial in the length of the input, log, p.

— 7,72, r%, ... mod p, a total of ~ log, p steps.

We also need all prime divisors of p — 1: q1,qo, ..., qk.

— Whether 7, q1,...,q. are easy to find is irrelevant.
Checking r(P~1/% = 1 mod p is also easy.

Checking ¢, go, ..., qx are all the divisors of p — 1 is easy.
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The Proof (concluded)

We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:

C(p) = (r;q1,C(q1),42,C(q2),- -, qr, Clar)).  (5)

We next prove that C(p) is succinct.

As a result, C(p) can be checked in polynomial time.
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A Certificate for 232

Note that 5 is a primitive root modulo 23 and
23 -1=22=2x11.p

So
C(23) = (5;2,C(2),11,C(11)).

Note that 2 is a primitive root modulo 11 and
11—-1=10=2x 5.

So

C(11) = (2;2,C(2),5,C(5)).

@Thanks to a lively discussion on April 24, 2008.
POther primitive roots are 7,10, 11,14, 15,17, 19, 20, 21.
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A Certificate for 23 (concluded)

e Note that 2 is a primitive root modulo 5 and
5h—1=4 =22

e So

C() = (2;2,0(2)).
e In summary,
C(23) = (5;2,C(2), 11, (2:2, C(2), 5, (2: 2, C(2)))).
— In Mathematica, PrimeQCertificate[23] yields

123,5,{2,{11,2,{2,{5,2,{2}}}}}}
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The Succinctness of the Certificate

Lemma 58 The length of C(p) is at most quadratic at
51og3 p.

e This claim holds when p = 2 or p = 3.

e In general, p — 1 has £ < log, p prime divisors

g1 = 2,92, .,qk-

— Reason:

k
2" SH%SP—L
i—1

e Note also that, as ¢; = 2,
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The Proof (continued)

C'(p) requires:

2 parentheses;
2k < 2log, p separators (at most 2log, p bits);
r (at most log, p bits);
g1 = 2 and its certificate 1 (at most 5 bits);
q2, - .., qr (at most 2log, p bits);?
C(q2),---,C(qr)-

aWhy?
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The Proof (concluded)

e ('(p) is succinct because, by induction,

k
[C(p)| < 5logyp+5+5) logsq
1=2

k
5log, p+5+5 (Z log, qi>

2

1=2

—1
5log, p + 5 + 5log) pT by inequality (6)

5logy p + 5+ 5[ (logy p) — 117
5logs p+ 10 — 5log, p < 5logs p
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Turning the Proof into an Algorithm?

How to turn the proof into a nondeterministic
polynomial-time algorithm?

First, guess a log, p-bit number r.

Then guess up to log, p numbers q1, g2, ..., qr each
containing at most log, p bits.

Then recursively do the same thing for each of the ¢; to
form a certificate (5) on p. 492.

Finally check if the two conditions of Theorem 56 (p.
488) hold throughout the tree.

2Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on
November 24, 2015.
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Euler's® Totient or Phi Function

Let
¢(n)={m:1<m<n,ged(m,n) =1}

be the set of all positive integers less than n that are

prime to n.”

~ ®(12) = {1,5,7,11}.

Define Euler’s function of n to be ¢(n) = | ®(n)|.

¢(p) = p — 1 for prime p, and ¢(1) = 1 by convention.

Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).
bZ* is an alternative notation.
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é(n)
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Leonhard Euler (1707-1783)

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 501



Three Properties of Euler's Function®

The inclusion-exclusion principle® can be used to prove the
following.

Lemma 59 Ifn = pi'p5®---p,* is the prime factorization
of n, then

qb(n)nﬁ(l—p%).

e For example, if n = pq, where p and ¢ are distinct
primes, then

Cb("):Z?CI(l—l) (1—1) =pg—p—q+1.

p q

aSee p. 224 of the textbook.
PConsult any textbooks on discrete mathematics.
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Three Properties of Euler's Function (concluded)

Corollary 60 ¢(mn) = ¢(m) ¢(n) if gcd(m,n) = 1.

Lemma 61 (Gauss) ), é(m)=n.
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The Chinese Remainder Theorem

e Let n =nyins---ng, where n; are pairwise relatively

prime.

e For any integers ai,as,...,ax, the set of simultaneous

equations

a1 mod nq,

as mod ngy,

x ar mod ny,

has a unique solution modulo n for the unknown =.
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Fermat's “Little” Theorem?

Lemma 62 For all0 < a < p, a?~! =1 mod p.

e Recall ®(p)={1,2,...,p—1}.
e Consider a®(p) = {am mod p: m € ®(p) }.

— a®(p) C P(p) as a remainder must be between 1 and
p— 1.

— Suppose am = am’ mod p for m > m/, where
m, m’ € ®(p).

— That means a(m —m’) = 0 mod p, and p divides a or

m — m/, which is impossible.

2Pierre de Fermat (1601-1665).
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The Proof (concluded)
Multiply all the numbers in ®(p) to yield (p — 1)!.
Multiply all the numbers in a®(p) to yield a?~1(p — 1)!.
As a®(p) = ®(p), we have

a? tp—1)'=(p—1)! mod p.

Finally, a?~! = 1 mod p because p J(p — 1)!.
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The Fermat-Euler Theorem?

Corollary 63 For all a € ®(n), a®™ =1 mod n.

e The proof is similar to that of Lemma 62 (p. 505).
e Consider a®(n) ={am modn:m &€ ®(n) }.
e ad(n) =®(n).
— a®(n) C ®(n) as a remainder must be between 0 and
n — 1 and relatively prime to n.
— Suppose am = am’ mod n for m’ < m < n, where
m,m’ € ®(n).
— That means a(m —m') = 0 mod n, and n divides a or
m — m’, which is impossible.

2Proof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-
ber 24, 2004.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 507



The Proof (concluded)?

e Multiply all the numbers in ®(n) to yield | [, cq,) m-

e Multiply all the numbers in a®(n) to yield
agb(n) HmECI)(n) m.
e As a®(n) = ®(n),

H m = q®" H m | mod n.

med(n) med(n)

e Finally, a®(™ =1 mod n because n [ 1Lcam m.

aSome typographical errors corrected by Mr. Jung-Ying Chen
(D95723006) on November 18, 2008.
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An Example

o As12=122x 3

$(12) = 12 x (1-%) (1-%):4.

o In fact, ®(12) = {1,5,7,11}.

e For example,
5% = 625 = 1 mod 12.
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Exponents

e The exponent of m € ®(p) is the least k € ZT such that
m” =1 mod p.

e Every residue s € ®(p) has an exponent.

— 1,s,5°%, 5%, ... eventually repeats itself modulo p, say

s = s7 mod p, i < j, which means s7~* = 1 mod p.

o If the exponent of m is k and m® = 1 mod p, then k | /.

— Otherwise, £ = gk + a for 0 < a < k, and

m’ = ma+te = m? =1 mod p, a contradiction.

Lemma 64 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 510



Exponents and Primitive Roots

From Fermat’s “little” theorem (p. 505), all exponents
divide p — 1.

A primitive root of p is thus a number with exponent
p— 1.

Let R(k) denote the total number of residues in
d(p)=41,2,...,p— 1} that have exponent k.

We already knew that R(k) =0 for & f(p — 1).

As every number has an exponent,
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Size of R(k)

Any a € ®(p) of exponent k satisfies ¥ = 1 mod p.

By Lemma 64 (p. 510) there are at most k residues of
exponent k, i.e., R(k) < k.

Let s be a residue of exponent k.

1,s,s2,...,s" 1 are distinct modulo p.

— Otherwise, s* = s/ mod p with i < j.
— Then s7* = 1 mod p with j — i < k, a contradiction.

As all these k distinct numbers satisfy 2¥ = 1 mod p,
they comprise all the solutions of ¥ = 1 mod p.
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Size of R(k) (continued)
But do all of them have exponent k (i.e., R(k) = k)7
And if not (i.e., R(k) < k), how many of them do?
Pick s¢, where ¢ < k.
Suppose ¢ ¢ ®(k) with ged(l, k) =d > 1.
Then

(sDHF/4 = (s*)¢/4 = 1 mod p.

Therefore, s* has exponent at most k/d < k.
So s* has exponent k only if £ € ®(k).
We conclude that

R(k) < ¢(k).
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Size of R(k) (continued)

e Because all p — 1 residues have an exponent,

p—1= 3 REK)< Y éh)=p-1

k|(p—1) k|(p—1)

by Lemma 61 (p. 503) and Eq. (7) (p. 511).

e Hence

¢(k), when k[ (p—1),

0, otherwise.
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Size of R(k) (concluded)

e Incidentally, we have shown that
g°, where £ € ®(k),
are all the numbers with exponent k if g has exponent k.
e As R(p—1) =¢(p—1) > 0, p has primitive roots.

e This proves one direction of Theorem 56 (p. 488).
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A Few Calculations
Let p = 13.
From p. 507 ¢(p — 1) = 4.
Hence R(12) = 4.

Indeed, there are 4 primitive roots of p.

As
¢(p—1)={1,5,7,11},

the primitive roots are

g, 9°,9", 9",

where ¢ is any primitive root.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516



