MIN CUT and MAX CUT

A cut in an undirected graph G = (V, E) is a partition

of the nodes into two nonempty sets S and V — S.

The size of a cut (S,V — 5) is the number of edges
between S and V' — §.

MIN CUT asks for the minimum cut size.
MIN CUT € P by the maxflow algorithm.?

MAX CUT asks if there is a cut of size at least K.

— K is part of the input.

2Ford & Fulkerson (1962); Orlin (2012) improves the running time to
O(VI-1E].
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A Cut of Size 4

!
!
!
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MIN CUT and MAX CUT (concluded)

e MAX CUT has applications in circuit layout.

— The minimum area of a VLSI layout of a graph is not

less than the square of its maximum cut size.?

2Raspaud, Sykora, & Vrto (1995); Mak & Wong (2000).
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MAX CUT Is NP-Complete®

We will reduce NAESAT to MAX CUT.

Given a 3SAT formula ¢ with m clauses, we shall
construct a graph G = (V, F) and a goal K.

Furthermore, there is a cut of size at least K if and only
if ¢ is NAE-satisfiable.
Our graph will have multiple edges between two nodes.

— Each such edge contributes one to the cut if its nodes
are separated.

aKarp (1972); Garey, Johnson, & Stockmeyer (1976). MAX CUT re-
mains NP-complete even for graphs with maximum degree 3 (Makedon,
Papadimitriou, & Sudborough, 1985).
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The Proof

Suppose ¢’s m clauses are C1,Cs, ..., Cy,.

The boolean variables are x1, 2, ..., x,.

GG has 2n nodes: z1,xs2,...,T,, X1, T2, ..., L.

Each clause with 3 distinct literals makes a triangle in G.

For each clause with two identical literals, there are two

parallel edges between the two distinct literals.

— Call it a degenerate triangle.
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The Proof (continued)

Assume ¢ has no clauses with only one distinct literal
(why?).

Ignore clauses containing two opposite literals x; and

—z; (why?).

For each variable z;, add n; copies of edge | x;, —x; |,

where n; is the number of occurrences of x; and —x; in ¢.

Note that

mn
g n; = Im.
i=1

— The summation counts the number of literals in ¢.
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The Proof (continued)

Set K = bm.
Suppose there is a cut (5, V — 9) of size 5m or more.

A clause (a triangle, i.e.) contributes at most 2 to a cut

however you split it.?

Suppose some x; and —x; are on the same side of the
cut.

They together contribute at most 2n; edges to the cut.
— They appear in at most n; different clauses.

— A clause contributes at most 2 to a cut.

aSee p. 404.
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The Proof (continued)

Either x; or —x; contributes at most n; to the cut by the

pigeonhole principle.

Changing the side of that literal does not decrease the
size of the cut.

Hence we assume variables are separated from their

negations.

The total number of edges in the cut that join opposite

. . mn
literals x; and —x; is > . n;.

But we knew > | n; = 3m.
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The Proof (concluded)

The remaining K — 3m > 2m edges in the cut must
come from the m triangles that correspond to clauses.

Each can contribute at most 2 to the cut.
So all are split.

A split clause means at least one of its literals is true

and at least one false.

The other direction is left as an exercise.
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This Cut Does Not Meet the Goal K =5 x 3 =15

o (x1 VoV A(xy V-3V -x3) A (-2 VT Vas).

e The cut size is 13 < 15.
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This Cut Meets the Goal K =5 x 3 =15

]
N

X3

o (x1 VoV A(xyV-x3Vx3) A (-2 VT Vas).

e The cut size is now 15.
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Remarks

We had proved that MAX cUT is NP-complete for
multigraphs.

How about proving the same thing for simple graphs??

How to modify the proof to reduce 4SAT to MAX CcUT?P

All NP-complete problems are mutually reducible by
definition.®

— So they are equally hard in this sense.?

2Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.

PContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
©Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

dContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
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MAX BISECTION

e MAX CUT becomes MAX BISECTION if we require that

S| =V -S|

e It has many applications, especially in VLSI layout.
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MAX BISECTION Is NP-Complete

We shall reduce the more general MAX CUT to MAX
BISECTION.

Add | V| = n isolated nodes to G to yield G’.
G’ has 2n nodes.

G"’s goal K is identical to G’s

— As the new nodes have no edges, they contribute 0 to
the cut.

This completes the reduction.
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The Proof (concluded)

e A cut (S,V —§) can be made into a bisection by

allocating the new nodes between S and V — S.

e Hence each cut of G can be made a cut of G’ of the

same size, and vice versa.
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BISECTION WIDTH

BISECTION WIDTH is like MAX BISECTION except that it
asks if there is a bisection of size at most K (sort of MIN
BISECTION).

Unlike MIN CUT, BISECTION WIDTH is NP-complete.
We reduce MAX BISECTION to BISECTION WIDTH.

Given a graph G = (V, E), where |V | is even, we

generate the complement? of G.

e Given a goal of K, we generate a goal of n? — K.P

aRecall p. 398.
b1V | = 2n.
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The Proof (concluded)

e To show the reduction works, simply notice the following
easily verifiable claims.
— A graph G = (V, E), where | V' | = 2n, has a bisection
of size K if and only if the complement of G has a

bisection of size n? — K.

— So GG has a bisection of size > K if and only if its

complement has a bisection of size < n? — K.
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HAMILTONIAN PATH Is NP-Complete®

Theorem 48 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).
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A Hamiltonian Path at IKEA, Covina, California?

"
¢ BECROOMS

’
S '. KITCHENS & DINING

L}

L]

]

| ]

@ CHILDREN'S IKEA
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Random HAMILTONIAN CYCLE

Consider a random graph where each pair of nodes are

connected by an edge independently with probability
1/2.

Then it contains a Hamiltonian cycle with probability
1—o0(1).2

2Frieze & Reed (1998).
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TSP (D) Is NP-Complete

Corollary 49 Tsp (D) is NP-complete.
e We will reduce HAMILTONIAN PATH to TSP (D).
e Consider a graph G with n nodes.

e Create a weighted complete graph G’ with the same
nodes as G.

Set dij =1lon G’ 1f[’l,,]] € G and dij =2 on G’ if
14,7 € G.
— Note that G’ is a complete graph.

Set the budget B =n + 1.

This completes the reduction.
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TSP (D) Is NP-Complete (continued)

Suppose G’ has a tour® of distance at most n + 1.

Then that tour on G’ must contain at most one edge
with weight 2.

If a tour on G’ contains one edge with weight 2, remove

that edge to arrive at a Hamiltonian path for G.
Suppose a tour on G’ contains no edge with weight 2.

e Remove any edge to arrive at a Hamiltonian path for G.

A tour is a cycle, not a path.
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TSP (D) Is NP-Complete (concluded)

On the other hand, suppose G has a Hamiltonian path.

There is a tour on G’ containing at most one edge with

weight 2.

— Start with a Hamiltonian path.

— Insert the edge connecting the beginning and ending
nodes to yield a tour.

The total cost is then at most (n —1)+2=n+1= B.

We conclude that there is a tour of length B or less on

G’ if and only if G has a Hamiltonian path.
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Random TSP

e Suppose each distance d;; is picked uniformly and

independently from the interval [0, 1].

e Then the total distance of the shortest tour has a mean

value of B4/n for some positive 3.2

e In fact, the total distance of the shortest tour deviates

from the mean by more than ¢ with probability at most
o—t2/(4n) b

2Beardwood, Halton, & Hammersley (1959).
PRhee & Talagrand (1987); Dubhashi & Panconesi (2012).
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Graph Coloring

k-COLORING: Can the nodes of a graph be colored with
< k colors such that no two adjacent nodes have the

same color??

2-COLORING is in P (why?).

But 3-COLORING is NP-complete (see next page).
k-COLORING is NP-complete for k > 3 (why?).

EXACT-k-COLORING asks if the nodes of a graph can be

colored using ezactly k colors.

e It remains NP-complete for k > 3 (why?).

2k is not part of the input; k is part of the problem statement.
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3-COLORING Is NP-Complete®

We will reduce NAESAT to 3-COLORING.

We are given a set of clauses C1,Cs, ..., C,, each with 3
literals.

The boolean variables are x1,xa,...,Z,.

We now construct a graph that can be colored with
colors {0,1,2} if and only if all the clauses can be
NAE-satisfied.

aKarp (1972).
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The Proof (continued)

e Every variable z; is involved in a triangle [a, z;, —z; |
with a common node a.
e Each clause C; = (¢;1 V ¢;2 V ¢;3) is also represented by a
triangle
[Ci1,Ci2, CiS]-
— Node ¢;; and a node in an a-triangle | a, zj, ~zy |

with the same label represent distinct nodes.

e There is an edge between literal ¢;; in the a-triangle and
the node representing the jth literal of C;.?

#Alternative proof: There is an edge between —c;; and the node
that represents the jth literal of C;. Contributed by Mr. Ren-Shuo Liu
(D98922016) on October 27, 2009.
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Construction for --- A (z1 V —xo V —x3) A - -

a 2
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The Proof (continued)

Suppose the graph is 3-colorable.

e Assume without loss of generality that node a takes the
color 2.

e A triangle must use up all 3 colors.

e As a result, one of x; and —x; must take the color 0 and
the other 1.
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The Proof (continued)

e Treat 1 as true and 0 as false.?
— We are dealing with the a-triangles here, not the

clause triangles yet.

e The resulting truth assignment is clearly contradiction

free.

e As each clause triangle contains one color 1 and one
color 0, the clauses are NAE-satisfied.
— Here, treat 0 as true and 1 as false.

— Ignore 2’s truth value as it is irrelevant now.

@The opposite also works.
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The Proof (continued)

Suppose the clauses are NAE-satisfiable.

e For each a-triangle:
— Color node a with color 2.

— Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).
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The Proof (continued)

e For each clause triangle:
— Pick any two literals with opposite truth values.?

— Color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

— Color the remaining node with color 2 regardless of

its truth value.

2Break ties arbitrarily.
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The Proof (concluded)

e The coloring is legitimate.

— If literal w of a clause triangle has color 2, then its

color will never be an issue.

— If literal w of a clause triangle has color 1, then it
must be connected up to literal w with color O.

— If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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More on 3-COLORING and the Chromatic Number
e 3-COLORING remains NP-complete for planar graphs.?
e Assume G is 3-colorable.

e There is a classic algorithm that finds a 3-coloring in

time O(3"/3) = 1.44227.b

e It can be improved to O(1.3289").¢

2Garey, Johnson, & Stockmeyer (1976); Dailey (1980).

PLawler (1976).
“Beigel & Eppstein (2000).
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More on 3-COLORING and the Chromatic Number
(concluded)

The chromatic number x(G) is the smallest number

of colors needed to color a graph G.

There is an algorithm to find x(G) in time
O((4/3)"/3) = 2.4422™ »

It can be improved to O((4/3 + 3%/3/4)") = 0(2.4150™)P
and 27n0) ¢

e Computing x(G) cannot be easier than 3-COLORING.4

aLawler (1976).

PEppstein (2003).

“Koivisto (2006).

dContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
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TRIPARTITE MATCHING® (3DM)

e We are given three sets B, G, and H, each containing n
elements.

e Let T'C B x G x H be a ternary relation.

e TRIPARTITE MATCHING asks if there is a set of n triples

in I, none of which has a component in common.
— Each element in B is matched to a different element

in G and different element in H.

Theorem 50 (Karp, 1972) TRIPARTITE MATCHING is
NP-complete.

2Princess Diana (November 20, 1995), “There were three of us in this
marriage, so it was a bit crowded.”
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Related Problems

We are given a family F' = {S51,S55,...,5, } of subsets
of a finite set U and a budget B.

SET COVERING asks if there exists a set of B sets in F

whose union is U.
SET PACKING asks if there are B disjoint sets in F'.

EXACT COVER asks if there are disjoint sets in F' whose

union 1s U.

Assume |U | = 3m for some m € N and | 5; | = 3 for all 4.

EXACT COVER BY 3-SETS (X3C) asks if there are m sets

in F' that are disjoint (so have U as their union).
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 51 (Karp, 1972) SET COVERING, SET
PACKING, EXACT COVER, and X3C are all NP-complete.

e Does SET COVERING remain NP-complete when
|.S; | =378

e SET COVERING is used to prove that the influence
maximization problem in social networks is

NP-complete.”

2Contributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on
September 22, 2015.
PKempe, Kleinberg, & Tardos (2003).
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KNAPSACK
There is a set of n items.
Item ¢ has value v; € ZT and weight w; € Z™T.
We are given K € ZT and W € Z™.

KNAPSACK asks if there exists a subset

IC{1,2,...,n}

such that » .., w; < W and ) .., v; > K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK Is NP-Complete®

e KNAPSACK &€ NP: Guess an I and check the constraints.

e We shall reduce x3cP to KNAPSACK, in which v; = w;
for all 2 and K = W.

e The simplified KNAPSACK now asks if a subset of

V1, V9, ...,U, adds up to exactly K.¢

— Picture yourself as a radio DJ.

aKarp (1972). It can be solved in time O(2"/2) with space O(2"/%)

(Schroeppel & Shamir, 1981; Vyskoc¢, 1987).

PEXACT COVER BY 3-SETS.
“This important problem is called SUBSET SUM or 0-1 KNAPSACK. The

range of our reduction will be a proper subset of SUBSET SUM.
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The Proof (continued)

e The primary differences between the two problems are:*

— Sets vs. numbers.
— Union vs. addition.

e We are given a family F' = {51,S55,...,5, } of size-3
subsets of U ={1,2,...,3m }.

e X3C asks if there are m sets in F' that cover the set U.

— These m subsets are disjoint by necessity.

@Thanks to a lively class discussion on November 16, 2010.
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The Proof (continued)

e Think of a set as a bit vector® in {0,1 }*™™.

— Assume m = 3.
— 110010000 means the set {1,2,5 }.
— 001100010 means the set {3,4,8 }.

e Our goal is
3m

—
11---1.

2 Also called characteristic vector.
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The Proof (continued)

e A bit vector can also be seen as a binary number.

e Set union resembles addition:
001100010
+ 110010000

111110010
which denotes the set {1,2,3,4,5,8}, as desired.
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The Proof (continued)

e Trouble occurs when there is carry:

010000000
+ 010000000
100000000

e This denotes the wrong set {1}, not the correct set {2 }.
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The Proof (continued)

e Or consider
001100010
+ 001110000

011010010

e This denotes the wrong set {2,3,5,8 }, not the correct
set {3,4,5,8}.2

aCorrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.
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The Proof (continued)

e Carry may also lead to a situation where we obtain our
3m

. A . .
solution 11 ---1 with more than m sets in F'.

e For example, with m = 3,

000100010
001110000
101100000
000001101

111111111

e But the correct union result, {1,3,4,5,6,7,8,9 }, is not

an exact cover.
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The Proof (continued)

And it uses 4 sets instead of the required m = 3.2

To fix this problem, we enlarge the base just enough so

that there are no carries.P

Because there are n vectors in total, we change the base
from 2 to n + 1.

Every positive integer N has a unique expression in base
b: There are b-adic digits 0 < d; < b such that

@Thanks to a lively class discussion on November 20, 2002.
PYou cannot simply map U to V because KNAPSACK requires + not V!
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The Proof (continued)

e Set v; to be the integer corresponding to the bit vector?

encoding S;:

023 1x (n+ 1P (basen+1).  (4)
JES;

(base n + 1).

2T'his bit vector contains three 1s.
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The Proof (continued)

e Suppose there is a set I such that

3m

—
» vi=11---1 (basen+1).

el

e Then every position must be contributed by exactly one

v; and | I | =m.

e As a result, every member of U is covered by exactly one
S; with 7 € 1.
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The Proof (continued)

e For example, the case on p. 448 becomes

000100010
001110000
101100000
000001101

102311111
in basen +1 = 6.

e As desired, it no longer meets the goal.
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The Proof (continued)

e Suppose F' admits an exact cover, say { S1,S2,...,5m }

e Then picking I = {1,2,...,m} clearly results in

3m
—N—
v +vo+---+v,=11---1.

e It is important to note that the meaning of addition (+)
is independent of the base.?

— It is just regular addition.

— But the same S; yields different integers v; in Eq. (4)
on p. 450 under different bases.

2Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3,
2004.
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The Proof (concluded)

e On the other hand, suppose there exists an I such that

3m

» wy=11---1

icl
in base n 4+ 1.
e The no-carry property implies that | I | = m and

{SZZEI}

1S an exact cover.
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SUBSET SUM? |Is NP-Complete

e The proof actually proves:
Corollary 52 SUBSET SUM is NP-complete.

e The proof can be slightly revised to reduce EXACT
COVER to SUBSET SUM.

e The proof would not work if you used m + 1 as the

base.P

@Recall p. 442.
bContributed by Mr. Yuchen Wang (R08922157) on November 19,

2020.
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An Example

o Let m=3,U ={1,2,3,4,5,6,7,8,9}, and
{1,3,4},
{2,3,4),
{2,5,6},
{6,7,8},
{7,8,9}).

e Note that n = 5, as there are 5 5;’s.

e So the baseisn+ 1 = 6.
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An Example (continued)

e Our reduction produces

Ix3—1 . R
I7¢ =T11---1g = 2015539,
7=0
1011000004 = 17340484,

0111000004 = 3343681,
0100110004 = 281448,
000001110g = 25819,
0000001115 = 434¢.
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An Example (concluded)

e Note v; + v3 + v5 = K because
101100000
010011000
000000111

111111111

e Indeed,
S1US3USs=491,2,3,4,5,6,7,8,9},

an exact cover by 3-sets.
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BIN PACKING

e We are given N positive integers aq, as,...,an, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned

into B subsets, each of which has total sum at most C.
e Think of packing bags at the check-out counter.

Theorem 53 BIN PACKING s NP-complete.
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BIN PACKING (concluded)

e But suppose aq,as,...,an are randomly distributed

between 0 and 1.

e Let B be the smallest number of unit-capacity bins

capable of holding them.

e Then B can deviate from its average by more than ¢

with probability at most 2e~2¢ /N a

2Rhee & Talagrand (1987); Dubhashi & Panconesi (2012).
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