Reductions and Completeness
It is unworthy of excellent men to lose hours like slaves in the labor of computation.

— Gottfried Wilhelm von Leibniz (1646–1716)

I thought perhaps you might be members of that lowly section of the university known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”
Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if:
 – There is a transformation R which for every problem instance x of B yields a problem instance $R(x)$ of A.\(^a\)
 – The answer to “$R(x) \in A$?” is the same as the answer to “$x \in B$?”
 – R is easy to compute.

• We say problem A is at least as hard as\(^b\) problem B if B reduces to A.

\(^a\)See also p. 156.
\(^b\)Or simply “harder than” for brevity.
Solving problem B by calling the algorithm for problem A once and without further processing its answer.\(^a\)

\(^a\)More general reductions are possible, such as the Turing (1939) reduction and the Cook (1971) reduction.
Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 - If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.\(^a\)
 - So if B is hard to solve, A must be hard, too!

\(^a\)Thanks to a lively class discussion on October 13, 2009.
Commentsa

- Suppose B reduces to A via a transformation R.b
- The input x is an instance of B.
- The output $R(x)$ is an instance of A.
- $R(x)$ may not span all possible instances of A.c
 - Some instances of A may never appear in R’s range.
- But x must be an \textit{arbitrary} instance for B.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.
bSometimes, we say “B can be reduced to A.”
c$R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.
Is “Reduction” a Confusing Choice of Word?a

- If B reduces to A, doesn’t that intuitively make A smaller and simpler?
- But our definition means the opposite.
- Our definition says in this case B is a special case of A.b
- Hence A is harder.

aMoore & Mertens (2011).
bSee also p. 157.
Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs x, $x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a **(Karp) reduction** from L_1 to L_2.
Reduction between Languages (concluded)

• Note that by Theorem 24 (p. 250), R runs in polynomial time.

 – In most cases, a polynomial-time R suffices for proofs.a

• Suppose R is a reduction from L_1 to L_2.

• Then solving “$R(x) \in L_2$?” is an algorithm for solving “$x \in L_1$?”b

aIn fact, unless stated otherwise, we will only require that the reduction R run in polynomial time. It is often called a **polynomial-time many-one reduction**.

bOf course, it may not be the most efficient one.
A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $B \in \text{TIME}(n^{99})$ may be “easier” than a language $A \in \text{TIME}(n^3)$ if B reduces to A.
- But isn’t this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^3 steps?
Paradox Resolved

• The so-called contradiction is the result of flawed logic.
• Suppose we solve the problem “\(x \in B?\)” via “\(R(x) \in A?\)”
• We must consider the time spent by \(R(x)\) and its length \(|R(x)|\):
 – Because \(R(x)\) (not \(x\)) is solved by A.
HAMILTONIAN PATH

• A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.

• Suppose graph G has n nodes: $1, 2, \ldots, n$.

• A Hamiltonian path can be expressed as a permutation π of $\{1, 2, \ldots, n\}$ such that
 - $\pi(i) = j$ means the ith position is occupied by node j.
 - $(\pi(i), \pi(i + 1)) \in G$ for $i = 1, 2, \ldots, n - 1$.
HAMILTONIAN PATH (concluded)

- So

\[
\begin{pmatrix}
1 & 2 & \cdots & n \\
\pi(1) & \pi(2) & \cdots & \pi(n)
\end{pmatrix}.
\]

- HAMILTONIAN PATH asks if a graph has a Hamiltonian path.
Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF$^a R(G)$ such that $R(G)$ is satisfiable if and only if G has a Hamiltonian path.

- $R(G)$ has n^2 boolean variables x_{ij}, $1 \leq i, j \leq n$.

- x_{ij} means

 the ith position in the Hamiltonian path is occupied by node j.

- Our reduction will produce clauses.

aRemember that R does not have to be onto.
$x_{12} = x_{21} = x_{34} = x_{45} = x_{53} = x_{69} = x_{76} = x_{88} = x_{97} = 1$;

\[\pi(1) = 2, \pi(2) = 1, \pi(3) = 4, \pi(4) = 5, \pi(5) = 3, \pi(6) = 9, \pi(7) = 6, \pi(8) = 8, \pi(9) = 7. \]
The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.
 - $x_{1j} \lor x_{2j} \lor \cdots \lor x_{nj}$ for each j.

2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj} (\equiv \neg(x_{ij} \land x_{kj}))$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.
 - $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$ for each i.

4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik} (\equiv \neg(x_{ij} \land x_{ik}))$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j} (\equiv \neg(x_{k,i} \land x_{k+1,j}))$ for all $(i, j) \notin E$ and $k = 1, 2, \ldots, n - 1$.
The Proof

• \(R(G) \) contains \(O(n^3) \) clauses.

• \(R(G) \) can be computed efficiently (simple exercise).

• Suppose \(T \models R(G) \).

• From the 1st and 2nd types of clauses, for each node \(j \) there is a unique position \(i \) such that \(T \models x_{ij} \).

• From the 3rd and 4th types of clauses, for each position \(i \) there is a unique node \(j \) such that \(T \models x_{ij} \).

• So there is a permutation \(\pi \) of the nodes such that \(\pi(i) = j \) if and only if \(T \models x_{ij} \).
The Proof (concluded)

- The 5th type of clauses furthermore guarantee that
 \((\pi(1), \pi(2), \ldots, \pi(n))\) is a Hamiltonian path.

- Conversely, suppose \(G\) has a Hamiltonian path
 \[(\pi(1), \pi(2), \ldots, \pi(n)),\]
 where \(\pi\) is a permutation.

- Clearly, the truth assignment
 \[T(x_{ij}) = \text{true} \text{ if and only if } \pi(i) = j\]
 satisfies all clauses of \(R(G)\).
A Commenta

- An answer to “Is $R(G)$ satisfiable?” answers the question “Is G Hamiltonian?”

- But a “yes” does not give a Hamiltonian path for G.
 - Providing a witness is not a requirement of reduction.

- A “yes” to “Is $R(G)$ satisfiable?” plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.
Reduction of **REACHABILITY** to **CIRCUIT VALUE**

- Note that both problems are in P.
- Given a graph \(G = (V, E) \), we shall construct a *variable-free* circuit \(R(G) \).
- The output of \(R(G) \) is true if and only if there is a path from node 1 to node \(n \) in \(G \).
- Idea: the Floyd-Warshall algorithm.\(^a\)

\(^a\)Floyd (1962); Marshall (1962).
The Gates

- The gates are
 - g_{ijk} with $1 \leq i, j \leq n$ and $0 \leq k \leq n$.
 - h_{ijk} with $1 \leq i, j, k \leq n$.

- g_{ijk}: There is a path from node i to node j without passing through a node bigger than k.

- h_{ijk}: There is a path from node i to node j passing through k but not any node bigger than k.

- Input gate $g_{ij0} = \text{true}$ if and only if $i = j$ or $(i, j) \in E$.
The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where $k = 1, 2, \ldots, n$.

- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where $k = 1, 2, \ldots, n$.

- g_{1nn} is the output gate.

- Interestingly, $R(G)$ uses no \neg gates.
 - It is a **monotone circuit**.
Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable if and only if C is.
 - $R(C)$ will turn out to be a CNF.
 - $R(C)$ is basically a depth-2 circuit; furthermore, each gate has out-degree 1.
- The variables of $R(C)$ are those of C plus g for each gate g of C.
 - The g’s propagate the truth values for the CNF.
- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \landed together by definition.
The Clauses of $R(C)$

g is a variable gate x: Add clauses ($\neg g \lor x$) and ($g \lor \neg x$).
 • Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).
 • Meaning: g must be true to make $R(C)$ true.

g is a false gate: Add clause ($\neg g$).
 • Meaning: g must be false to make $R(C)$ true.

g is a \neg gate with predecessor gate h: Add clauses ($\neg g \lor \neg h$) and ($g \lor h$).
 • Meaning: $g \Leftrightarrow \neg h$.
The Clauses of $R(C')$ (continued)

g is a \lor gate with predecessor gates h and h': Add clauses $(\neg g \lor h \lor h')$, $(g \lor \neg h)$, and $(g \lor \neg h')$.

- The conjunction of the above clauses is equivalent to

$$
[g \Rightarrow (h \lor h')] \land [(h \lor h') \Rightarrow g]
\equiv g \Leftrightarrow (h \lor h').
$$

g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(g \lor \neg h \lor \neg h')$.

- It is equivalent to

$$
g \Leftrightarrow (h \land h').
$$
The Clauses of $R(C')$ (concluded)

g is the output gate: Add clause (g).

- Meaning: g must be true to make $R(C')$ true.

- Note: If gate g feeds gates h_1, h_2, \ldots, then variable g appears in the clauses for h_1, h_2, \ldots in $R(C')$.

An Example

\[(h_1 \iff x_1) \land (h_2 \iff x_2) \land (h_3 \iff x_3) \land (h_4 \iff x_4)\]
\[\land [g_1 \iff (h_1 \land h_2)] \land [g_2 \iff (h_3 \lor h_4)]\]
\[\land [g_3 \iff (g_1 \land g_2)] \land (g_4 \iff \neg g_2)\]
\[\land [g_5 \iff (g_3 \lor g_4)] \land g_5.\]
An Example (continued)

• The result is a CNF.

• The CNF adds new variables to the circuit’s original input variables.

• The CNF has size proportional to the circuit’s number of gates.

• Had we used the idea on p. 219 for the reduction, the resulting formula may have an exponential length because of the copying.¹

¹Contributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.
An Example (concluded)

• But is $R(C')$ valid if and only if C is?\(^a\)

• In general, no.

• For example, the circuit equivalent to the valid $x_1 \lor \neg x_1$
 is turned into

$$\left(h_1 \iff x_1 \right) \land \left(h_2 \iff \neg x_1 \right) \land \left[g_1 \iff \left(h_1 \lor h_2 \right) \right] \land (g_1).$$

• This expression is clearly not valid.\(^b\)

• So the reduction preserves satisfiability but not validity.

\(^a\)Contributed by Mr. Han-Ting Chen (R10922073) on October 21, 2021.

\(^b\)Assign \texttt{false} to g_1, e.g.
Composition of Reductions

Proposition 28 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3, then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3.

- So reducibility is transitive.\(^a\)

\(^a\)See Proposition 8.2 of the textbook for a proof.
Completenessa

- As reducibility is transitive, problems can be ordered with respect to their difficulty.

- Is there a \textit{maximal} element (the so-called \textit{hardest} problem)?

- It is not obvious that there should be a maximal element.
 - Many infinite structures (such as integers and real numbers) do not have maximal elements.

- Surprisingly, most of the complexity classes that we have seen so far have maximal elements!

aPost (1944); Cook (1971); Levin (1973).
Completeness (concluded)

• Let C be a complexity class and $L \in C$.

• L is C-complete if every $L' \in C$ can be reduced to L.

 – Most of the complexity classes we have seen so far have complete problems!

• Complete problems capture the difficulty of a class because they are the hardest problems in the class.\(^a\)

\(^a\)See also p. 169.
Hardness

• Let C be a complexity class.

• L is C-hard if every $L' \in C$ can be reduced to L.

• It is not required that $L \in C$.

• If L is C-hard, then by definition, every C-complete problem can be reduced to L.\(^a\)

\(^a\)Contributed by Mr. Ming-Feng Tsai (D92922003) on October 15, 2003.
Illustration of Completeness and Hardness
Closedness under Reductions

- A class \mathcal{C} is **closed under reductions** if whenever L is reducible to L' and $L' \in \mathcal{C}$, then $L \in \mathcal{C}$.

- It is easy to show that P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

- E is not closed under reductions.a

aBalcázar, Díaz, & Gabarró (1988).
Complete Problems and Complexity Classes

Proposition 29 Let C' and C be two complexity classes such that $C' \subseteq C$. Assume C' is closed under reductions and L is C-complete. Then $C = C'$ if and only if $L \in C'$.

- Suppose $L \in C'$ first.
- Every language $A \in C$ reduces to $L \in C'$.
- Because C' is closed under reductions, $A \in C'$.
- Hence $C \subseteq C'$.
- As $C' \subseteq C$, we conclude that $C = C'$.
The Proof (concluded)

- On the other hand, suppose $\mathcal{C} = \mathcal{C}'$.
- As L is \mathcal{C}-complete, $L \in \mathcal{C}$.
- Thus, trivially, $L \in \mathcal{C}'$.
Two Important Corollaries

Proposition 29 implies the following.

Corollary 30 $P = NP$ if and only if an NP-complete problem is in P.

Corollary 31 $L = P$ if and only if a P-complete problem is in L.
Complete Problems and Complexity Classes, Again

Proposition 32 Let C' and C be two complexity classes closed under reductions. If L is complete for both C and C', then $C = C'$.

- All languages $A \in C$ reduce to $L \in C$ and $L \in C'$.
- Since C' is closed under reductions, $A \in C'$.
- Hence $C \subseteq C'$.
- The proof for $C' \subseteq C$ is symmetric.
Complete Problems and Complexity Classes, Again (concluded)

Proposition 33 Let \(C \) be a complexity class. If \(L \) is \(C \)-complete and \(L \) is reducible to \(L' \in C \), then \(L' \) is also \(C \)-complete.

- Every language \(A \in C \) reduces to \(L \).
- By Proposition 28 (p. 301), \(A \) reduces to \(L' \).
Table of Computation

- Let $M = (K, \Sigma, \delta, s)$ be a single-string polynomial-time deterministic TM deciding L.

- Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound.
 - It is essentially a sequence of configurations.

- Rows correspond to time steps 0 to $|x|^k - 1$.

- Columns are positions in the string of M.

- The (i, j)th table entry represents the contents of position j of the string after i steps of computation.
Some Conventions To Simplify the Table

- M halts after at most $|x|^k - 2$ steps.\(^a\)
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with \sqcups so that each row has length $|x|^k$.
 - The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is at state q and the symbol is σ, then the (i,j)th entry is a new symbol σ_q.

\(^a\) $|x|^k - 3$ may be safer.
Some Conventions To Simplify the Table (continued)

- If q is “yes” or “no,” simply use “yes” or “no” instead of σ_q.
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping two moves of M each time the cursor is about to move to the leftmost \triangleright.
- So the first symbol in every row is a \triangleright and not a \triangleright_q.
Some Conventions To Simplify the Table (concluded)

- M will halt before the last row is reached.
- All subsequent rows will be identical to the row where M halts.
- M accepts x if and only if the $(|x|^k - 1, j)$th entry is “yes” for some position j.
Comments

- Each row is essentially a configuration.
- If the input $x = 010001$, then the first row is

\[
\begin{array}{c}
| x |^k \\
\triangleright 0 \downarrow 10001 \uparrow \uparrow \cdots \uparrow
\end{array}
\]

- A typical row looks like

\[
\begin{array}{c}
| x |^k \\
\triangleright 10100 \downarrow 01110100 \uparrow \uparrow \cdots \uparrow
\end{array}
\]
Comments (concluded)

• The last rows must look like

\[|x|^k \]

\[\triangleright \cdots \text{“yes”} \cdots \square \quad \text{or} \quad \triangleright \cdots \text{“no”} \cdots \square \]

• Three out of the table’s 4 borders are known:

\[\triangleright \quad a \ b \ c \ d \ e \ f \ \square \]

\[\triangleright \quad \square \]

\[\triangleright \quad \square \]

\[\triangleright \quad \square \]

\[\triangleright \quad \square \]

\[\triangleright \quad \square \]

\[\quad \cdots \]
A P-Complete Problem

Theorem 34 (Ladner, 1975) CIRCUIT VALUE is P-complete.

- It is easy to see that CIRCUIT VALUE ∈ P.
- For any $L \in P$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, $R(x)$ is a variable-free circuit such that $x \in L$ if and only if $R(x)$ evaluates to true.
- Let M decide L in time n^k.
- Let T be the computation table of M on x.
The Proof (continued)

- Recall that three out of T’s 4 borders are known.
- So when $i = 0$, or $j = 0$, or $j = |x|^k - 1$, the value of T_{ij} is known.
 - The jth symbol of x or \sqcup, a \triangleright, or a \sqsubset, respectively.
- Consider other entries T_{ij}.
The Proof (continued)

- T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$:

$$
\begin{array}{ccc}
T_{i-1,j-1} & T_{i-1,j} & T_{i-1,j+1} \\
T_{ij} & & \\
\end{array}
$$

- T_{ij} does not depend on any other entries!
- T_{ij} does not depend on i, j, or x either (given $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$).
- The dependency is thus “local.”
The Proof (continued)

- Let Γ denote the set of all symbols that can appear on the table: $\Gamma = \Sigma \cup \{ \sigma_q : \sigma \in \Sigma, q \in K \}$.

- Encode each symbol of Γ as an m-bit number, where

 $$m = \lceil \log_2 |\Gamma| \rceil.$$

\(^{a}\text{Called state assignment in circuit design.}\)
The Proof (continued)

- Let the m-bit binary string $S_{ij1}S_{ij2} \cdots S_{ijm}$ encode T_{ij}.
- We may treat them interchangeably without ambiguity.
- The computation table is now a table of binary entries $S_{ij\ell}$, where

$$0 \leq i \leq n^k - 1,$$
$$0 \leq j \leq n^k - 1,$$
$$1 \leq \ell \leq m.$$
The Proof (continued)

• Each bit $S_{ij\ell}$ depends on only $3m$ other bits:

$$T_{i-1,j-1}: \quad S_{i-1,j-1,1} \quad S_{i-1,j-1,2} \quad \cdots \quad S_{i-1,j-1,m}$$

$$T_{i-1,j}: \quad S_{i-1,j,1} \quad S_{i-1,j,2} \quad \cdots \quad S_{i-1,j,m}$$

$$T_{i-1,j+1}: \quad S_{i-1,j+1,1} \quad S_{i-1,j+1,2} \quad \cdots \quad S_{i-1,j+1,m}$$

• So truth values for the $3m$ bits determine $S_{ij\ell}$.
The Proof (continued)

- This means there is a boolean function F_ℓ with $3m$ inputs such that

$$S_{ij\ell}$$

$$= F_\ell(S_{i-1,j-1,1}, S_{i-1,j-1,2}, \ldots, S_{i-1,j-1,m},$$

$$T_{i-1,j}, S_{i-1,j+1,1}, S_{i-1,j+1,2}, \ldots, S_{i-1,j+1,m})$$

for all $i, j > 0$ and $1 \leq \ell \leq m$.
The Proof (continued)

- These F_ℓ’s depend only on M’s specification, not on x, i, or j.
- Their sizes are constant.\(^a\)
- These boolean functions can be turned into boolean circuits (see p. 218).
- Compose these m circuits in parallel to obtain circuit C with $3m$-bit inputs and m-bit outputs.
 - Schematically, $C(T_{i-1,j-1}, T_{i-1,j}, T_{i-1,j+1}) = T_{ij}$.\(^b\)

\(^a\)It means independence of the input x.
\(^b\)C is like an ASIC (application-specific IC) chip.
The Proof (concluded)

- A copy of circuit C is placed at each entry of the table.
 - Exceptions are the top row and the two extreme column borders.

- $R(x)$ consists of $(|x|^k - 1)(|x|^k - 2)$ copies of circuit C.

- Without loss of generality, assume the output “yes”/“no” appear at position $(|x|^k - 1, 1)$.

- Encode “yes” as 1 and “no” as 0.
The Computation Tableau and $R(x)$
A Corollary

The construction in the above proof yields the following, more general result.

Corollary 35 If \(L \in \text{TIME}(T(n)) \), then a circuit with \(O(T^2(n)) \) gates can decide \(L \).
MONOTONE CIRCUIT VALUE

- A *monotone* boolean circuit’s output cannot change from true to false when one input changes from false to true.

- Monotone boolean circuits are hence less expressive than general circuits.
 - They can compute only *monotone* boolean functions.

- Monotone circuits do not contain ¬ gates (prove it).

- **MONOTONE CIRCUIT VALUE** is CIRCUIT VALUE applied to monotone circuits.
MONOTONE CIRCUIT VALUE Is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as hard as CIRCUIT VALUE.

Corollary 36 (Goldschlager, 1977) MONOTONE CIRCUIT VALUE is P-complete.

- Given any general circuit, “move the ¬’s downwards” using de Morgan’s laws\(^a\) to yield a monotone circuit with the same output.

Theorem 37 (Goldschlager, 1977) PLANAR MONOTONE CIRCUIT VALUE is P-complete.

\(^a\)How? Need to make sure no exponential blowup.
MAXIMUM FLOW Is P-Complete

Theorem 38 (Goldschlager, Shaw, & Staples, 1982)
MAXIMUM FLOW is P-complete.