Theory of Computation

Midterm Examination on October 28, 2021

Fall Semester, 2021

Problem 1 (20 points) Prove that $H^{\varepsilon}=\{M: M$ halts on $\varepsilon\}$ is undecidable by reduction from the halting set $H=\{M ; x: M(x) \neq \nearrow\}$. (Recall that ε is the empty string.)

Proof: Given the question " $M ; x \in H$?" we construct the following machine:

$$
M_{x}(y): M(x) .
$$

M halts on x if and only if M_{x} halts on ε. In other words, $M ; x \in H$ if and only if $M_{x} \in H^{\varepsilon}$. So if H^{ε} were recursive, H would be recursive, a contradiction.

Problem 2 (20 points) Answer the following questions.
(1) Write down the property of being a recursive language.
(2) Use Rice's theorem to prove that this property is undecidable.

Proof:

(1) The property of being a recursive languages is

$$
\{L: L=L(M) \text { for some TM } M \text { and } L \text { is recursive }\} .
$$

(2) Because $R \subseteq R E$, the above property is a subset of $R E$. We also know that the halting problem is recursively enumerable but not recursive. Finally, we also know that recursive languages exist (such as primality, etc.). Hence the said property is nontrivial. So Rice's theorem applies.

Problem 3 (20 points) Prove that if L_{1} and L_{2} are recursively enumerable languages, then so is $L_{1} \cup L_{2}$.

Proof: Assume that TM M_{1} accepts L_{1} and TM M_{2} accepts L_{2}. We then construct another TM M^{\prime} which simulates M_{1} and M_{2} in an interleaving style:

1. if $x \in L_{1}$, then $M^{\prime}(x)=M_{1}(x)=$ "yes";
2. if $x \in L_{2}$, then $M^{\prime}(x)=M_{2}(x)=$ "yes";
3. otherwise, $M^{\prime}(x)=\nearrow$.

So M^{\prime} accepts $L_{1} \cup L_{2}$. The claim is proved.

Problem 4 (20 points) Prove that $L=\{M ; x \mid M(x)=$ "yes" $\}$ is undecidable. (Do not use Rice's theorem nor reduction from another undecidable problem. Instead, prove it as the undecidability of the halting problem was proved in the slides.)

Proof: Suppose L is recursive. Then there is a TM M_{L} that decides L. Consider the following program $D(M)$ which calls M_{L} :

```
if \(M_{L}(M ; M)=\) "yes" then
    \(D(M)=" n o " ;\)
else
    \(D(M)=\) "yes";
end if
```

Consider $D(D): D(D)="$ no" $\Rightarrow M_{L}(D ; D)=" y e s " \Rightarrow D ; D \in L \Rightarrow D(D)=$ "yes", a contradiction. $D(D)=$ "yes" $\Rightarrow M_{L}(D ; D)="$ no" $\Rightarrow D ; D \notin L \Rightarrow$ $D(D)=$ "no", another contradiction. Hence, L is undecidable.

Problem 5 (20 points) Answer the following questions.
(1) (5 points) Consider the following boolean functions

$$
f:\{\text { true }, \text { false }\}^{n} \rightarrow\{\text { true }, \text { false }\}^{\sqrt{n}} .
$$

How many such functions are there? For simplicity, assume that \sqrt{x} is an integer. Same below. (Use parentheses to avoid ambiguity.)
(2) (15 points) What is a good lower bound for any circuit that computes such functions (assuming $n \geq 2$ or any convenient constant)?

Proof:

(1) $2^{\left(2^{n} \sqrt{n}\right)}$.
(2) From slide p. 213, it suffices to show that $\left((n+5) \times m^{2}\right)^{m}<2^{\left(2^{n} \sqrt{n}\right)}$ when $m=2^{n-1} / \sqrt{n+5}$:

$$
\begin{aligned}
m \log _{2}\left((n+5) \times m^{2}\right) & =\left(\frac{n-1}{\sqrt{n+5}}\right) \times 2^{n} \\
& <\sqrt{n} \times 2^{n}
\end{aligned}
$$

for $n \geq 2$. So a lower bound is $2^{n-1} / \sqrt{n+5}$.

