Computation That Counts
And though the holes were rather small, they had to count them all.
Counting Problems

- Counting problems are concerned with the number of solutions.
 - \#SAT: the number of satisfying truth assignments to a boolean formula.
 - \#HAMILTONIAN PATH: the number of Hamiltonian paths in a graph.

- They cannot be easier than their decision versions.
 - The decision problem has a solution if and only if the solution count is larger than 0.

- But they can be harder than their decision versions.
Decision and Counting Problems

• FP is the set of polynomial-time computable functions $f : \{0, 1\}^* \rightarrow \mathbb{Z}$.
 – GCD, LCM, matrix-matrix multiplication, etc.

• If $\#\text{sat} \in \text{FP}$, then $P = \text{NP}$.
 – Given boolean formula ϕ, calculate its number of satisfying truth assignments, k, in polynomial time.
 – Declare “$\phi \in \text{SAT}$” if and only if $k \geq 1$.

• The validity of the reverse direction is open.
A Counting Problem Harder than Its Decision Version

- **CYCLE** asks if a directed graph contains a cycle.\(^a\)
- **#CYCLE** counts the number of cycles in a directed graph.
- **CYCLE** is in P by a simple greedy algorithm.
- But **#CYCLE** is hard unless P = NP.

\(^a\)A cycle has no repeated nodes.
Hardness of $\#\text{CYCLE}$

Theorem 97 (Arora, 2006) If $\#\text{CYCLE} \in \text{FP}$, then $P = \text{NP}$.

- It suffices to reduce the NP-complete HAMILTONIAN CYCLE to $\#\text{CYCLE}$.
- Consider a directed graph G with n nodes.
- Define $N \equiv \lfloor n \log_2 (n + 1) \rfloor$.
- Replace each edge $(u, v) \in G$ with this subgraph:
The Proof (continued)

- This subgraph has $N + 1$ levels.
- There are now 2^N paths from u to v.
- Call the resulting digraph G'.
- Recall that a Hamiltonian cycle on G contains n edges.
- To each Hamiltonian cycle on G, there correspond
 $(2^N)^n = 2^{nN}$ cycles (not necessarily Hamiltonian) on G'.
- So if G contains a Hamiltonian cycle, then G' contains
 at least 2^{nN} cycles.
The Proof (continued)

- Now suppose G contains no Hamiltonian cycles.
- Then every cycle on G contains at most $n - 1$ nodes.
- There are hence at most n^{n-1} cycles on G.
- Each k-node cycle on G induces $(2^N)^k$ cycles on G'.
- So G' contains at most $n^{n-1}(2^N)^{n-1}$ cycles.
- As $n \geq 1$,

\[
 n^{n-1}(2^N)^{n-1} = 2^{nN} \frac{n^{n-1}}{2^N} \leq 2^{nN} \frac{n^{n-1}}{2^{n \log_2(n+1)-1}}
\]

\[
 = 2^{nN} \frac{2n^{n-1}}{(n+1)^n} \leq 2^{nN} \frac{2}{n+1} \left(\frac{n}{n+1} \right)^{n-1} < 2^{nN}.
\]
The Proof (concluded)

• In summary, \(G \in \text{HAMILTONIAN CYCLE} \) if and only if \(G' \)
 contains at least \(2^{nN} \) cycles.

• \(G' \) contains at most \(n^n 2^{nN} \) cycles.
 - Every \(k \)-cycle on \(G \) induces \((2^N)^k \leq 2^{nN} \) cycles on \(G' \).
 - Every cycle on \(G' \) is associated with a unique cycle on \(G \).
 - There are at most \(n^n \) cycles in \(G \).

• This number has a polynomial length \(O(n^2 \log n) \).

• Hence \(\text{HAMILTONIAN CYCLE} \in \mathbf{P} \).
Counting Class \#P

A function f is in \#P (or $f \in \#P$) if

- There exists a polynomial-time NTM M.
- $M(x)$ has $f(x)$ accepting paths for all inputs x.
Some $\#P$ Problems

- $f(\phi) =$ number of satisfying truth assignments to ϕ.
 - The desired NTM guesses a truth assignment T and accepts ϕ if and only if $T \models \phi$.
 - Hence $f \in \#P$.
 - f is also called $\#\text{SAT}$.

- $\#\text{HAMILTONIAN PATH}$.

- $\#\text{3-COLORING}$.
#P Completeness

- Function f is #P-complete if
 - $f \in \#P$.
 - $\#P \subseteq \text{FP}^f$.

 * Every function in #P can be computed in polynomial time with access to a black box\(^a\) for f.

 - It said to be polynomial-time Turing-reducible to f.

 - Oracle f can be accessed only a polynomial number of times.

\(^a\) Think of it as a subroutine. It is also called an **oracle**.
#SAT is #P-Completea

- First, it is in \#P (p. 859).
- Let $f \in \#P$ compute the number of accepting paths of M.
- Cook’s theorem uses a \textit{parsimonious} reduction from M on input x to an instance ϕ of SAT.
 - That is, $M(x)$’s number of accepting paths equals ϕ’s number of satisfying truth assignments.
- Call the oracle \#SAT with ϕ to obtain the desired answer regarding $f(x)$.

aValiant (1979); in fact, \#2SAT is also \#P-complete.
Leslie G. Valianta (1949–)

Avi Wigderson (2009), “Les Valiant singlehandedly created, or completely transformed, several fundamental research areas of computer science. [...] We all became addicted to this remarkable throughput, and expect more.”

aTuring Award (2010).
CYCLE COVER

• A set of node-disjoint cycles that cover all nodes in a directed graph is called a cycle cover.

• There are 3 cycle covers (in red) above.
Proposition 98 CYCLE COVER and BIPARTITE PERFECT MATCHING (p. 519) are parsimoniously reducible to each other.

- A polynomial-time algorithm creates a bipartite graph G' from any directed graph G.

- Moreover, the number cycle covers for G equals the number of bipartite perfect matchings for G'.

- And vice versa.

Corollary 99 CYCLE COVER $\in P$.
Illustration of the Proof
Permanent

- The **permanent** of an $n \times n$ integer matrix A is

$$\text{perm}(A) = \sum_\pi \prod_{i=1}^{n} A_{i,\pi(i)}.$$

- π ranges over all permutations of n elements.

- 0/1 PERMANENT computes the permanent of a 0/1 (binary) matrix.

 - The permanent of a binary matrix is at most $n!$.

- Simpler than determinant (9) on p. 523: no signs.

- Surprisingly, much harder to compute than determinant!
Permanent and Counting Perfect Matchings

- BIPARTITE PERFECT MATCHING is related to determinant (p. 524).
- #BIPARTITE PERFECT MATCHING is related to permanent.

Proposition 100 0/1 PERMANENT and BIPARTITE PERFECT MATCHING are parsimoniously reducible to each other.
The Proof

- Given a bipartite graph G, construct an $n \times n$ binary matrix A.
 - The (i, j)th entry A_{ij} is 1 if $(i, j) \in E$ and 0 otherwise.
- Then $\text{perm}(A) = \text{number of perfect matchings in } G$.
Illustration of the Proof Based on p. 865 (Left)

\[
A = \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{bmatrix}.
\]

- \(\text{perm}(A) = 4 \).
- The permutation corresponding to the perfect matching on p. 865 is marked.
Permanent and Counting Cycle Covers

Proposition 101 0/1 permanent and cycle cover are parsimoniously reducible to each other.

- Let A be the adjacency matrix of the graph on p. 865 (right).
- Then $\text{perm}(A) = \text{number of cycle covers}$.
Three Parsimoniously Equivalenta Problems

We summarize Propositions 98 (p. 864) and 100 (p. 867) in the following.

\textbf{Lemma 102} 0/1 PERMANENT, BIPARTITE PERFECT MATCHING, \textit{and} CYCLE COVER \textit{are} parsimoniously equivalent.

We will show that the counting versions of all three problems are in fact \#P-complete.

aMeaning the numbers of solutions are equal in a reduction.
WEIGHTED CYCLE COVER

- Consider a directed graph G with integer weights on the edges.
- The weight of a cycle cover is the product of its edge weights.
- The **cycle count** of G is sum of the weights of all cycle covers.
 - Let A be G’s adjacency matrix but $A_{ij} = w_i$ if the edge (i, j) has weight w_i.
 - Then $\text{perm}(A) = G$’s cycle count (same proof as Proposition 101 on p. 870).
- #CYCLE COVER is a special case: All weights are 1.
An Example

There are 3 cycle covers, and the cycle count is

\[(4 \cdot 1 \cdot 1) \cdot (1) + (1 \cdot 1) \cdot (2 \cdot 3) + (4 \cdot 2 \cdot 1 \cdot 1) = 18.\]

\(^a\)Each edge has weight 1 unless stated otherwise.
Three \#P-Complete Counting Problems

Theorem 103 (Valiant, 1979) \(0/1\) PERMANENT, \#BIPARTITE PERFECT MATCHING, and \#CYCLE COVER are \#P-complete.

- By Lemma 102 (p. 871), it suffices to prove that \#CYCLE COVER is \#P-complete.
- \#SAT is \#P-complete (p. 861).
- \#3SAT is \#P-complete because it and \#SAT are parsimoniously equivalent.
- We shall prove that \#3SAT is polynomial-time Turing-reducible to \#CYCLE COVER.
The Proof (continued)

• Let ϕ be the given 3SAT formula.
 – It contains n variables and m clauses (hence $3m$ literals).
 – It has $\#\phi$ satisfying truth assignments.

• First we construct a weighted directed graph H with cycle count

$$\#H = 4^{3m} \times \#\phi.$$

• Then we construct an unweighted directed graph G.

• We shall make sure $\#H$ (hence $\#\phi$) is polynomial-time Turing-reducible to $\#G$ (G’s number of cycle covers).
The Proof: Comments (continued)

• Our reduction is not expected to be parsimonious.
 – Suppose otherwise and
 \[\#\phi = \#G. \]
 – Hence G has a cycle cover if and only if ϕ is satisfiable.
 – But $\text{cycle cover} \in P$ (p. 864).
 – Thus $\text{3SAT} \in P$, a most unlikely event!
The Proof: the Clause Gadget (continued)

- Each clause is associated with a **clause gadget**.

```
  a
  |
  |
  b
  |
  c
```

- Each edge has weight 1 unless stated otherwise.
- Each bold edge corresponds to one literal in the clause.
- They are not *parallel* lines as bold edges are schematic only (preview p. 890).
The Proof: the Clause Gadget (continued)

• Following a bold edge means making the literal false (0).

• A cycle cover cannot select all 3 bold edges.
 – The interior node would be missing.

• Every proper nonempty subset of bold edges corresponds to a unique cycle cover of weight 1 (see next page).
The Proof: the Clause Gadget (continued)

7 possible cycle covers, one for each satisfying assignment:
(1) $a = 0, b = 0, c = 1$, (2) $a = 0, b = 1, c = 0$, etc.
The Proof: the XOR Gadget (continued)
The Proof: Properties of the XOR Gadget (continued)

- The XOR gadget schema:

- At most one of the 2 schematic edges will be included in a cycle cover.
- Only those cycle covers that take exactly one schematic edge in every XOR gadget will have nonzero weights.
- There will be $3m$ XOR gadgets, one for each literal.
The Proof: Properties of the XOR Gadget (continued)

Total weight of \(-1 - 2 + 6 - 3 = 0\) for cycle covers not entering or leaving it.
The Proof: Properties of the XOR Gadget (continued)

- Total weight of \(-1 + 1 - 6 + 2 + 3 + 1 = 0\) for cycle covers entering at \(u\) and leaving at \(v'\).\(^{a}\)

- Same for cycle covers entering at \(v\) and leaving at \(u'\).

\(^{a}\)Corrected by Mr. Yu-Tsung Dai (B91201046) and Mr. Che-Wei Chang (R95922093) on December 27, 2006.
The Proof: Properties of the XOR Gadget (continued)

- Total weight of $1 + 2 + 2 - 1 + 1 - 1 = 4$ for cycle covers entering at u and leaving at u'.

- Same for cycle covers entering at v and leaving at v'.

The Proof: Summary (continued)

- Cycle covers not entering all of the XOR gadgets contribute 0 to the cycle count.
 - Let x denote an XOR gadget not entered for some cycle covers for H.
 - Now, such cycle covers’ contribution to the cycle count totals, by p. 882,
 \[
 \sum_{\text{cycle cover } c \text{ not entering } x} (\text{weight of } c \text{ for } H) \\
 = \sum_{\text{cycle cover } c \text{ not entering } x} (\text{weight of } c \text{ for } H - x) \times (\text{weight of } c \text{ for } x) \\
 = \sum_{\text{cycle cover } c \text{ not entering } x} (\text{weight of } c \text{ for } H - x) \times 0 = 0.
 \]
The Proof: Summary (continued)

- Cycle covers entering \textit{any} of the XOR gadgets and leaving illegally contribute 0 to the cycle count by p. 883.

- For every XOR gadget entered and exited legally, the total weight of a cycle cover is multiplied by 4.
 - Each such act multiplies the weight by 4 according to p. 884.
The Proof: Summary (continued)

- Hereafter we consider only cycle covers which enter every XOR gadget and leaves it legally.
 - Only these cycle covers contribute nonzero weights to the cycle count.

- They are said to respect the XOR gadgets.
The Proof: the Choice Gadget (continued)

- One choice gadget (a schema) for each variable.

- It gives the truth assignment for the variable.

- Use it with the XOR gadget to enforce consistency.
Schema for \((w \lor x \lor \overline{y}) \land (\overline{x} \lor \overline{y} \lor \overline{z})\)
Full Graph \((w \lor x \lor \overline{y}) \land (\overline{x} \lor \overline{y} \lor \overline{z})\)
The Proof: a Key Observation (continued)

Each satisfying truth assignment to ϕ corresponds to a schematic cycle cover that respects the XOR gadgets.
$w = 1, x = 0, y = 0, z = 1 \iff \text{One Cycle Cover}$
The Proof: a Key Corollary (continued)

- Recall that there are $3m$ XOR gadgets.
- Each satisfying truth assignment to ϕ contributes 4^{3m} to the cycle count $#H$.
- Hence

$$#H = 4^{3m} \times \#\phi,$$

as desired.
“$w = 1, x = 0, y = 0, z = 1$” Adds 4^6 to Cycle Count
The Proof (continued)

- We are almost done.
- The weighted directed graph H needs to be *efficiently* replaced by some unweighted graph G.
- Furthermore, knowing $\#G$ should enable us to calculate $\#H$ *efficiently*.
 - This done, $\#\phi$ will have been Turing-reducible to $\#G$.
- We proceed to construct this graph G.

\(^a\)By way of $\#H$.
The Proof: Construction of G (continued)

- Replace edges with weights 2 and 3 as follows (note that the graph cannot have parallel edges):

- The cycle count $\#H$ remains unchanged.
The Proof: Construction of G (continued)

- We move on to edges with weight -1.
- First, we count the number of nodes, M.
- Each clause gadget contains 4 nodes (p. 877), and there are m of them (one per clause).
- Each revised XOR gadget contains 7 nodes (p. 896), and there are $3m$ of them (one per literal).
- Each choice gadget contains 2 nodes (p. 888), and there are $n \leq 3m$ of them (one per variable).
- So
 \[M \leq 4m + 21m + 6m = 31m. \]
The Proof: Construction of G (continued)

- $\#H \leq 2^L$ for some $L = O(m \log m)$.
 - The maximum absolute value of the edge weight is 1.
 - Hence each term in the permanent is at most 1.
 - There are $M! \leq (31m)!$ terms.
 - Hence

 $$
 \#H \leq \sqrt{2\pi(31m)} \left(\frac{31m}{e} \right)^{31m} e^{\frac{1}{12 \times (31m)}}
 = 2^{O(m \log m)}
 \tag{28}
 $$

 by a refined Stirling’s formula.
The Proof: Construction of G (continued)

- Replace each edge with weight -1 with the following:

- Each increases the number of cycle covers 2^{L+1}-fold.
- The desired unweighted G has been obtained.
The Proof (continued)

• \#G equals \#H after replacing each appearance -1 in \#H with 2^{L+1}:

\[
\begin{align*}
\#H &= \cdots + 1 \cdot 1 \cdots (-1) \cdots 1 + \cdots, \\
\text{a cycle cover} \\
\hline
\#G &= \cdots + 1 \cdot 1 \cdots 2^{L+1} \cdots 1 + \cdots. \\
\text{a cycle cover}
\end{align*}
\]

• Let \#G = $\sum_{i=0}^n a_i \times (2^{L+1})^i$, where $0 \leq a_i < 2^{L+1}$.

• Recall that \#H $\leq 2^L$ (p. 898).

• So each a_i counts the number of cycle covers with i edges of weight -1 as there is no “overflow” in \#G.
The Proof (concluded)

• We conclude that

\[\#H = a_0 - a_1 + a_2 - \cdots + (-1)^n a_n, \]

indeed easily computable from \(\#G \).

• We know \(\#H = 4^{3m} \times \#\phi \) from Eq. (27) on p. 893.

• So

\[\#\phi = \frac{a_0 - a_1 + a_2 - \cdots + (-1)^n a_n}{4^{3m}}. \]

 – Equivalently,

\[\#\phi = \frac{\#G \mod (2^{L+1} + 1)}{4^{3m}}. \]