KNAPSACK Has an Approximation Threshold of Zeroa

Theorem 85 For any ϵ, there is a polynomial-time ϵ-approximation algorithm for KNAPSACK.

- We have n weights $w_1, w_2, \ldots, w_n \in \mathbb{Z}^+$, a weight limit W, and n values $v_1, v_2, \ldots, v_n \in \mathbb{Z}^+$.b

- We must find an $I \subseteq \{1, 2, \ldots, n\}$ such that $\sum_{i \in I} w_i \leq W$ and $\sum_{i \in I} v_i$ is the largest possible.

aIbarra & Kim (1975). This algorithm can be used to derive good approximation algorithms for some NP-complete scheduling problems (Bansal & Sviridenko, 2006).

bIf the values are fractional, the result is slightly messier, but the main conclusion remains correct. Contributed by Mr. Jr-Ben Tian (B89902011, R93922045) on December 29, 2004.
The Proof (continued)

- Let

\[V = \max\{v_1, v_2, \ldots, v_n\}. \]

- Clearly, \(\sum_{i \in I} v_i \leq nV. \)

- Let \(0 \leq i \leq n \) and \(0 \leq v \leq nV. \)

- \(W(i, v) \) is the minimum weight attainable by selecting only from the first \(i \) items and with a total value of \(v. \)

 - It is an \((n + 1) \times (nV + 1) \) table.
The Proof (continued)

• Set $W(0, v) = \infty$ for $v \in \{1, 2, \ldots, nV\}$ and $W(i, 0) = 0$ for $i = 0, 1, \ldots, n$.\(^a\)

• Then, for $0 \leq i < n$ and $1 \leq v \leq nV$, \(^b\)

$$W(i + 1, v) = \begin{cases}
\min\{W(i, v), W(i, v - v_{i+1}) + w_{i+1}\}, & \text{if } v_{i+1} \leq v, \\
W(i, v), & \text{otherwise.}
\end{cases}$$

• Finally, pick the largest v such that $W(n, v) \leq W$.\(^c\)

\(^a\)Contributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu (D98922013) on December 28, 2009.

\(^b\)The textbook’s formula has an error here.

\(^c\)Lawler (1979).
The Proof (continued)

With 6 items, values \((4, 3, 3, 3, 2, 3)\), weights \((3, 3, 1, 3, 2, 1)\), and \(W = 12\), the maximum total value 16 is achieved with \(I = \{1, 2, 3, 4, 6\}\); \(I\)'s weight is 11.
The Proof (continued)

• The running time $O(n^2V)$ is not polynomial.

• Call the problem instance

$$x = (w_1, \ldots, w_n, W, v_1, \ldots, v_n).$$

• Additional idea: Limit the number of precision bits.

• Define

$$v'_i = \left\lfloor \frac{v_i}{2^b} \right\rfloor.$$

• Note that

$$v_i - 2^b < 2^b v'_i \leq v_i.$$ \hfill (23)
The Proof (continued)

- Call the approximate instance

 \[x' = (w_1, \ldots, w_n, W, v'_1, \ldots, v'_n). \]

- Solving \(x' \) takes time \(O(n^2V/2^b) \).

 - Use \(v'_i = \lfloor v_i/2^b \rfloor \) and \(V' = \max(v'_1, v'_2, \ldots, v'_n) \) in the dynamic programming.

 - It is now an \((n + 1) \times (nV + 1)/2^b \) table.

- The selection \(I' \) is optimal for \(x' \).

- But \(I' \) may not be optimal for \(x \), although it still satisfies the weight budget \(W \).
The Proof (continued)

With the same parameters as p. 782 and $b = 1$: Values are $(2, 1, 1, 1, 1, 1)$ and the optimal selection $I' = \{1, 2, 3, 5, 6\}$ for x' has a smaller maximum value $4 + 3 + 3 + 2 + 3 = 15$ for x than I's 16; its weight is $10 < W = 12$.\(^a\)

\[
\begin{array}{cccccccc}
0 & \infty \\
0 & \infty & 3 & \infty & \infty & \infty & \infty & \infty \\
0 & 3 & 3 & 6 & \infty & \infty & \infty & \infty \\
0 & 1 & 3 & 4 & 7 & \infty & \infty & \infty \\
0 & 1 & 3 & 4 & 7 & 10 & \infty & \infty \\
0 & 1 & 3 & 4 & 6 & 9 & 12 & \infty \\
0 & 1 & 2 & 4 & 5 & 7 & 10 & 13
\end{array}
\]

\(^a\)The original optimal $I = \{1, 2, 3, 4, 6\}$ on p. 782 has the same value 6 and but higher weight 11 for x'.
The Proof (continued)

• The value of I' for x is close to that of the optimal I as

\[
\sum_{i \in I'} v_i \\
\geq \sum_{i \in I'} 2^b v'_i \quad \text{by inequalities (23) on p. 783} \\
= 2^b \sum_{i \in I'} v'_i \geq 2^b \sum_{i \in I} v'_i = \sum_{i \in I} 2^b v'_i \\
\geq \sum_{i \in I} (v_i - 2^b) \quad \text{by inequalities (23)} \\
\geq \left(\sum_{i \in I} v_i \right) - n 2^b.
\]
The Proof (continued)

• In summary,

\[\sum_{i \in I'} v_i \geq \left(\sum_{i \in I} v_i \right) - n2^b. \]

• Without loss of generality, assume \(w_i \leq W \) for all \(i \).
 – Otherwise, item \(i \) is redundant and can be removed early on.

• \(V \) is a lower bound on \(\text{OPT} \).
 – Picking one single item with value \(V \) is a legitimate choice.
The Proof (concluded)

• The relative error from the optimum is:

\[
\frac{\sum_{i \in I} v_i - \sum_{i \in I'} v_i}{\sum_{i \in I} v_i} \leq \frac{n2^b}{V}.
\]

• Suppose we pick \(b = \lfloor \log_2 \frac{\epsilon V}{n} \rfloor. \)

• The algorithm becomes \(\epsilon \)-approximate.\(^a\)

• The running time is then \(O(n^2V/2^b) = O(n^3/\epsilon) \), a polynomial in \(n \) and \(1/\epsilon \).\(^b\)

\(^a\)See Eq. (18) on p. 734.

\(^b\)It hence depends on the \textit{value} of \(1/\epsilon \). Thanks to a lively class dis-
cussion on December 20, 2006. If we fix \(\epsilon \) and let the problem size
increase, then the complexity is cubic. Contributed by Mr. Ren-Shan
Luoh (D97922014) on December 23, 2008.
Comments

- INDEPENDENT SET and NODE COVER are reducible to each other (Corollary 46, p. 382).

- NODE COVER has an approximation threshold at most 0.5 (p. 747).

- But INDEPENDENT SET is unapproximable (see the textbook).

- INDEPENDENT SET limited to graphs with degree $\leq k$ is called k-DEGREE INDEPENDENT SET.

- k-DEGREE INDEPENDENT SET is approximable (see the textbook).
On P vs. NP
If 50 million people believe a foolish thing, it’s still a foolish thing.
— George Bernard Shaw (1856–1950)
Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using monotone circuits.
 - Monotone circuits are circuits without ¬ gates.\(^a\)
- Note that this result does not settle the P vs. NP problem.

\(^a\)Recall p. 320.
The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem: MONOTONE CIRCUIT VALUE (p. 321).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.
CLIQUE$_{n,k}$

- CLIQUE$_{n,k}$ is the boolean function deciding whether a graph $G = (V, E)$ with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- CLIQUE$_{n,k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for CLIQUE$_{n,k}$ may use fewer gates.
Crude Circuits

- One possible circuit for \(\text{CLIQUE}_{n,k} \) does the following.
 1. For each \(S \subseteq V \) with \(|S| = k \), there is a circuit with \(O(k^2) \) \&-gates testing whether \(S \) forms a clique.
 2. We then take an OR of the outcomes of all the \(\binom{n}{k} \) subsets \(S_1, S_2, \ldots, S_{\binom{n}{k}} \).

- This is a monotone circuit with \(O(k^2 \binom{n}{k}) \) gates, which is exponentially large unless \(k \) or \(n - k \) is a constant.

- A crude circuit \(\text{CC}(X_1, X_2, \ldots, X_m) \) tests if there is an \(X_i \subseteq V \) that forms a clique.
 - The above-mentioned circuit is \(\text{CC}(S_1, S_2, \ldots, S_{\binom{n}{k}}) \).
The Proof: Positive Examples

• Analysis will be applied to only the following positive examples and negative examples as input graphs.

• A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.

• There are $\binom{n}{k}$ such graphs.

• They all should elicit a true output from $\text{CLIQUE}_{n,k}$.
The Proof: Negative Examples

- Color the nodes with \(k - 1 \) different colors and join by an edge any two nodes that are colored differently.
- There are \((k - 1)^n\) such graphs.
- They all should elicit a false output from \(\text{CLIQUE}_{n,k}\).
 - Each set of \(k\) nodes must have 2 identically colored nodes; hence there is no edge between them.
Positive and Negative Examples with $k = 5$

A positive example

A negative example
A Warmup to Razborov’s (1985) Theorem\(^a\)

Lemma 86 (The birthday problem) The probability of collision, \(C(N,q)\), when \(q\) balls are thrown randomly into \(N \geq q\) bins is at most

\[
\frac{q(q - 1)}{2N}.
\]

Lemma 87 If crude circuit \(CC(X_1, X_2, \ldots, X_m)\) computes \(\text{CLIQUE}_{n,k}\), then \(m \geq n^{n^{1/8}/20}\) for \(n\) sufficiently large.

\(^a\)Arora & Barak (2009).
The Proof (continued)

• Let \(k = n^{1/4} \).
• Let \(\ell = \sqrt{k}/10 \).
• Let \(X \subseteq V \).
The Proof (continued)

• Suppose $|X| \leq \ell$.

• A random $f : X \rightarrow \{1, 2, \ldots, k - 1\}$ has collisions with probability less than 0.01 by Lemma 86 (p. 799).

• Hence f is one-to-one with probability 0.99.

• When f is one-to-one, f is a coloring of X with $k - 1$ colors without repeated colors.

• As a result, when f is one-to-one, it generates a clique on X.
The Proof (continued)

- Note that a random negative example is simply a random \(g : V \rightarrow \{1, 2, \ldots, k - 1\} \).

- So our random \(f : X \rightarrow \{1, 2, \ldots, k - 1\} \) is simply a random \(g \) restricted to \(X \).

- In summary, the probability that \(X \) is not a clique when supplied with a random negative example is at most 0.01.
The Proof (continued)

• Now suppose \(|X| > \ell\).

• Consider the probability that \(X\) is a clique when supplied with a random positive example.

• It is the probability that \(X\) is part of the clique.

• Hence the desired probability is at most

\[
\frac{(n-\ell)}{(k-\ell)} \frac{1}{\binom{n}{k}}.
\]
The Proof (continued)

• Now,

\[
\frac{(n-\ell)}{\binom{k-\ell}{k}} = \frac{k(k-1) \cdots (k-\ell+1)}{n(n-1) \cdots (n-\ell+1)}
\]

\[
\leq \left(\frac{k}{n} \right)^\ell
\]

\[
\leq n^{-\left(\frac{3}{4}\right)\ell}
\]

\[
\leq n^{-\sqrt{k}/20}
\]

\[
= n^{-n^{1/8}/20}.
\]
The Proof (concluded)

• In summary, the probability that X is a clique when supplied with a random positive example is at most

$$n^{-n^{1/8}/20}.$$

• So we need at least

$$nn^{1/8}/20$$

Xs in the crude circuit.
Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.

- A sunflower is a family of p sets $\{ P_1, P_2, \ldots, P_p \}$, called petals, each of cardinality at most ℓ.

- Furthermore, all pairs of sets in the family must have the same intersection (called the core of the sunflower).
A Sample Sunflower

\[
\{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \\
\{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}.
\]
The Erdős-Rado Lemma

Lemma 88 Let \mathcal{Z} be a family of more than $M \triangleq (p - 1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ.
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} - \mathcal{D}$ intersects some set in \mathcal{D}.
The Proof of the Erdős-Rado Lemma (continued)

For example,

\[Z = \{\{1, 2, 3, 5\}, \{1, 3, 6, 9\}, \{0, 4, 8, 11\}, \{4, 5, 6, 7\}, \{5, 8, 9, 10\}, \{6, 7, 9, 11\}\}, \]

\[D = \{\{1, 2, 3, 5\}, \{0, 4, 8, 11\}\}. \]
The Proof of the Erdős-Rado Lemma (continued)

• Suppose \mathcal{D} contains at least p sets.
 – \mathcal{D} constitutes a sunflower with an empty core.

• Suppose \mathcal{D} contains fewer than p sets.
 – Let C be the union of all sets in \mathcal{D}.
 – $|C| \leq (p - 1)\ell$.
 – C intersects every set in \mathcal{Z} by \mathcal{D}’s maximality.
 – There is a $d \in C$ that intersects more than
 \[\frac{M}{(p-1)\ell} = (p - 1)^{\ell-1}(\ell - 1)! \] sets in \mathcal{Z}.
 – Consider $\mathcal{Z}' = \{ Z - \{ d \} : Z \in \mathcal{Z}, d \in Z \}$.
The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - \mathcal{Z}' has more than $M' \triangleq (p - 1)^{\ell - 1}(\ell - 1)!$ sets.
 - M' is just M with ℓ replaced with $\ell - 1$.
 - \mathcal{Z}' contains a sunflower by induction, say
 \[
 \{ P_1, P_2, \ldots, P_p \}.
 \]
 - Now,
 \[
 \{ P_1 \cup \{ d \}, P_2 \cup \{ d \}, \ldots, P_p \cup \{ d \} \}
 \]
 is a sunflower in \mathcal{Z}.
Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower means replacing the sets in the sunflower by its core.
- By *repeatedly* finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\text{pluck}(\mathcal{Z})$.
- $\text{pluck}(\mathcal{Z})$ is not unique.a

aIt depends on the sequence of sunflowers one plucks. Fortunately, this issue is not material to the proof.
An Example of Plucking

• Recall the sunflower on p. 807:

\[Z = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\} \]

• Then

\[\text{pluck}(Z) = \{\{1, 2\}\}. \]
Razborov’s Theorem

Theorem 89 (Razborov, 1985) There is a constant \(c \) such that for large enough \(n \), all monotone circuits for \(\text{CLIQUE}_{n,k} \) with \(k = n^{1/4} \) have size at least \(n^{cn^{1/8}} \).

- We shall approximate any monotone circuit for \(\text{CLIQUE}_{n,k} \) by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.
The Proof

• Fix \(k = n^{1/4} \).
• Fix \(\ell = n^{1/8} \).
• Note that

\[
2 \binom{\ell}{2} \leq k - 1.
\]

• \(p \) will be fixed later to be \(n^{1/8} \log n \).
• Fix \(M = (p - 1)^{\ell} \ell! \).

 – Recall the Erdős-Rado lemma (p. 808).

\(^a\)Corrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.
The Proof (continued)

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, \ldots, X_m)$, where:
 - $X_i \subseteq V$.
 - $|X_i| \leq \ell$.
 - $m \leq M$.

- It answers true if and only if at least one X_i is a clique.

- We shall show how to approximate any monotone circuit for $\text{CLIQUE}_{n,k}$ by such a crude circuit, inductively.

- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i, j\})$.
The Proof (continued)

• A monotone circuit is the OR or AND of two subcircuits.

• We will build approximators of the overall circuit from the approximators of the two subcircuits.
 – Start with two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 – \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 – We will construct the approximate OR and the approximate AND of these subcircuits.
 – Then show both approximations introduce few errors.
The Proof: OR

- CC(\(\mathcal{X} \cup \mathcal{Y}\)) is equivalent to the OR of CC(\(\mathcal{X}\)) and CC(\(\mathcal{Y}\)).
 - For any node set \(\mathcal{C}\), \(\mathcal{C} \in \mathcal{X} \cup \mathcal{Y}\) if and only if \(\mathcal{C} \in \mathcal{X}\) or \(\mathcal{C} \in \mathcal{Y}\).
 - Hence \(\mathcal{X} \cup \mathcal{Y}\) contains a clique if and only if \(\mathcal{X}\) or \(\mathcal{Y}\) contains a clique.

- Problem with CC(\(\mathcal{X} \cup \mathcal{Y}\)) occurs when \(|\mathcal{X} \cup \mathcal{Y}| > M|\).

- Such violations are eliminated by using

\[
\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))
\]

as the final approximate OR of CC(\(\mathcal{X}\)) and CC(\(\mathcal{Y}\)).
The Proof: OR (continued)

- If $\text{CC}(Z)$ is true, then $\text{CC}(\text{pluck}(Z))$ must be true.
 - The quick reason: If Y is a clique, then a subset of Y must also be a clique.
 - Let $Y \in Z$ be a clique.
 - There must exist an $X \in \text{pluck}(Z)$ such that $X \subseteq Y$.
 - This X is also a clique.
The Proof: OR (continued)
The Proof: OR (concluded)

• CC(pluck(\(\mathcal{X} \cup \mathcal{Y}\))) introduces a **false positive** if a negative example makes both CC(\(\mathcal{X}\)) and CC(\(\mathcal{Y}\)) return false but makes CC(pluck(\(\mathcal{X} \cup \mathcal{Y}\))) return true.

• CC(pluck(\(\mathcal{X} \cup \mathcal{Y}\))) introduces a **false negative** if a positive example makes either CC(\(\mathcal{X}\)) or CC(\(\mathcal{Y}\)) return true but makes CC(pluck(\(\mathcal{X} \cup \mathcal{Y}\))) return false.

• We next count the number of false positives and false negatives introduced\(^a\) by CC(pluck(\(\mathcal{X} \cup \mathcal{Y}\))).

• Let us work on false negatives for OR first.

\(^a\)Compared with CC(\(\mathcal{X} \cup \mathcal{Y}\)) of course.
The Number of False Negatives

Lemma 90 \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) introduces no false negatives.

- Each plucking replaces sets in a crude circuit by their common subset.

- This makes the test for cliqueness less stringent.\(^b\)

\(^a\)Recall that \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) introduces a false negative if a positive example makes either \(\text{CC}(\mathcal{X}) \) or \(\text{CC}(\mathcal{Y}) \) return true but makes \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) return false.

\(^b\)The new crude circuit is at least as positive as the original one (p. 819).
The Number of False Positives

Lemma 91 \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) introduces at most
\[\frac{2M}{p-1} 2^{-p} (k - 1)^n \] false positives.

- Each plucking operation replaces the sunflower \(\{ Z_1, Z_2, \ldots, Z_p \} \) with its common core \(Z \).
- A false positive is necessarily a coloring such that:
 - There is a pair of identically colored nodes in each petal \(Z_i \) (and so \(\text{CC}(Z_1, Z_2, \ldots, Z_p) \) returns false).
 - But the core contains distinctly colored nodes (thus forming a clique).
 - This implies at least one node from each identical-color pair was plucked away.
Proof of Lemma 91 (continued)
Proof of Lemma 91 (continued)

- We now count the number of such colorings.
- Color nodes in V at random with $k - 1$ colors.
- Let $R(X)$ denote the event that there are repeated colors in set X.
Proof of Lemma 91 (continued)

• Now

\[\text{prob}\left[R(Z_1) \land \cdots \land R(Z_p) \land \neg R(Z) \right] \leq \text{prob}\left[R(Z_1) \land \cdots \land R(Z_p) \mid \neg R(Z) \right] = \prod_{i=1}^{p} \text{prob}\left[R(Z_i) \mid \neg R(Z) \right] \leq \prod_{i=1}^{p} \text{prob}\left[R(Z_i) \right]. \] (24)

\[\text{(25)} \]

– Equality holds because \(R(Z_i) \) are independent given \(\neg R(Z) \) as core \(Z \) contains their only common nodes.

– Last inequality holds as the likelihood of repetitions in \(Z_i \) decreases given no repetitions in a subset, \(Z \).
Proof of Lemma 91 (continued)

• Consider two nodes in Z_i.

• The probability that they have identical color is

$$\frac{1}{k - 1}.$$

• Now

$$\text{prob}[R(Z_i)] \leq \frac{|Z_i|}{2} \leq \frac{\ell}{k - 1} \leq \frac{1}{2}.$$ \hspace{1cm} (26)

• So the probability\(^a\) that a random coloring yields a new false positive is at most 2^{-p} by inequality (25) on p. 826.

\(^a\)Proportion, if you so prefer.
Proof of Lemma 91 (continued)

- As there are \((k - 1)^n\) different colorings, each plucking introduces at most \(2^{-p}(k - 1)^n\) false positives.

- Recall that \(|\mathcal{X} \cup \mathcal{Y}| \leq 2M\).

- When the procedure \(\text{pluck}(\mathcal{X} \cup \mathcal{Y})\) ends, the set system contains \(\leq M\) sets.
Proof of Lemma 91 (concluded)

• Each plucking reduces the number of sets by $p - 1$.

• Hence at most $2M/(p - 1)$ pluckings occur in $\text{pluck}(\mathcal{X} \cup \mathcal{Y})$.

• At most
\[
\frac{2M}{p - 1} \cdot 2^{-p} (k - 1)^n
\]
false positives are introduced.\(^a\)

\(^a\)Note that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.
The Proof: AND

- The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

 $$CC(\text{pluck}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell \})).$$

- We need to count the number of errors this approximate AND introduces on the positive and negative examples.
The Proof: AND (continued)

• The approximate AND introduces a **false positive** if a negative example makes either \(\text{CC}(\mathcal{X}) \) or \(\text{CC}(\mathcal{Y}) \) return false but makes the approximate AND return true.

• The approximate AND introduces a **false negative** if a positive example makes both \(\text{CC}(\mathcal{X}) \) and \(\text{CC}(\mathcal{Y}) \) return true but makes the approximate AND return false.

• Introduction of errors means we ignore scenarios where the AND of \(\text{CC}(\mathcal{X}) \) and \(\text{CC}(\mathcal{Y}) \) is already wrong.
The Proof: AND (continued)

• $\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \})$ introduces no false positives and no false negatives over our positive and negative examples.\(^a\)

 - Suppose $\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \})$ returns true.
 - Then some $X_i \cup Y_j$ is a clique.
 - Thus $X_i \in \mathcal{X}$ and $Y_j \in \mathcal{Y}$ are cliques, making both $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$ return true.
 - So $\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \})$ introduces no false positives.

\(^{a}\)Unlike the OR case on p. 818, we are not claiming that $\text{CC}(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \})$ is equivalent to the AND of $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$. Equivalence is more than we need in either case.
The Proof: AND (concluded)

• (continued)
 – On the other hand, suppose both $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$ accept a positive example with a clique \mathcal{C} of size k.
 – This clique \mathcal{C} must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 – As this clique \mathcal{C} also contains $X_i \cup Y_j$, the new circuit returns true.
 – $\text{CC}({X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}})$ introduces no false negatives.

• We now bound the number of false positives and false negatives introduced by the approximate AND.

\[a\text{See next page.}\]
\[b\text{Compared with }\text{CC}({X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}})\text{ of course.}\]
Clique of size k
The Number of False Positives

Lemma 92 The approximate AND introduces at most $M^22^{-p}(k - 1)^n$ false positives.

- We prove this claim in stages.
- We already knew $\text{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.\(^a\)

- $\text{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces no additional false positives because we are testing potentially fewer sets for cliqueness.

\(^a\)Recall p. 832.
Proof of Lemma 92 (concluded)

- \(| \{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell \} \| \leq M^2. \)
- Each plucking reduces the number of sets by \(p - 1 \).
- So pluck(\(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell \} \)) involves \(\leq M^2/(p - 1) \) pluckings.
- Each plucking introduces at most \(2^{-p}(k - 1)^n \) false positives by the proof of Lemma 91 (p. 823).
- The desired upper bound is
 \[
 \left[\frac{M^2}{(p - 1)} \right] 2^{-p}(k - 1)^n \leq M^2 2^{-p}(k - 1)^n.
 \]
The Number of False Negatives

Lemma 93 The approximate AND introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- We knew $\text{CC} \left(\{ X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y} \} \right)$ introduces no false negatives.a

aRecall p. 832.
Proof of Lemma 93 (continued)

- CC({ Xi ∪ Yj : Xi ∈ X, Yj ∈ Y, |Xi ∪ Yj| ≤ ℓ }) introduces ≤ M^2 \binom{n-\ell-1}{k-\ell-1} \) false negatives.
 - Deletion of set Z Δ X_i ∪ Y_j larger than ℓ introduces false negatives only if Z is part of a clique.
 - There are \binom{n-|Z|}{k-|Z|} \) such cliques.
 * It is the number of positive examples whose clique contains Z.
 - \binom{n-|Z|}{k-|Z|} \leq \binom{n-\ell-1}{k-\ell-1} \) as |Z| > ℓ.
 - There are at most M^2 such Zs.
Proof of Lemma 93 (concluded)

- Plucking introduces no false negatives.
 - Recall that if $CC(Z)$ is true, then $CC(pluck(Z))$ must be true.a

aRecall p. 819.
Two Summarizing Lemmas

From Lemmas 91 (p. 823) and 92 (p. 835), we have:

Lemma 94 Each approximation step introduces at most $M^2 2^{-p}(k - 1)^n$ false positives.

From Lemmas 90 (p. 822) and 93 (p. 837), we have:

Lemma 95 Each approximation step introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
The Proof (continued)

- The above two lemmas show that each approximation step introduces “few” false positives and false negatives.
- We next show that the resulting crude circuit has “a lot” of false positives or false negatives.
The Final Crude Circuit

Lemma 96 Every final crude circuit is:

1. *Identically false*-thus wrong on all positive examples.
2. *Or outputs true on at least half of the negative examples.*

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with

$$|X| \leq \ell = n^{1/8} < n^{1/4} = k.$$
Proof of Lemma 96 (concluded)

• Inequality (26) (p. 827) says that at least half of the colorings assign different colors to nodes in X.

• So at least half of the colorings — thus negative examples — have a clique in X and are accepted.
The Proof (continued)

• Recall the constants on p. 815:

\[k \triangleq n^{1/4}, \]
\[\ell \triangleq n^{1/8}, \]
\[p \triangleq n^{1/8} \log n, \]
\[M \triangleq (p - 1)^\ell \ell! < n^{(1/3)n^{1/8}} \text{ for large } n. \]
The Proof (continued)

• Suppose the final crude circuit is identically false.
 – By Lemma 95 (p. 840), each approximation step introduces at most \(M^2 \binom{n-\ell-1}{k-\ell-1} \) false negatives.
 – There are \(\binom{n}{k} \) positive examples.
 – The original monotone circuit for CLIQUE_{n,k} has at least

 \[
 \frac{\binom{n}{k}}{M^2 \binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^2} \left(\frac{n-\ell}{k} \right)^\ell \geq n^{(1/12)n^{1/8}}
 \]

 gates for large \(n \).
The Proof (concluded)

• Suppose the final crude circuit is not identically false.
 – Lemma 96 (p. 842) says that there are at least \((k - 1)^n/2\) false positives.
 – By Lemma 94 (p. 840), each approximation step introduces at most \(M^22^{-p}(k - 1)^n\) false positives.
 – The original monotone circuit for CLIQUE$_{n,k}$ has at least

\[
\frac{(k - 1)^n/2}{M^22^{-p}(k - 1)^n} = \frac{2^{p-1}}{M^2} \geq n^{(1/3) n^{1/8}}
\]

gates.
Alexander Razborov (1963–)
P ≠ NP Proved?

• Razborov’s theorem says that there is a monotone language in NP that has no polynomial monotone circuits.

• If we can prove that all monotone languages in P have polynomial monotone circuits, then P ≠ NP.

• But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!