Primality Tests

- PRIMES asks if a number \(N \) is a prime.
- The classic algorithm tests if \(k \mid N \) for \(k = 2, 3, \ldots, \sqrt{N} \).
- But it runs in \(\Omega(2^{(\log_2 N)/2}) \) steps.
The Fermat Test for Primality

Fermat’s “little” theorem (p. 493) suggests the following primality test for any given number N:

1. Pick a number a randomly from $\{1, 2, \ldots, N - 1\}$;
2. if $a^{N-1} \not\equiv 1 \mod N$ then
3. return “N is composite”;
4. else
5. return “N is (probably) a prime”;
6. end if
The Fermat Test for Primality (concluded)

• **Carmichael numbers** are composite numbers that will pass the Fermat test for *all* \(a \in \{ 1, 2, \ldots, N - 1 \} \).\(^a\)

 – The Fermat test will return “\(N \) is a prime” for all Carmichael numbers \(N \).

• Unfortunately, there are infinitely many Carmichael numbers.\(^b\)

• In fact, the number of Carmichael numbers less than \(N \) exceeds \(N^{2/7} \) for \(N \) large enough.

• So the Fermat test is an incorrect algorithm for PRIMES.

\(^a\)Carmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!
\(^b\)Alford, Granville, & Pomerance (1992).
Square Roots Modulo a Prime

- Equation $x^2 \equiv a \mod p$ has at most two (distinct) roots by Lemma 64 (p. 498).
 - The roots are called **square roots**.
 - Numbers a with square roots and $\gcd(a, p) = 1$ are called **quadratic residues**.
 * They are
 $$1^2 \mod p, 2^2 \mod p, \ldots, (p - 1)^2 \mod p.$$

- We shall show that a number either has two roots or has none, and testing which is the case is trivial.\(^a\)

\(^a\)But no efficient *deterministic* general-purpose square-root-extracting algorithms are known yet.
Euler’s Test

Lemma 69 (Euler) Let \(p \) be an odd prime and \(a \neq 0 \) mod \(p \).

1. If
 \[
a^{(p-1)/2} \equiv 1 \text{ mod } p,
 \]
 then \(x^2 \equiv a \text{ mod } p \) has two roots.

2. If
 \[
a^{(p-1)/2} \not\equiv 1 \text{ mod } p,
 \]
 then
 \[
a^{(p-1)/2} \equiv -1 \text{ mod } p
 \]
 and \(x^2 \equiv a \text{ mod } p \) has no roots.
The Proof (continued)

- Let r be a primitive root of p.
- Fermat’s “little” theorem says $r^{p-1} \equiv 1 \mod p$, so
 \[r^{(p-1)/2} \]
 is a square root of 1.
- In particular,
 \[r^{(p-1)/2} \equiv 1 \text{ or } -1 \mod p. \]
- But as r is a primitive root, $r^{(p-1)/2} \not\equiv 1 \mod p$.
- Hence $r^{(p-1)/2} \equiv -1 \mod p.$
The Proof (continued)

- Let $a = r^k \mod p$ for some k.
- Suppose $a^{(p-1)/2} \equiv 1 \mod p$.
- Then
 \[
 1 \equiv a^{(p-1)/2} \equiv r^{k(p-1)/2} \equiv \left[r^{(p-1)/2}\right]^k \equiv (-1)^k \mod p.
 \]
- So k must be even.
The Proof (continued)

- Suppose \(a = r^{2j} \mod p \) for some \(1 \leq j \leq (p - 1)/2 \).
- Then
 \[
 a^{(p-1)/2} \equiv r^{j(p-1)} \equiv 1 \mod p.
 \]
- The two distinct roots of \(a \) are
 \[
 r^j, -r^j \equiv r^{j+(p-1)/2} \mod p.
 \]
 - If \(r^j \equiv -r^j \mod p \), then \(2r^j \equiv 0 \mod p \), which implies \(r^j \equiv 0 \mod p \), a contradiction as \(r \) is a primitive root.
The Proof (continued)

• As $1 \leq j \leq (p - 1)/2$, there are $(p - 1)/2$ such a’s.

• Each such $a \equiv r^{2j} \mod p$ has 2 distinct square roots.

• The square roots of all these a’s are distinct.
 – The square roots of different a’s must be different.

• Hence the set of square roots is $\{1, 2, \ldots, p - 1\}$.

• As a result,

 $$a = r^{2j} \mod p, 1 \leq j \leq (p - 1)/2,$$

 exhaust all the quadratic residues.
The Proof (concluded)

- Suppose \(a = r^{2j+1} \mod p \) now.
- Then it has no square roots because all the square roots have been taken.
- Finally,

\[
a^{(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^{2j+1} \equiv (-1)^{2j+1} \equiv -1 \mod p.
\]
The Legendre Symbol\(^a\) and Quadratic Residuacity Test

- By Lemma 69 (p. 560),
 \[a^{(p-1)/2} \mod p = \pm 1 \]
 for \(a \not\equiv 0 \mod p \).

- For odd prime \(p \), define the **Legendre symbol** \((a \mid p) \) as
 \[
 (a \mid p) \triangleq \begin{cases}
 0, & \text{if } p \mid a, \\
 1, & \text{if } a \text{ is a quadratic residue modulo } p, \\
 -1, & \text{if } a \text{ is a quadratic nonresidue modulo } p.
 \end{cases}
 \]

- It is sometimes pronounced “\(a \) over \(p \).”

\(^a\)Andrien-Marie Legendre (1752–1833).
The Legendre Symbol and Quadratic Residuacity Test
(concluded)

• Euler’s test (p. 560) implies

$$a^{(p-1)/2} \equiv (a \mid p) \mod p$$

for any odd prime p and any integer a.

• Note that $(ab \mid p) = (a \mid p)(b \mid p)$.
Gauss’s Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd primes. Then $(q \mid p) = (-1)^m$, where m is the number of residues in $R \triangleq \{ iq \mod p : 1 \leq i \leq (p - 1)/2 \}$ that are greater than $(p - 1)/2$.

- All residues in R are distinct.
 - If $iq = jq \mod p$, then $p \mid (j - i)$ or $p \mid q$.
 - But neither is possible.

- No two elements of R add up to p.
 - If $iq + jq \equiv 0 \mod p$, then $p \mid (i + j)$ or $p \mid q$.
 - But neither is possible.
The Proof (continued)

- Replace each of the \(m \) elements \(a \in R \) such that \(a > (p - 1)/2 \) by \(p - a \).
 - This is equivalent to performing \(-a \mod p \).
- Call the resulting set of residues \(R' \).
- All numbers in \(R' \) are at most \((p - 1)/2 \).
- In fact, \(R' = \{1, 2, \ldots, (p - 1)/2\} \) (see illustration next page).
 - Otherwise, two elements of \(R \) would add up to \(p \),
 which has been shown to be impossible.

\(^a\)Because then \(iq \equiv -jq \mod p \) for some \(i \neq j \).
$p = 7$ and $q = 5$.
The Proof (concluded)

- Alternatively, \(R' = \{ \pm iq \mod p : 1 \leq i \leq (p - 1)/2 \} \), where exactly \(m \) of the elements have the minus sign.

- Take the product of all elements in the two representations of \(R' \).

- So

\[
[(p - 1)/2]! \equiv (-1)^m q^{(p-1)/2} [(p - 1)/2]! \mod p.
\]

- Because \(\gcd([(p - 1)/2]!, p) = 1 \), the above implies

\[
1 = (-1)^m q^{(p-1)/2} \mod p.
\]
Legendre’s Law of Quadratic Reciprocity\(^a\)

- Let \(p \) and \(q \) be two distinct odd primes.
- The next result says \((p \mid q)\) and \((q \mid p)\) are distinct if and only if both \(p \) and \(q \) are 3 mod 4.

Lemma 71 (Legendre, 1785; Gauss)

\[
(p \mid q)(q \mid p) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.
\]

\(^a\)First stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990). As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum.”
The Proof (continued)

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$mp + \sum_{i=1}^{(p-1)/2} \left(iq - p \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2$$

$$= mp + \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2.$$

- m of the $iq \mod p$ are replaced by $p - iq \mod p$.
- But signs are irrelevant under mod 2.
- m is as in Lemma 70 (p. 568).
The Proof (continued)

- Ignore odd multipliers to make the sum equal

\[m + \left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2. \]

- Equate the above with \(\sum_{i=1}^{(p-1)/2} i \) modulo 2.

- Now simplify to obtain

\[m \equiv \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2. \]
The Proof (continued)

• \(\sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \) is the number of integral points below the line
 \[y = \left(\frac{q}{p} \right) x \]
 for \(1 \leq x \leq (p - 1)/2 \).

• Gauss’s lemma (p. 568) says \((q \mid p) = (-1)^m \).

• Repeat the proof with \(p \) and \(q \) reversed.

• Then \((p \mid q) = (-1)^{m'} \), where \(m' \) is the number of integral points above the line \(y = \left(\frac{q}{p} \right) x \) for
 \(1 \leq y \leq (q - 1)/2 \).
The Proof (concluded)

• As a result,

\[(p \mid q)(q \mid p) = (-1)^{m + m'}.
\]

• But \(m + m'\) is the total number of integral points in the \([1, \frac{p-1}{2}] \times [1, \frac{q-1}{2}]\) rectangle, which is

\[
\frac{p - 1}{2} \frac{q - 1}{2}.
\]
Above, \(p = 11, q = 7, m = 7, m' = 8 \).
The Jacobi Symbol

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol \((a \mid m)\) extends it to cases where \(m\) is not prime.
 - \(a\) is sometimes called the numerator and \(m\) the denominator.
- Trivially, \((1 \mid m) = 1\).
- Define \((a \mid 1) = 1\).

\(^a\text{Carl Jacobi (1804–1851).}\)
The Jacobi Symbol (concluded)

• Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.

• When $m > 1$ is odd and $\gcd(a, m) = 1$, then

$$ (a \mid m) \triangleq \prod_{i=1}^{k} (a \mid p_i). $$

 – Note that the Jacobi symbol equals ± 1.
 – It reduces to the Legendre symbol when m is a prime.
Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1. \((ab \mid m) = (a \mid m)(b \mid m)\).

2. \((a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2)\).

3. If \(a \equiv b \mod m\), then \((a \mid m) = (b \mid m)\).

4. \((-1 \mid m) = (-1)^{(m-1)/2} \) (by Lemma 70 on p. 568).

5. \((2 \mid m) = (-1)^{(m^2-1)/8} \).

6. If \(a\) and \(m\) are both odd, then
 \[(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}. \]

 \(^a\)By Lemma 70 (p. 568) and some parity arguments.
Properties of the Jacobi Symbol (concluded)

• Properties 3–6 allow us to calculate the Jacobi symbol without factorization.
 - It will also yield the same result as Euler’s test\(^a\) when \(m\) is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that \((a \mid m) = 1/(a \mid m)\) because \((a \mid m) = \pm 1\).\(^b\)

\(^a\)Recall p. 560.

\(^b\)Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.
Calculation of \((2200 \mid 999)\)

\[
(2200 \mid 999) = (202 \mid 999)
\]

\[
= (2 \mid 999)(101 \mid 999)
\]

\[
= (-1)^{(999^2 - 1)/8}(101 \mid 999)
\]

\[
= (-1)^{124750}(101 \mid 999) = (101 \mid 999)
\]

\[
= (-1)^{(100)(998)/4}(999 \mid 101) = (-1)^{24950}(999 \mid 101)
\]

\[
= (999 \mid 101) = (90 \mid 101) = (-1)^{(101^2 - 1)/8}(45 \mid 101)
\]

\[
= (-1)^{1275}(45 \mid 101) = -(45 \mid 101)
\]

\[
= -(-1)^{(44)(100)/4}(101 \mid 45) = -(101 \mid 45) = -(11 \mid 45)
\]

\[
= -(-1)^{(10)(44)/4}(45 \mid 11) = -(45 \mid 11)
\]

\[
= -(1 \mid 11) = -1.
\]
A Result Generalizing Proposition 10.3 in the Textbook

Theorem 72 The group of set $\Phi(n)$ under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, p^k, or $2p^k$ for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.
The Jacobi Symbol and Primality Testa

Lemma 73 If \((M \mid N) \equiv M^{(N-1)/2} \mod N\) for all \(M \in \Phi(N)\), then \(N\) is a prime. (Assume \(N\) is odd.)

- Assume \(N = mp\), where \(p\) is an odd prime, \(\gcd(m, p) = 1\), and \(m > 1\) (not necessarily prime).
- Let \(r \in \Phi(p)\) such that \((r \mid p) = -1\).
- The Chinese remainder theorem says that there is an \(M \in \Phi(N)\) such that

\[
\begin{align*}
M &= r \mod p, \\
M &= 1 \mod m.
\end{align*}
\]

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the textbook’s proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.
The Proof (continued)

• By the hypothesis,

\[M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N. \]

• Hence

\[M^{(N-1)/2} = -1 \mod m. \]

• But because \(M = 1 \mod m, \)

\[M^{(N-1)/2} = 1 \mod m, \]

a contradiction.
The Proof (continued)

- Second, assume that $N = p^a$, where p is an odd prime and $a \geq 2$.
- By Theorem 72 (p. 583), there exists a primitive root r modulo p^a.
- From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.
The Proof (continued)

• As \(r \in \Phi(N) \) (prove it), we have

\[
r^{N-1} = 1 \mod N.
\]

• As \(r \)'s exponent modulo \(N = p^a \) is \(\phi(N) = p^{a-1}(p - 1) \),

\[
p^{a-1}(p - 1) \mid (N - 1),
\]

which implies that \(p \mid (N - 1) \).

• But this is impossible given that \(p \mid N \).
The Proof (continued)

• Third, assume that $N = mp^a$, where p is an odd prime, $\gcd(m, p) = 1$, $m > 1$ (not necessarily prime), and a is even.

• The proof mimics that of the second case.

• By Theorem 72 (p. 583), there exists a primitive root r modulo p^a.

• From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.
The Proof (continued)

• In particular,

\[M^{N-1} = 1 \mod p^a \] \hspace{1cm} (15)

for all \(M \in \Phi(N) \).

• The Chinese remainder theorem says that there is an \(M \in \Phi(N) \) such that

\[M = r \mod p^a, \]
\[M = 1 \mod m. \]

• Because \(M = r \mod p^a \) and Eq. (15),

\[r^{N-1} = 1 \mod p^a. \]
The Proof (concluded)

• As r’s exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p - 1)$,

\[p^{a-1}(p - 1) \mid (N - 1), \]

which implies that $p \mid (N - 1)$.

• But this is impossible given that $p \mid N$.
The Number of Witnesses to Compositeness

Theorem 74 (Solovay & Strassen, 1977) If N is an odd composite, then $(M \mid N) \equiv M^{(N-1)/2} \mod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 73 (p. 584) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \not\equiv a^{(N-1)/2} \mod N$.
- Let $B \triangleq \{ b_1, b_2, \ldots, b_k \} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i \mid N) \equiv b_i^{(N-1)/2} \mod N$.
- Let $aB \triangleq \{ ab_i \mod N : i = 1, 2, \ldots, k \}$.
- Clearly, $aB \subseteq \Phi(N)$, too.
The Proof (concluded)

- $|aB| = k$.
 - $ab_i \equiv ab_j \mod N$ implies $N \mid a(b_i - b_j)$, which is impossible because $\gcd(a, N) = 1$ and $N > |b_i - b_j|$.

- $aB \cap B = \emptyset$ because

 $$(ab_i)^{(N-1)/2} \equiv a^{(N-1)/2}b_i^{(N-1)/2} \neq (a \mid N)(b_i \mid N) \equiv (ab_i \mid N).$$

- Combining the above two results, we know

 $$\frac{|B|}{\phi(N)} \leq \frac{|B|}{|B \cup aB|} = 0.5.$$
1: if N is even but $N \neq 2$ then
2: return “N is composite”;
3: else if $N = 2$ then
4: return “N is a prime”;
5: end if
6: Pick $M \in \{2, 3, \ldots, N - 1\}$ randomly;
7: if $\gcd(M, N) > 1$ then
8: return “N is composite”;
9: else
10: if $(M \mid N) \equiv M^{(N-1)/2} \mod N$ then
11: return “N is (probably) a prime”;
12: else
13: return “N is composite”;
14: end if
15: end if

©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University
Page 593
Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for COMPOSITENESS).
 – When the algorithm says the number is composite, it is always correct.
Analysis (concluded)

• The probability of a false negative (again, for compositeness) is at most one half.
 – Suppose the input is composite.
 – By Theorem 74 (p. 591),
 \[
 \text{prob[algorithm answers “no” | } N \text{ is composite}] \leq 0.5.
 \]
 – Note that we are not referring to the probability that \(N \) is composite when the algorithm says “no.”

• So it is a Monte Carlo algorithm for compositeness.\(^a\)

\(^a\)Not PRIMES.
The Improved Density Attack for COMPOSITENESS

- All numbers $< N$
- Witnesses to compositeness of N via common factor
- Witnesses to compositeness of N via Jacobi
Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.

• N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
 – If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with “yes” where $n = |x|$.
 – If $x \not\in L$, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time).\(^a\)

\(^a\)Adleman & Manders (1977).
Comments on RP

- In analogy to Proposition 41 (p. 335), a “yes” instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of probability.
 - If $x \in L$, then $N(x)$ halts with “yes” with probability at least 0.5.
 - If $x \not\in L$, then $N(x)$ halts with “no.”
Comments on RP (concluded)

• The probability of false negatives is ≤ 0.5.

• But any constant ϵ between 0 and 1 can replace 0.5.

 – Repeat the algorithm $k \overset{\Delta}{=} \lceil -\frac{1}{\log_2 \epsilon} \rceil$ times and answer “no” only if all the runs answer “no.”

 – The probability of false negatives becomes $\epsilon^k \leq 0.5$.
Where RP Fits

- $P \subseteq \text{RP} \subseteq \text{NP}$.
 - A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 - A Monte Carlo TM is an NTM with more demands on the number of accepting paths.

- COMPOSITION $\in \text{RP}$; PRIMES $\in \text{coRP}$;
 PRIMES $\in \text{RP}$.
 - In fact, PRIMES $\in P$.

- $\text{RP} \cup \text{coRP}$ is an alternative “plausible” notion of efficient computation.

aRabin (1976); Solovay & Strassen (1977).
bAdleman & Huang (1987).
cAgrawal, Kayal, & Saxena (2002).
ZPPa (Zero Probabilistic Polynomial)

- The class ZPP is defined as RP \cap coRP.
- A language in ZPP has \textit{two} Monte Carlo algorithms, one with no false positives (RP) and the other with no false negatives (coRP).
- If we repeatedly run both Monte Carlo algorithms, \textit{eventually} one definite answer will come (unlike RP).
 - A \textit{positive} answer from the one without false positives.
 - A \textit{negative} answer from the one without false negatives.

aGill (1977).
The ZPP Algorithm (Las Vegas)

1: {Suppose $L \in \text{ZPP}.}$
2: {N_1 has no false positives, and N_2 has no false negatives.}
3: while true do
4: if $N_1(x)$ = “yes” then
5: return “yes”;
6: end if
7: if $N_2(x)$ = “no” then
8: return “no”;
9: end if
10: end while
ZPP (concluded)

• The *expected* running time for the correct answer to emerge is polynomial.

 – The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
 – Let $p(n)$ be the running time of each run of the while-loop.
 – The expected running time for a definite answer is
 \[
 \sum_{i=1}^{\infty} 0.5^i p(n) = 2p(n).
 \]

• Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.
Large Deviations

- Suppose you have a biased coin.
- One side has probability $0.5 + \epsilon$ to appear and the other $0.5 - \epsilon$, for some $0 < \epsilon < 0.5$.
- But you do not know which is which.
- How to decide which side is the more likely side—with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify your confidence?
The (Improved) Chernoff Bounda

Theorem 75 (Chernoff, 1952) Suppose x_1, x_2, \ldots, x_n are independent random variables taking the values 1 and 0 with probabilities p and $1 - p$, respectively. Let $X = \sum_{i=1}^{n} x_i$. Then for all $0 \leq \theta \leq 1$,

$$\text{prob}[X \geq (1 + \theta) pn] \leq e^{-\theta^2 pn/3}.$$

- The probability that the deviate of a binomial random variable from its expected value $E[X] = E[\sum_{i=1}^{n} x_i] = pn$ decreases exponentially with the deviation.

aHerman Chernoff (1923–). This bound is asymptotically optimal. The original bound is $e^{-2\theta^2 p^2 n}$ (McDiarmid, 1998).
The Proof

• Let t be any positive real number.

• Then

$$\text{prob}[X \geq (1 + \theta)pn] = \text{prob}[e^{tX} \geq e^{t(1+\theta)pn}].$$

• Markov’s inequality (p. 542) generalized to real-valued random variables says that

$$\text{prob}\left[e^{tX} \geq kE[e^{tX}]\right] \leq 1/k.$$

• With $k = e^{t(1+\theta)pn}/E[e^{tX}]$, we have\(^a\)

$$\text{prob}[X \geq (1 + \theta)pn] \leq e^{-t(1+\theta)pn}E[e^{tX}].$$

\(^a\)Note that X does not appear in k. Contributed by Mr. Ao Sun (R05922147) on December 20, 2016.
The Proof (continued)

- Because $X = \sum_{i=1}^{n} x_i$ and x_i’s are independent,

 $$E[e^{tX}] = (E[e^{tx_1}])^n = [1 + p(e^t - 1)]^n.$$

- Substituting, we obtain

 $$\text{prob}[X \geq (1 + \theta)pn] \leq e^{-t(1+\theta)pn}[1 + p(e^t - 1)]^n \leq e^{-t(1+\theta)pn}e^{pn(e^t-1)}$$

 as $(1 + a)^n \leq e^{an}$ for all $a > 0$.

The Proof (concluded)

• With the choice of \(t = \ln(1 + \theta) \), the above becomes

\[
\text{prob}[X \geq (1 + \theta) pn] \leq e^{pn[\theta-(1+\theta)\ln(1+\theta)]}.
\]

• The exponent expands to\(^a\)

\[
-\frac{\theta^2}{2} + \frac{\theta^3}{6} - \frac{\theta^4}{12} + \cdots
\]

for \(0 \leq \theta \leq 1 \).

• But it is less than

\[
-\frac{\theta^2}{2} + \frac{\theta^3}{6} \leq \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \leq \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\frac{\theta^2}{3}.
\]

\(^a\)Or McDiarmid (1998): \(x - (1 + x) \ln(1 + x) \leq -3x^2/(6 + 2x) \) for all \(x \geq 0 \).
How Good Is the Bound?

Chernoff bound

true probability

n
Other Variations of the Chernoff Bound

The following can be proved similarly (prove it).

Theorem 76 *Given the same terms as Theorem 75 (p. 605),*

\[\text{prob}[X \leq (1 - \theta)pn] \leq e^{-\theta^2 pn/2}. \]

The following slightly looser inequalities achieve symmetry.

Theorem 77 (Karp, Luby, & Madras, 1989) *Given the same terms as Theorem 75 (p. 605) except with \(0 \leq \theta \leq 2,\) *

\[\text{prob}[X \geq (1 + \theta)pn] \leq e^{-\theta^2 pn/4}, \]
\[\text{prob}[X \leq (1 - \theta)pn] \leq e^{-\theta^2 pn/4}. \]
Power of the Majority Rule

The next result follows from Theorem 76 (p. 610).

Corollary 78 If $p = (1/2) + \epsilon$ for some $0 \leq \epsilon \leq 1/2$, then

$$\text{prob} \left[\sum_{i=1}^{n} x_i \leq n/2 \right] \leq e^{-\epsilon^2 n/2}.$$

- The textbook’s corollary to Lemma 11.9 seems too loose, at $e^{-\epsilon^2 n/6}$.

- Our original problem (p. 604) hence demands, e.g.,

 $n \approx 1.4k/\epsilon^2$ independent coin flips to guarantee making an error with probability $\leq 2^{-k}$ with the majority rule.

aSee Dubhashi & Panconesi (2012) for many Chernoff-type bounds.
BPPa (Bounded Probabilistic Polynomial)

- The class BPP contains all languages L for which there is a precise polynomial-time NTM N such that:
 - If $x \in L$, then at least $3/4$ of the computation paths of N on x lead to “yes.”
 - If $x \notin L$, then at least $3/4$ of the computation paths of N on x lead to “no.”

- So N accepts or rejects by a clear majority.

aGill (1977).
Magic 3/4?

- The number 3/4 bounds the probability (ratio) of a right answer away from 1/2.

- Any constant \textit{strictly} between 1/2 and 1 can be used without affecting the class BPP.

- In fact, as with RP,

\[
\frac{1}{2} + \frac{1}{q(n)}
\]

for any polynomial \(q(n) \) can replace 3/4.

- The next algorithm shows why.
The Majority Vote Algorithm

Suppose L is decided by N by majority $(1/2) + \epsilon$.

1: for $i = 1, 2, \ldots, 2k + 1$ do
2: Run N on input x;
3: end for
4: if “yes” is the majority answer then
5: “yes”;
6: else
7: “no”;
8: end if
Analysis

• By Corollary 78 (p. 611), the probability of a false answer is at most $e^{-\epsilon^2 k}$.

• By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most 1/4.

• Even if ϵ is any inverse polynomial, k remains a polynomial in n.

• The running time remains polynomial: $2k + 1$ times N’s running time.
Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.
- \((\text{RP} \cup \text{coRP}) \subseteq (\text{NP} \cup \text{coNP})\).
- \((\text{RP} \cup \text{coRP}) \subseteq \text{BPP}\).
- Whether \(\text{BPP} \subseteq (\text{NP} \cup \text{coNP})\) is unknown.
- But it is unlikely that \(\text{NP} \subseteq \text{BPP}\).\(^a\)

\(^a\)See p. 628.
coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.

- An algorithm for \(L \in \text{BPP} \) becomes one for \(\overline{L} \) by reversing the answer.

- So \(\overline{L} \in \text{BPP} \) and \(\text{BPP} \subseteq \text{coBPP} \).

- Similarly \(\text{coBPP} \subseteq \text{BPP} \).

- Hence \(\text{BPP} = \text{coBPP} \).

- This approach does not work for RP.\(^a\)

\(^a\)It did not work for NP either.
BPP and coBPP
“The Good, the Bad, and the Ugly”
Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- Now, identify $\text{true}/1$ with “yes” and $\text{false}/0$ with “no.”
- Then a boolean circuit with n inputs accepts certain strings in $\{0, 1\}^n$.
- To relate circuits with an arbitrary language, we need one circuit for each possible input length n.
Formal Definitions

- The **size** of a circuit is the number of *gates* in it.
- A **family of circuits** is an infinite sequence $\mathcal{C} = (C_0, C_1, \ldots)$ of boolean circuits, where C_n has n boolean inputs.
- For input $x \in \{0, 1\}^\ast$, $C_{|x|}$ outputs 1 if and only if $x \in L$.
- In other words,

 $$C_n \text{ accepts } L \cap \{0, 1\}^n.$$
Formal Definitions (concluded)

- $L \subseteq \{0, 1\}^*$ has \textbf{polynomial circuits} if there is a family of circuits C such that:
 - The size of C_n is at most $p(n)$ for some fixed polynomial p.
 - C_n accepts $L \cap \{0, 1\}^n$.
Exponential Circuits Suffice for All Languages

- Theorem 16 (p. 212) implies that there are languages that cannot be solved by circuits of size $2^n/(2n)$.
- But surprisingly, circuits of size 2^{n+2} can solve all problems, decidable or otherwise!
Exponential Circuits Suffice for All Languages (continued)

Proposition 79 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2} and depth $2n$.

- We will show that for any language $L \subseteq \{0, 1\}^*$, $L \cap \{0, 1\}^n$ can be decided by a circuit of size 2^{n+2}.

- Define boolean function $f : \{0, 1\}^n \to \{0, 1\}$, where

$$f(x_1x_2\cdots x_n) = \begin{cases} 1, & x_1x_2\cdots x_n \in L, \\ 0, & x_1x_2\cdots x_n \notin L. \end{cases}$$
The Proof (concluded)

- Clearly, any circuit that implements f decides $L \cap \{0, 1\}^n$.

- Now,

 $$f(x_1 x_2 \cdots x_n) = (x_1 \land f(1x_2 \cdots x_n)) \lor (\neg x_1 \land f(0x_2 \cdots x_n)).$$

- The circuit size $s(n)$ for $f(x_1 x_2 \cdots x_n)$ hence satisfies

 $$s(n) = 4 + 2s(n - 1)$$

 with $s(1) = 1$.

- Solve it to obtain $s(n) = 5 \times 2^{n-1} - 4 \leq 2^{n+2}$.

- The longest path consists of an alternating sequence of \lors and \lands.
The Circuit Complexity of P

Proposition 80 All languages in P have polynomial circuits.

- Let $L \in P$ be decided by a TM in time $p(n)$.
- By Corollary 35 (p. 319), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0, 1\}^n$.
- The size of that circuit depends only on L and the length of the input.
- The size of that circuit is polynomial in n.
Polynomial Circuits vs. P

• Is the converse of Proposition 80 true?
 – Do polynomial circuits accept only languages in P?
• No.
• Polynomial circuits can accept *undecidable* languages!\(^a\)

\(^a\)See p. 268 of the textbook.