Problem 1 (20 points) Let \(L = \{ (M, x, 1^k) \mid \text{NTM } M \text{ accepts } x \text{ in less than } k \text{ steps} \} \). Prove that \(L \) is in NP.

Proof: First, we can guess any input \(x \) and run \(M(x) \) to see if \(M \) accepts \(x \) in less than \(k \) steps. It takes \(O(k) \) time. To find \(x \) accepted by \(M \) in less than \(k \) steps, it takes \(O(2^k) \) time to check all possible combinations. So it is clear that \(L \) is in NP.

Problem 2 (20 points) Let \(G(V, E) \) be a directed graph with vertices \(V \) and edges \(E \). BIGCYCLE asks if \(G \) has a cycle of length equal or larger than \(|V|/2 \). Prove that BIGCYCLE is NP-complete. (Need to show that BIGCYCLE is in NP.)

Proof: We first prove that BIGCYCLE is in NP. Given a graph \(G \), one can guess a cycle and accept \(G \) if the length of the cycle is equal or larger than \(|V|/2 \). It can be done in polynomial time.

We proceed to reduce HAMILTONIAN CYCLE to BIGCYCLE. Let \(N \) be an NTM which decides BIGCYCLE. Construct an NTM \(M \) which decides HAMILTONIAN CYCLE as follows:

1: On input \(G(V, E) \) with \(|V| \).
2: Add exactly \(|V| \) isolated vertices to \(G \) to obtain \(G' \).
3: Run \(N(G') \).
4: If \(N \) accepts, accept.
5: Otherwise, reject.

Hence, \(G \in \text{HAMILTONIAN CYCLE} \) if and only if \(G' \in \text{BIGCYCLE} \). \(M \) runs in polynomial time. This completes the proof.

Problem 3 (20 points) Recall that the depth of a gate \(g \) is the length of the longest path in a circuit from \(g \) to an input gate. A circuit is leveled if every input of a gate in depth \(k \) comes from one in depth \(k-1 \). LEVELED CIRCUIT asks if a leveled circuit is satisfiable. Prove that LEVELED CIRCUIT is NP-complete. (No need to show it is in NP.)
Proof: We can obtain a leveled circuit from any circuit C by increasing the number of gates by a polynomial factor, as follows. This holds for the input gates. Inductively, suppose that all gates of depth $k - 1$ have length $k - 1$ for the shortest paths to the input gates. Now consider gates of depth k. Pick any gate g with a shorter shortest path to the input gates, say length $l < k$. Insert a series of $k - l \lor$ gates on the edge between g and its predecessor gate on one such path. These $k - l \lor$ gates have their two identical inputs. Note that $k - l = O(|C|)$. So they act as the identity function. The new circuit has size $O(|C|^2)$. Finally, recall that Circuit SAT is NP-complete by Cook’s Theorem.

Problem 4 (20 points) Prove that $\text{EXACT-}k\text{-COLORING}$, which asks if a graph can be colored where all k colors are used, is NP-complete. (Need to show that it is in NP.)

Proof: The problem is in NP because it is easy to check any coloring uses up all k colors. Given the input graph $G(V, E)$, add a clique with k nodes to obtain G'. Then G can be colored using up all k colors if and only if G' can be colored by exactly k colors.

Problem 5 (20 points) Show that validity is coNP-complete.

Proof: We first construct a TM which verifies the input x and accepts if $x \in \text{validity}$. It takes polynomial time. So $\text{validity} \in \text{coNP}$. Now we proceed to show that L can be reduced to validity for all $L \in \text{coNP}$. It is known that SAT is NP-complete. By Proposition 54 (see p. 457 of the slides), $\overline{\text{SAT}}$ is coNP-complete. So it suffices to show that $\overline{\text{SAT}}$ can be reduced to validity. Let N be an NTM which decides validity. Construct an NTM M which decides $\overline{\text{SAT}}$ as follows:

1: On input x, let $x' = \overline{x}$.
2: Run $N(x')$
3: If N accepts, halt and accept.
4: Otherwise, halt and reject.

M clearly runs in polynomial time. Hence, validity is coNP-complete.