
naesat

• The naesat (for “not-all-equal” sat) is like 3sat.

• But there must be a satisfying truth assignment under

which no clauses have all three literals equal in truth

value.

• Equivalently, there is a truth assignment such that each

clause has a literal assigned true and a literal assigned

false.

• Equivalently, there is a satisfying truth assignment

under which each clause has a literal assigned false.
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naesat (concluded)

• Take

φ = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

∧ (x1 ∨ x2 ∨ x3)

as an example.

• Then {x1 = true, x2 = false, x3 = false }
nae-satisfies φ because

(false ∨ true ∨ true) ∧ (false ∨ false ∨ true)

∧ (true ∨ false ∨ false).
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naesat Is NP-Completea

• Recall the reduction of circuit sat to sat on p. 285ff.

• It produced a CNF φ in which each clause has 1, 2, or 3

literals.

• Add the same variable z to all clauses with fewer than 3

literals to make it a 3sat formula.

• Goal: The new formula φ(z) is nae-satisfiable if and

only if the original circuit is satisfiable.

aSchaefer (1978).
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The Proof (continued)

• The following simple observation will be useful.

• Suppose T nae-satisfies a boolean formula φ.

• Let T̄ take the opposite truth value of T on every

variable.

• Then T̄ also nae-satisfies φ.a

aHesse’s Siddhartha (1922), “The opposite of every truth is just as

true!”
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The Proof (continued)

• Suppose T nae-satisfies φ(z).

– T̄ also nae-satisfies φ(z).

– Under T or T̄ , variable z takes the value false.

– This truth assignment T must satisfy all the clauses

of φ.

∗ Because z is not the reason that makes φ(z) true

under T anyway.

– So T |= φ.

– And the original circuit is satisfiable.
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The Proof (concluded)

• Suppose there is a truth assignment that satisfies the

circuit.

– Then there is a truth assignment T that satisfies

every clause of φ.

– Extend T by adding T (z) = false to obtain T ′.

– T ′ satisfies φ(z).

– So in no clauses are all three literals false under T ′.

– In no clauses are all three literals true under T ′.

∗ Need to go over the detailed construction on

pp. 286–288.
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Undirected Graphs

• An undirected graph G = (V,E) has a finite set of

nodes, V , and a set of undirected edges, E.

• It is like a directed graph except that the edges have no

directions and there are no self-loops.

• Use [ i, j ] to mean there is an undirected edge between

node i and node j.a

aAn equally good notation is { i, j }.
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Independent Sets

• Let G = (V,E) be an undirected graph.

• I ⊆ V .

• I is independent if there is no edge between any two

nodes i, j ∈ I .

• independent set: Given an undirected graph and a

goal K, is there an independent set of size K?

• Many applications.
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independent set Is NP-Complete

• This problem is in NP: Guess a set of nodes and verify

that it is independent and meets the count.

• We will reduce 3sat to independent set.

• Note: If a graph contains a triangle, any independent set

can contain at most one node of the triangle.

• The reduction will output graphs whose nodes can be

partitioned into disjoint triangles, one for each clause.a

aRecall that a reduction does not have to be an onto function.
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The Proof (continued)

• Let φ be a 3sat formula with m clauses.

• We will construct graph G with K = m.

• Furthermore, φ is satisfiable if and only if G has an

independent set of size K.

• Here is the reduction:

– There is a triangle for each clause with the literals as

the nodes’ labels.

– Add edges between x and ¬x for every variable x.
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(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)
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Same literal labels that appear in the same clause or

different clauses yield distinct nodes.
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The Proof (continued)

• Suppose G has an independent set I of size K = m.

– An independent set can contain at most m nodes,

one from each triangle.

– So I contains exactly one node from each triangle.

– Truth assignment T assigns true to those literals in I .

– T is consistent because contradictory literals are

connected by an edge; hence both cannot be in I .

– T satisfies φ because it has a node from every

triangle, thus satisfying every clause.a

aThe variables without a truth value can be assigned arbitrarily. Con-

tributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.
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The Proof (concluded)

• Suppose φ is satisfiable.

– Let truth assignment T satisfy φ.

– Collect one node from each triangle whose literal is

true under T .

– The choice is arbitrary if there is more than one true

literal.

– This set of m nodes must be independent by

construction.

∗ Because both literals x and ¬x cannot be assigned

true.
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Other independent set-Related NP-Complete
Problems

Corollary 43 independent set is NP-complete for

4-degree graphs.

Theorem 44 independent set is NP-complete for planar

graphs.

Theorem 45 (Garey & Johnson, 1977)) independent

set is NP-complete for 3-degree planar graphs.
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Is independent edge set Also NP-Complete?

• independent edge set: Given an undirected graph

and a goal K, is there an independent edge set of size K?

• This problem is equivalent to maximum matching!

• Maximum matching can be solved in polynomial time.a

aEdmonds (1965); Micali & V. Vazirani (1980).
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A Maximum Matching
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node cover

• We are given an undirected graph G and a goal K.

• node cover: Is there a set C with K or fewer nodes

such that each edge of G has at least one of its

endpoints (i.e., incident nodes) in C?

• Many applications.
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node cover (concluded)
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node cover Is NP-Complete

Corollary 46 (Karp, 1972) node cover is NP-complete.

• I is an independent set of G = (V,E) if and only if

V − I is a node cover of G.a

I

aFinish the reduction!
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Richard Karpa (1935–)

aTuring Award (1985).
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Remarksa

• Are independent set and node cover in P if K is a

constant?

– Yes, because one can do an exhaustive search on all

the possible node covers or independent sets (both(
n
K

)
= O(nK) of them, a polynomial).b

• Are independent set and node cover NP-complete

if K is a linear function of n?

– independent set with K = n/3 and node cover

with K = 2n/3 remain NP-complete by our

reductions.

aContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
bn = |V |.
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clique

• We are given an undirected graph G and a goal K.

• clique asks if there is a set C with K nodes such that

there is an edge between any two nodes i, j ∈ C.

• Many applications.
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clique (concluded)
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clique Is NP-Completea

Corollary 47 clique is NP-complete.

• Let Ḡ be the complement of G, where [x, y ] ∈ Ḡ if

and only if [x, y ] �∈ G.

• I is a clique in G ⇔ I is an independent set in Ḡ.

aKarp (1972).
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min cut and max cut

• A cut in an undirected graph G = (V,E) is a partition

of the nodes into two nonempty sets S and V − S.

• The size of a cut (S, V − S) is the number of edges

between S and V − S.

• min cut asks for the minimum cut size.

• min cut ∈ P by the maxflow algorithm.a

• max cut asks if there is a cut of size at least K.

– K is part of the input.

aFord & Fulkerson (1962); Orlin (2012) improves the running time to

O(|V | · |E |).
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A Cut of Size 4
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min cut and max cut (concluded)

• max cut has applications in circuit layout.

– The minimum area of a VLSI layout of a graph is not

less than the square of its maximum cut size.a

aRaspaud, Sýkora, & Vrťo (1995); Mak & Wong (2000).
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max cut Is NP-Completea

• We will reduce naesat to max cut.

• Given a 3sat formula φ with m clauses, we shall

construct a graph G = (V,E) and a goal K.

• Furthermore, there is a cut of size at least K if and only

if φ is nae-satisfiable.

• Our graph will have multiple edges between two nodes.

– Each such edge contributes one to the cut if its nodes

are separated.

aKarp (1972); Garey, Johnson, & Stockmeyer (1976). max cut re-

mains NP-complete even for graphs with maximum degree 3 (Makedon,

Papadimitriou, & Sudborough, 1985).
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The Proof

• Suppose φ’s m clauses are C1, C2, . . . , Cm.

• The boolean variables are x1, x2, . . . , xn.

• G has 2n nodes: x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn.

• Each clause with 3 distinct literals makes a triangle in G.

• For each clause with two identical literals, there are two

parallel edges between the two distinct literals.

– Call it a degenerate triangle.
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The Proof (continued)

• No need to consider clauses with one literal (why?).

• No need to consider clauses containing two opposite

literals xi and ¬xi (why?).

• For each variable xi, add ni copies of edge [ xi,¬xi ],

where ni is the number of occurrences of xi and ¬xi in φ.

• Note that
n∑

i=1

ni = 3m.

– The summation is simply the total number of literals.
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The Proof (continued)

• Set K = 5m.

• Suppose there is a cut (S, V − S) of size 5m or more.

• A clause (a triangle, i.e.) contributes at most 2 to a cut

no matter how you split it.

• Suppose some xi and ¬xi are on the same side of the

cut.

• They together contribute at most 2ni edges to the cut.

– They appear in at most ni different clauses.

– A clause contributes at most 2 to a cut.
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The Proof (continued)

• Either xi or ¬xi contributes at most ni to the cut by the

pigeonhole principle.

• Changing the side of that literal does not decrease the

size of the cut.

• Hence we assume variables are separated from their

negations.

• The total number of edges in the cut that join opposite

literals xi and ¬xi is
∑n

i=1 ni.

• But we knew
∑n

i=1 ni = 3m.
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The Proof (concluded)

• The remaining K − 3m ≥ 2m edges in the cut must

come from the m triangles that correspond to clauses.

• Each can contribute at most 2 to the cut.

• So all are split.

• A split clause means at least one of its literals is true

and at least one false.

• The other direction is left as an exercise.
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This Cut Does Not Meet the Goal K = 5× 3 = 15
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is 13 < 15.
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This Cut Meets the Goal K = 5× 3 = 15
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• (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ ¬x3 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3).

• The cut size is now 15.
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Remarks

• We had proved that max cut is NP-complete for

multigraphs.

• How about proving the same thing for simple graphs?a

• How to modify the proof to reduce 4sat to max cut?b

• All NP-complete problems are mutually reducible by

definition.c

– So they are equally hard in this sense.d

aContributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
bContributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
cContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
dContributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
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max bisection

• max cut becomes max bisection if we require that

|S | = |V − S |.

• It has many applications, especially in VLSI layout.
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max bisection Is NP-Complete

• We shall reduce the more general max cut to max

bisection.

• Add |V | = n isolated nodes to G to yield G′.

• G′ has 2n nodes.

• G′’s goal K is identical to G’s

– As the new nodes have no edges, they contribute 0 to

the cut.

• This completes the reduction.
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The Proof (concluded)

• A cut (S, V − S) can be made into a bisection by

allocating the new nodes between S and V − S.

• Hence each cut of G can be made a cut of G′ of the
same size, and vice versa.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 404



bisection width

• bisection width is like max bisection except that it

asks if there is a bisection of size at most K (sort of min

bisection).

• Unlike min cut, bisection width is NP-complete.

• We reduce max bisection to bisection width.

• Given a graph G = (V,E), where |V | is even, we
generate the complementa of G.

• Given a goal of K, we generate a goal of n2 −K.b

aRecall p. 387.
b|V | = 2n.
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The Proof (concluded)

• To show the reduction works, simply notice the following

easily verifiable claims.

– A graph G = (V,E), where |V | = 2n, has a bisection

of size K if and only if the complement of G has a

bisection of size n2 −K.

– So G has a bisection of size ≥ K if and only if its

complement has a bisection of size ≤ n2 −K.
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hamiltonian path Is NP-Completea

Theorem 48 Given an undirected graph, the question

whether it has a Hamiltonian path is NP-complete.

aKarp (1972).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 407



A Hamiltonian Path at IKEA, Covina, California?
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Random hamiltonian cycle

• Consider a random graph where each pair of nodes are

connected by an edge independently with probability

1/2.

• Then it contains a Hamiltonian cycle with probability

1− o(1).a

aFrieze & Reed (1998).
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tsp (d) Is NP-Complete

Corollary 49 tsp (d) is NP-complete.

• We will reduce hamiltonian path to tsp (d).

• Consider a graph G with n nodes.

• Create a weighted complete graph G′ with the same

nodes as G.

• Set dij = 1 on G′ if [ i, j ] ∈ G and dij = 2 on G′ if
[ i, j ] �∈ G.

– Note that G′ is a complete graph.

• Set the budget B = n+ 1.

• This completes the reduction.
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tsp (d) Is NP-Complete (continued)

• Suppose G′ has a tour of distance at most n+ 1.a

• Then that tour on G′ must contain at most one edge

with weight 2.

• If a tour on G′ contains one edge with weight 2, remove

that edge to arrive at a Hamiltonian path for G.

• Suppose a tour on G′ contains no edge with weight 2.

• Remove any edge to arrive at a Hamiltonian path for G.

aA tour is a cycle, not a path.
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tsp (d) Is NP-Complete (concluded)

• On the other hand, suppose G has a Hamiltonian path.

• There is a tour on G′ containing at most one edge with

weight 2.

– Start with a Hamiltonian path.

– Insert the edge connecting the beginning and ending

nodes to yield a tour.

• The total cost is then at most (n− 1) + 2 = n+ 1 = B.

• We conclude that there is a tour of length B or less on

G′ if and only if G has a Hamiltonian path.
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Random tsp

• Suppose each distance dij is picked uniformly and

independently from the interval [ 0, 1 ].

• Then the total distance of the shortest tour has a mean

value of β
√
n for some positive β.a

• In fact, the total distance of the shortest tour deviates

from the mean by more than t with probability at most

e−t2/(4n)!b

aBeardwood, Halton, & Hammersley (1959).
bRhee & Talagrand (1987); Dubhashi & Panconesi (2012).
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Graph Coloring

• k-coloring: Can the nodes of a graph be colored with

≤ k colors such that no two adjacent nodes have the

same color?a

• 2-coloring is in P (why?).

• But 3-coloring is NP-complete (see next page).

• k-coloring is NP-complete for k ≥ 3 (why?).

• exact-k-coloring asks if the nodes of a graph can be

colored using exactly k colors.

• It remains NP-complete for k ≥ 3 (why?).

ak is not part of the input; k is part of the problem statement.
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3-coloring Is NP-Completea

• We will reduce naesat to 3-coloring.

• We are given a set of clauses C1, C2, . . . , Cm each with 3

literals.

• The boolean variables are x1, x2, . . . , xn.

• We now construct a graph that can be colored with

colors { 0, 1, 2 } if and only if all the clauses can be

nae-satisfied.

aKarp (1972).
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The Proof (continued)

• Every variable xi is involved in a triangle [ a, xi,¬xi ]

with a common node a.

• Each clause Ci = (ci1 ∨ ci2 ∨ ci3) is also represented by a

triangle

[ ci1, ci2, ci3 ].

– Node cij and a node in an a-triangle [ a, xk,¬xk ]

with the same label represent distinct nodes.

• There is an edge between literal cij in the a-triangle and

the node representing the jth literal of Ci.
a

aAlternative proof: There is an edge between ¬cij and the node

that represents the jth literal of Ci. Contributed by Mr. Ren-Shuo Liu

(D98922016) on October 27, 2009.
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Construction for · · · ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ · · ·
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The Proof (continued)

Suppose the graph is 3-colorable.

• Assume without loss of generality that node a takes the

color 2.

• A triangle must use up all 3 colors.

• As a result, one of xi and ¬xi must take the color 0 and

the other 1.
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The Proof (continued)

• Treat 1 as true and 0 as false.a

– We are dealing with the a-triangles here, not the

clause triangles yet.

• The resulting truth assignment is clearly contradiction

free.

• As each clause triangle contains one color 1 and one

color 0, the clauses are nae-satisfied.

– Here, treat 0 as true and 1 as false.

aThe opposite also works.
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The Proof (continued)

Suppose the clauses are nae-satisfiable.

• Color node a with color 2.

• Color the nodes representing literals by their truth

values (color 0 for false and color 1 for true).

– We are dealing with the a-triangles here, not the

clause triangles.
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The Proof (continued)

• For each clause triangle:

– Pick any two literals with opposite truth values.a

– Color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

– Color the remaining node with color 2.

aBreak ties arbitrarily.
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The Proof (concluded)

• The coloring is legitimate.

– If literal w of a clause triangle has color 2, then its

color will never be an issue.

– If literal w of a clause triangle has color 1, then it

must be connected up to literal w with color 0.

– If literal w of a clause triangle has color 0, then it

must be connected up to literal w with color 1.
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More on 3-coloring and the Chromatic Number

• 3-coloring remains NP-complete for planar graphs.a

• Assume G is 3-colorable.

• There is a classic algorithm that finds a 3-coloring in

time O(3n/3) = 1.4422n.b

• It can be improved to O(1.3289n).c

aGarey, Johnson, & Stockmeyer (1976); Dailey (1980).
bLawler (1976).
cBeigel & Eppstein (2000).
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More on 3-coloring and the Chromatic Number
(concluded)

• The chromatic number χ(G) is the smallest number

of colors needed to color a graph G.

• There is an algorithm to find χ(G) in time

O((4/3)n/3) = 2.4422n.a

• It can be improved to O((4/3 + 34/3/4)n) = O(2.4150n)b

and 2nnO(1).c

• Computing χ(G) cannot be easier than 3-coloring.d

aLawler (1976).
bEppstein (2003).
cKoivisto (2006).
dContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
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tripartite matchinga (3dm)

• We are given three sets B, G, and H, each containing n

elements.

• Let T ⊆ B ×G×H be a ternary relation.

• tripartite matching asks if there is a set of n triples

in T , none of which has a component in common.

– Each element in B is matched to a different element

in G and different element in H.

Theorem 50 (Karp, 1972) tripartite matching is

NP-complete.

aPrincess Diana (November 20, 1995), “There were three of us in this

marriage, so it was a bit crowded.”
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Related Problems

• We are given a family F = {S1, S2, . . . , Sn } of subsets

of a finite set U and a budget B.

• set covering asks if there exists a set of B sets in F

whose union is U .

• set packing asks if there are B disjoint sets in F .

• exact cover asks if there are disjoint sets in F whose

union is U .

• Assume |U | = 3m for some m ∈ N and |Si | = 3 for all i.

• exact cover by 3-sets (x3c) asks if there are m sets

in F that are disjoint (so have U as their union).
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SET COVERING SET PACKING
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Related Problems (concluded)

Corollary 51 (Karp, 1972) set covering, set

packing, exact cover, and x3c are all NP-complete.

• Does set covering remain NP-complete when

|Si | = 3?a

• set covering is used to prove that the influence

maximization problem in social networks is

NP-complete.b

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

September 22, 2015.
bKempe, Kleinberg, & Tardos (2003).
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