The Reachability Method

The computation of a time-bounded TM can be

represented by a directed graph.
The TM’s configurations constitute the nodes.

There is a directed edge from node = to node y if x

yields ¢ in one step.

The start node representing the initial configuration has

zero in-degree.
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The Reachability Method (concluded)

e¢ When the TM is nondeterministic, a node may have an

out-degree greater than one.

— The graph is the same as the computation tree

earlier.

— But identical configurations are merged into one

node.?

e So M accepts the input if and only if there is a path
from the start node to a node with a “yes” state.

It is the reachability problem.

2So we end up with a graph not a tree.
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lllustration of the Reachability Method

Initial
configuration
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Relations between Complexity Classes

Theorem 24 Suppose f(n) is proper. Then

. SPACE(f(n)) € NSPACE(f(n)),
TIME(f(n)) € NTIME(f(n)).
C

. NTIME(f(n)) € SPACE(f(n)).

. NSPACE(f(n)) C TIME(klgn+/(n)).

Proof of 2:
— Explore the computation tree of the NTM for “yes.”

— Specifically, generate an f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.
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Proof of Theorem 24(2)

e (continued)
Simulate the NTM based on the choices.
Recycle the space and repeat the above steps.

Halt with “yes” when a “yes” is encountered or “no”

if the tree is exhausted.

Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.
The total space is O(f(n)) because space is recycled.
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Proof of Theorem 24(3)
e Let k-string NTM

M= (K,3, A, s)
with input and output decide L € NSPACE(f(n)).

e Use the reachability method on the configuration graph
of M on input z of length n.

e A configuration is a (2k + 1)-tuple

<Q7w17u17w27u27 .- .,wk,’U,k).
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Proof of Theorem 24(3) (continued)

We only care about

(q, 1, Wa, U, ...y W1, Uk—1),

where ¢ is an integer between 0 and n for the position of
the first cursor.

The number of configurations is therefore at most

‘K‘ > (n 4+ 1) > ‘2 ‘2(k—2)f(n) _ O(Cllogn—l-f(n)) (2>

for some ¢y > 1, which depends on M.

Add edges to the configuration graph based on M’s

transition function.
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Proof of Theorem 24(3) (concluded)

e r € L & there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”,i,...).2

e This is REACHABILITY on a graph with O(cllOg nt/ ("))

nodes.

o It is in TIME(c'*8 /(™) for some ¢ > 1 because
REACHABILITY € TIME(n’) for some j and

j .
[Cllog n+f(n)} — (C{)log n+f(n)

@There may be many of them.
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Space-Bounded Computation and Proper Functions

e In the definition of space-bounded computations earlier
(p- 111), the TMs are not required to halt at all.

e When the space is bounded by a proper function f,
computations can be assumed to halt:

— Run the TM associated with f to produce a
quasi-blank output of length f(n) first.

— The space-bounded computation must repeat a

configuration if it runs for more than &7/ steps

for some ¢ > 1.2

2See Eq. (2) on p. 244.
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Space-Bounded Computation and Proper Functions
(concluded)

e (continued)

— So an infinite loop occurs during simulation for a

computation path longer than 87/ (") steps.

— Hence we only simulate up to 87T/ time steps

per computation path.
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A Grand Chain of Inclusions?

It is an easy application of Theorem 24 (p. 241) that

L CNL C P C NP C PSPACE C EXP.

By Corollary 21 (p. 236), we know L. C PSPACE.
So the chain must break somewhere between L and EXP.
It is suspected that all four inclusions are proper.

e But there are no proofs yet.

aWith input from Mr. Chin-Luei Chang (B89902053, R93922004,
D95922007) on October 22, 2004.
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What Is Wrong with the Proof7#
By Theorem 24(2) (p. 241),

NL C TIME (kOﬂog ”>> C TIME (n)

for some ¢; > 0.

e By Theorem 18 (p. 235),
TIME (n°t) C TIME (n“?) C P
for some ¢y > 1.

e SO
NL # P.

aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11,
2014.
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What Is Wrong with the Proof? (concluded)
e Recall from p. 225 that TIME(k®U°8™)) is a shorthand

for
| ) TIME (j0<10g“>) |
i>0

e So the correct proof runs more like

NL C | J TIME (j0<1°g">) C | TIME (n%) = P.
7>0 c>0

e And
NL #P

no longer follows.
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Nondeterministic and Deterministic Space

By Theorem 6 (p. 118),

NTIME(f(n)) € TIME(c/ (™),

an exponential gap.

There is no proof yet that the exponential gap is

inherent.
How about NSPACE vs. SPACE?

Surprisingly, the relation is only quadratic—a

polynomial—by Savitch’s theorem.
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Savitch's Theorem

Theorem 25 (Savitch, 1970)

REACHABILITY € SPACE(log® n).

e Let G(V, E) be a graph with n nodes.

e For ¢ >0, let
PATH(x,y,1)

mean there is a path from node = to node y of length at

most 2°.

e There is a path from z to y if and only if

PATH(z,y, [logn|)
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The Proof (continued)

For ¢ > 0, PATH(z, y, ) if and only if there exists a z
such that PATH(x, 2,7 — 1) and PATH(z,y,i — 1).

For PATH(x,y,0), check the input graph or if x = y.

Compute PATH(z, y, [logn]) with a depth-first search
on a graph with nodes (x,y,7)s (see next page).?

Like stacks in recursive calls, we keep only the current
path’s (x,y,1)s.

The space requirement is proportional to the depth of
the tree ([logn]|) times the size of the items stored at

each node.

@Contributed by Mr. Chuan-Yao Tan on October 11, 2011.
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The Proof (continued): Algorithm for PATH(x, y, 7)
: if © = 0 then
if t =y or (z,y) € E then
return true;

else

end if
. else
for z=1,2,....,ndo
if PATH(z, 2,7 — 1) and PATH(z,y,7 — 1) then
10: return true;
11: end if

end for

1
2
3
4
5: return false;
6
7
8
9

return false;
: end if
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The Proof (continued)

PATH(x,y,log n)

PATH(x,z,log n-1) PATH(z.y,log n-1)
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The Proof (concluded)

e Depth is [logn], and each node (x,y, %) needs space
O(logn).

e The total space is O(log” n).
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The Relation between Nondeterministic and
Deterministic Space Is Only Quadratic

Corollary 26 Let f(n) > logn be proper. Then
NSPACE(f(n)) € SPACE(f*(n)).

e Apply Savitch’s proof to the configuration graph of the
NTM on its input.

e From p. 244, the configuration graph has O(cf <”))

nodes; hence each node takes space O(f(n)).

e But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(c/ (™) space!

©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 257



The Proof (continued)

The way out is not to generate the graph at all.
Instead, keep the graph implicit.

We checked node connectedness only when 2 = 0 on

p. 254, by examining the input graph G.
Suppose we are given configurations xr and y.

Then we go over the Turing machine’s program to
determine if there is an instruction that can turn z into

y in one step.?

e So connectivity is checked locally and on demand.

@Thanks to a lively class discussion on October 15, 2003.
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The Proof (continued)

e The z variable in the algorithm on p. 254 simply runs
through all possible valid configurations.

— Let z=0,1,...,0(c/(™).

— Make sure z is a valid configuration before
proceeding with it.?
x Adopt the same width for each symbol and state of

the NTM and for the cursor position on the input
string.P

— If it is not, advance to the next z.

@Thanks to a lively class discussion on October 13, 2004.
PContributed by Mr. Jia-Ming Zheng (R04922024) on October 17,

2017.
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The Proof (concluded)
Each z has length O(f(n)).

So each node needs space O(f(n)).

The depth of the recursive call on p. 254 is O(log et (”>),
which is O(f(n)).

The total space is therefore O(f%(n)).
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Implications of Savitch's Theorem

Corollary 27 PSPACE = NPSPACE.
e Nondeterminism is less powerful with respect to space.

e Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.
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Nondeterministic Space Is Closed under Complement

e Closure under complement is trivially true for

deterministic complexity classes (p. 228).

e It is known that?

coNSPACE(f(n)) = NSPACE(f(n)). (3)

coNLL. = NL.

e But it is not known whether coNP = NP.

aSzelepscényi (1987); Immerman (1988).
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Reductions and Completeness
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It is unworthy of excellent men

to lose hours like slaves

in the labor of computation.
— Gottfried Wilhelm von Leibniz (1646-1716)

I thought perhaps you might be members of

that lowly section of the university
known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”
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Degrees of Difficulty

e When is a problem more difficult than another?

e B reduces to A if:

— There is a transformation R which for every problem

instance = of B yields a problem instance R(x) of A.?

— The answer to “R(z) € A?” is the same as the

answer to “x € B?”

— R is easy to compute.

e We say problem A is at least as hard as” problem B if B

reduces to A.

aSee also p. 149.
POr simply “harder than” for brevity.
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Reduction

> algorithm

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.?

@More general reductions are possible, such as the Turing (1939) re-
duction and the Cook (1971) reduction.
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Degrees of Difficulty (concluded)

e This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A
must be at least as hard.

— If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.?

— So if B is hard to solve, A must be hard (if not
harder), too!

@Thanks to a lively class discussion on October 13, 2009.
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Comments?

Suppose B reduces to A via a transformation R.P

The input z is an instance of B.
The output R(x) is an instance of A.

R(xz) may not span all possible instances of A.°

— Some instances of A may never appear in R’s range.

e But z must be an arbitrary instance for B.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
PSometimes, we say “B can be reduced to A.”
°R(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 20009.
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Is “Reduction” a Confusing Choice of Word?#

If B reduces to A, doesn’t that intuitively make A
smaller and simpler?

But our definition means just the opposite.
Our definition says in this case B is a special case of A.P

e Hence A is harder.

#Moore & Mertens (2011).
PSee also p. 152.
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Reduction between Languages

e Language L, is reducible to L, if there is a function R

computable by a deterministic TM in space O(logn).

e Furthermore, for all inputs =, x € Ly if and only if
R(ZU) c L2.

e R is said to be a (Karp) reduction from L; to L.
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Reduction between Languages (concluded)

e Note that by Theorem 24 (p. 241), R runs in polynomial

time.

— In most cases, a polynomial-time R suffices for
proofs.?

e Suppose R is a reduction from L to Ls.

e Then solving “R(x) € L2?” is an algorithm for solving
“r e L 7P

2In fact, unless stated otherwise, we will only require that the reduc-
tion R run in polynomial time. It is often called a polynomial-time

many-one reduction.
POf course, it may not be the most efficient.
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A Paradox?

Degree of difficulty is not defined in terms of absolute

complexity.

So a language B € TIME(n%?) may be “easier” than a
language A € TIME(n?) if B reduces to A.

But isn’t this a contradiction if the best algorithm for B

requires n”? steps?

That is, how can a problem requiring n”? steps be
reducible to a problem solvable in n® steps?
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Paradox Resolved
e The so-called contradiction is the result of flawed logic.

e Suppose we solve the problem “x € B?” via “R(x) € A?”

e We must consider the time spent by R(z) and its length
| B(x) |
— Because R(x) (not x) is solved by A.
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HAMILTONIAN PATH

e A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

e Suppose graph GG has n nodes: 1,2,...,n.

e A Hamiltonian path can be expressed as a permutation
mof {1,2,...,n} such that

— 7(i) = j means the ith position is occupied by node j.

— (m(i),w(i+ 1)) e Gfori=1,2,...,n— 1.
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HAMILTONIAN PATH (concluded)

e HAMILTONIAN PATH asks if a graph has a Hamiltonian
path.
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Reduction of HAMILTONIAN PATH to SAT

e Given a graph G, we shall construct a CNF# R(G) such
that R(G) is satisfiable if and only if G has a

Hamiltonian path.

e R(G) has n* boolean variables x;;, 1 < 1,5 < n.

® T;; INcans
the 7th position in the Hamiltonian path is

occupied by node j.

e Our reduction will produce clauses.

2Remember that R does not have to be onto.
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A Hamiltonian Path

T12 = T21 = T34 = T4 = T53 = Teg = T76 = Ly = Lo7 = 1;
(1) =2,72)=1,73) =4,7(4) =5,7(5) =3,7(6) =
9,7(7) =6,7(8) =8,7(9) =7,
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The Clauses of R(G) and Their Intended Meanings

1. Each node 5 must appear in the path.

e T1; Vx2; V-V x,; for each j.

. No node j appears twice in the path.
o —x;; V(= —(xij Axgy)) for all 4,5, k with i # k.

. Every position ¢ on the path must be occupied.

e ;1 VxioV---Vxin for each 1.

. No two nodes j and k occupy the same position in the path.
o x;; V ﬁxik(z ﬁ(aﬁij A\ azzk)) for all 7, 7, k with j # k.

. Nonadjacent nodes 2 and 7 cannot be adjacent in the path.

o Xy V Try1,(= (Tki A xks1,;)) for all (i,7) € E and
k=1,2,....n—1.
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The Proof

R(G) contains O(n?) clauses.

R(G) can be computed efficiently (simple exercise).
Suppose T' = R(G).

From the 1st and 2nd types of clauses, for each node j

there is a unique position ¢ such that 7' = z;;.

From the 3rd and 4th types of clauses, for each position
i there is a unique node j such that T' |= z;;.

So there is a permutation 7 of the nodes such that
m(i) = j if and only if T' = z;;.
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The Proof (concluded)

e The 5th type of clauses furthermore guarantee that
(w(1),7(2),...,7(n)) is a Hamiltonian path.

e Conversely, suppose G has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(xz;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).

©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 280



A Comment?

e An answer to “Is R(G) satisfiable?” answers the

question “Is G Hamiltonian?”

e But a “yes” does not give a Hamiltonian path for G.

— Providing a witness is not a requirement of reduction.

e A “yes” to “Is R(G) satisfiable?” plus a satisfying truth

assignment does provide us with a Hamiltonian path for

G.

2Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.
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Reduction of REACHABILITY to CIRCUIT VALUE
e Note that both problems are in P.

e Given a graph G = (V, F), we shall construct a
variable-free circuit R(G).

e The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

e Idea: the Floyd-Warshall algorithm.?

2Floyd (1962); Marshall (1962).
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The Gates
The gates are
— gijr With 1 <4, <nand 0 <k <n.
— hijr with 1 <4,j5,k < n.

gijk: There is a path from node ¢ to node j without
passing through a node bigger than k.

hiji: There is a path from node i to node j passing
through k£ but not any node bigger than k.

Input gate g;;0 = true if and only if i = j or (¢,5) € E.
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The Construction

hiji 1s an AND gate with predecessors g; i r—1 and
9k,j,k—1, where k = 1, 2, e ..y .

gijk 1s an OR gate with predecessors g; j r—1 and h; j i,

where k =1,2,...,n.
Jinn 18 the output gate.

Interestingly, R(G) uses no — gates.

— It is a monotone circuit.
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Reduction of CIRCUIT SAT to SAT

Given a circuit C', we will construct a boolean expression

R(C) such that R(C) is satisfiable if and only if C is.
— R(C') will turn out to be a CNF.

— R(C) is basically a depth-2 circuit; furthermore, each
gate has out-degree 1.

The variables of R(C) are those of C plus g for each
gate g of C.

— The g’s propagate the truth values for the CNF.
Each gate of C' will be turned into equivalent clauses.

Recall that clauses are Aed together by definition.
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The Clauses of R(C)

g is a variable gate x: Add clauses (—g V z) and (g V —x).
e Meaning: g & .

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a — gate with predecessor gate h: Add clauses
(g V —h) and (g V h).

e Meaning: g & —h.
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The Clauses of R(C') (continued)

g is a V gate with predecessor gates h and h': Add
clauses (—gV hV Rh'), (g vV —h), and (g V —h').

e The conjunction of the above clauses is equivalent to
[g= (AVH)IA[(RVE)=g]
= g< (hVh).

g is a A gate with predecessor gates h and h': Add
clauses (—g V h), (—g V k'), and (g V =h V =h').

e It is equivalent to

g< (hAR.
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The Clauses of R(C') (concluded)

g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

e Note: If gate g feeds gates hq, ho, ..., then variable g
appears in the clauses for hy, ho, ... in R(C).
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An Example

(hl p— 213‘1) A\ (hg = .I‘Q) AN (hg p— 213‘3) A\ (h4 p— 213‘4)

g1 (hi Ah2)] A g2 < (h3V hy)]
(93 (91 AN g2) | A (94 & —g2)
g5 < (93 V g4) | N gs.
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An Example (concluded)

The result is a CNF.

The CNF adds new variables to the circuit’s original

input variables.

The CNF has size proportional to the circuit’s number

of gates.

Had we used the idea on p. 210 for the reduction, the
resulting formula may have an exponential length

because of the copying.?

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.
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Composition of Reductions

Proposition 28 If Ri5 s a reduction from L to Loy and
Ro3 is a reduction from Lo to Ls, then the composition

R15 0 Ro3 is a reduction from Ly to Ls.

e So reducibility is transitive.?

@See Proposition 8.2 of the textbook for a proof.
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