The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM’s configurations constitute the nodes.
- There is a directed edge from node x to node y if x yields y in one step.
- The start node representing the initial configuration has zero in-degree.
The Reachability Method (concluded)

- When the TM is nondeterministic, a node may have an out-degree greater than one.
 - The graph is the same as the computation tree earlier.
 - But identical configurations are merged into one node.\(^a\)

- So \(M\) accepts the input if and only if there is a path from the start node to a node with a “yes” state.

- It is the reachability problem.

\(^a\)So we end up with a graph not a tree.
Illustration of the Reachability Method

Initial configuration

yes

yes
Relations between Complexity Classes

Theorem 24 Suppose $f(n)$ is proper. Then

1. $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$,
 $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$.

2. $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$.

3. $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k \log n + f(n))$.

- Proof of 2:
 - Explore the computation *tree* of the NTM for “yes.”
 - Specifically, generate an $f(n)$-bit sequence denoting
 the nondeterministic choices over $f(n)$ steps.
Proof of Theorem 24(2)

• (continued)
 – Simulate the NTM based on the choices.
 – Recycle the space and repeat the above steps.
 – Halt with “yes” when a “yes” is encountered or “no” if the tree is exhausted.
 – Each path simulation consumes at most \(O(f(n)) \) space because it takes \(O(f(n)) \) time.
 – The total space is \(O(f(n)) \) because space is recycled.
Proof of Theorem 24(3)

• Let \(k \)-string NTM

\[
M = (K, \Sigma, \Delta, s)
\]

with input and output decide \(L \in \text{NSPACE}(f(n)) \).

• Use the reachability method on the configuration graph of \(M \) on input \(x \) of length \(n \).

• A configuration is a \((2k + 1)\)-tuple

\[(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)\].
Proof of Theorem 24(3) (continued)

• We only care about

\((q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1})\),

where \(i\) is an integer between 0 and \(n\) for the position of the first cursor.

• The number of configurations is therefore at most

\[|K| \times (n + 1) \times |\Sigma|^{2(k-2)f(n)} = O(c_1^{\log n} + f(n)) \] \(2\)

for some \(c_1 > 1\), which depends on \(M\).

• Add edges to the configuration graph based on \(M\)’s transition function.
Proof of Theorem 24(3) (concluded)

• $x \in L \iff$ there is a path in the configuration graph from the initial configuration to a configuration of the form (“yes”, i, \ldots).\(^a\)

• This is REACHABILITY on a graph with $O(c_1 \log n + f(n))$ nodes.

• It is in $\text{TIME}(c \log n + f(n))$ for some $c > 1$ because REACHABILITY $\in \text{TIME}(n^j)$ for some j and

$$
\left[c_1 \log n + f(n) \right]^j = (c_1^j) \log n + f(n).
$$

\(^a\)There may be many of them.
Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier (p. 111), the TMs are not required to halt at all.

- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce a quasi-blank output of length $f(n)$ first.
 - The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n} + f(n)$ steps for some $c > 1$.

\(^{\text{a}}\)See Eq. (2) on p. 244.
Space-Bounded Computation and Proper Functions (concluded)

• (continued)
 – So an infinite loop occurs during simulation for a computation path longer than $c \log n + f(n)$ steps.
 – Hence we only simulate up to $c \log n + f(n)$ time steps per computation path.
A Grand Chain of Inclusions

- It is an easy application of Theorem 24 (p. 241) that
 \[L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP. \]
- By Corollary 21 (p. 236), we know \(L \not\subseteq PSPACE \).
- So the chain must break somewhere between \(L \) and \(EXP \).
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.

\(^a\)With input from Mr. Chin-Luei Chang (B89902053, R93922004, D95922007) on October 22, 2004.
What Is Wrong with the Proof?a

- By Theorem 24(2) (p. 241),
 \[\text{NL} \subseteq \text{TIME} \left(k^{O(\log n)} \right) \subseteq \text{TIME} \left(n^{c_1} \right) \]
 for some \(c_1 > 0 \).

- By Theorem 18 (p. 235),
 \[\text{TIME} \left(n^{c_1} \right) \subsetneq \text{TIME} \left(n^{c_2} \right) \subseteq \text{P} \]
 for some \(c_2 > c_1 \).

- So
 \[\text{NL} \neq \text{P}. \]

aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11, 2014.
What Is Wrong with the Proof? (concluded)

- Recall from p. 225 that $\text{TIME}(k^{O(\log n)})$ is a shorthand for
 \[\bigcup_{j>0} \text{TIME}\left(j^{O(\log n)}\right). \]

- So the correct proof runs more like
 \[\text{NL} \subseteq \bigcup_{j>0} \text{TIME}\left(j^{O(\log n)}\right) \subseteq \bigcup_{c>0} \text{TIME}\left(n^c\right) = \text{P}. \]

- And
 \[\text{NL} \neq \text{P} \]
 no longer follows.
Nondeterministic and Deterministic Space

• By Theorem 6 (p. 118),

\[\text{NTIME}(f(n)) \subseteq \text{TIME}(c^f(n)), \]

an exponential gap.

• There is no proof yet that the exponential gap is inherent.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic—a polynomial—by Savitch’s theorem.
Savitch’s Theorem

Theorem 25 (Savitch, 1970)

REACHABILITY ∈ SPACE(log^2 n).

- Let $G(V, E)$ be a graph with n nodes.
- For $i \geq 0$, let $\text{PATH}(x, y, i)$ mean there is a path from node x to node y of length at most 2^i.
- There is a path from x to y if and only if $\text{PATH}(x, y, \lceil \log n \rceil)$ holds.
The Proof (continued)

• For $i > 0$, $\text{PATH}(x, y, i)$ if and only if there exists a z such that $\text{PATH}(x, z, i - 1)$ and $\text{PATH}(z, y, i - 1)$.

• For $\text{PATH}(x, y, 0)$, check the input graph or if $x = y$.

• Compute $\text{PATH}(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, i)s (see next page).\(^a\)

• Like stacks in recursive calls, we keep only the current path’s (x, y, i)s.

• The space requirement is proportional to the depth of the tree $(\lceil \log n \rceil)$ times the size of the items stored at each node.

\(^a\)Contributed by Mr. Chuan-Yao Tan on October 11, 2011.
The Proof (continued): Algorithm for $\text{PATH}(x, y, i)$

1: if $i = 0$ then \\
2: \hspace{1em} if $x = y$ or $(x, y) \in E$ then \\
3: \hspace{2em} return true; \\
4: \hspace{1em} else \\
5: \hspace{2em} return false; \\
6: \hspace{1em} end if \\
7: else \\
8: \hspace{1em} for $z = 1, 2, \ldots, n$ do \\
9: \hspace{2em} if $\text{PATH}(x, z, i - 1)$ and $\text{PATH}(z, y, i - 1)$ then \\
10: \hspace{3em} return true; \\
11: \hspace{2em} end if \\
12: \hspace{1em} end for \\
13: \hspace{1em} return false; \\
14: end if
The Proof (continued)

PATH(x,y,log n)

PATH(x,z,log n-1) PATH(z,y,log n-1)

“yes” “no” “no”
The Proof (concluded)

- Depth is $\lceil \log n \rceil$, and each node (x, y, i) needs space $O(\log n)$.
- The total space is $O(\log^2 n)$.
The Relation between Nondeterministic and Deterministic Space Is Only Quadratic

Corollary 26 Let \(f(n) \geq \log n \) be proper. Then

\[
\text{NSPACE}(f(n)) \subseteq \text{SPACE}(f^2(n)).
\]

- Apply Savitch’s proof to the configuration graph of the NTM on its input.
- From p. 244, the configuration graph has \(O(cf(n)) \) nodes; hence each node takes space \(O(f(n)) \).
- But if we construct *explicitly* the whole graph before applying Savitch’s theorem, we get \(O(cf(n)) \) space!
The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We checked node connectedness only when $i = 0$ on p. 254, by examining the input graph G.
- Suppose we are given configurations x and y.
- Then we go over the Turing machine’s program to determine if there is an instruction that can turn x into y in one step.\(^a\)
- So connectivity is checked locally and on demand.

\(^a\)Thanks to a lively class discussion on October 15, 2003.
The Proof (continued)

• The z variable in the algorithm on p. 254 simply runs through all possible valid configurations.

 – Let $z = 0, 1, \ldots, O(c^f(n))$.

 – Make sure z is a valid configuration before proceeding with it.a

 * Adopt the same width for each symbol and state of the NTM and for the cursor position on the input string.b

 – If it is not, advance to the next z.

aThanks to a lively class discussion on October 13, 2004.
bContributed by Mr. Jia-Ming Zheng (R04922024) on October 17, 2017.
The Proof (concluded)

• Each z has length $O(f(n))$.

• So each node needs space $O(f(n))$.

• The depth of the recursive call on p. 254 is $O(\log c^f(n))$, which is $O(f(n))$.

• The total space is therefore $O(f^2(n))$.
Implications of Savitch’s Theorem

Corollary 27 \(PSPACE = NPSPACE \).

- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if \(P = NP \).
Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 228).

- It is known that\(^a\)

\[
\text{coNSPACE}(f(n)) = \text{NSPACE}(f(n)).
\]

(3)

- So

\[
\text{coNL} = \text{NL}.
\]

- But it is not known whether coNP = NP.

\(^a\)Szelepscényi (1987); Immerman (1988).
Reductions and Completeness
It is unworthy of excellent men
to lose hours like slaves
in the labor of computation.
— Gottfried Wilhelm von Leibniz (1646–1716)

I thought perhaps you might be members of
that lowly section of the university
known as the Sheffield Scientific School.
F. Scott Fitzgerald (1920), “May Day”
Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if:
 – There is a transformation R which for every problem instance x of B yields a problem instance $R(x)$ of A.\(^a\)
 – The answer to “$R(x) \in A$?” is the same as the answer to “$x \in B$?”
 – R is easy to compute.

• We say problem A is at least as hard as\(^b\) problem B if B reduces to A.

\(^a\)See also p. 149.
\(^b\)Or simply “harder than” for brevity.
Solving problem B by calling the algorithm for problem A once and without further processing its answer.\(^a\)

\(^a\)More general reductions are possible, such as the Turing (1939) reduction and the Cook (1971) reduction.
Degrees of Difficulty (concluded)

- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 - If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.\(^a\)
 - So if B is hard to solve, A must be hard (if not harder), too!

\(^a\)Thanks to a lively class discussion on October 13, 2009.
Comments\(^a\)

- Suppose B reduces to A via a transformation \(R\).\(^b\)
- The input \(x\) is an instance of B.
- The output \(R(x)\) is an instance of A.
- \(R(x)\) may not span all possible instances of A.\(^c\)
 - Some instances of A may never appear in \(R\)'s range.
- But \(x\) must be an arbitrary instance for B.

\(^a\)Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

\(^b\)Sometimes, we say “B can be reduced to A.”

\(^c\)\(R(x)\) may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.
Is “Reduction” a Confusing Choice of Word?a

- If B reduces to A, doesn’t that intuitively make A smaller and simpler?
- But our definition means just the opposite.
- Our definition says in this case B is a special case of A.b
- Hence A is harder.

aMoore & Mertens (2011).
bSee also p. 152.
Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs x, $x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) **reduction** from L_1 to L_2.
Reduction between Languages (concluded)

• Note that by Theorem 24 (p. 241), R runs in polynomial time.
 – In most cases, a polynomial-time R suffices for proofs.a

• Suppose R is a reduction from L_1 to L_2.

• Then solving “$R(x) \in L_2$?” is an algorithm for solving “$x \in L_1$?”b

aIn fact, unless stated otherwise, we will only require that the reduction R run in polynomial time. It is often called a **polynomial-time many-one reduction**.

bOf course, it may not be the most efficient.
A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $B \in \text{TIME}(n^{99})$ may be “easier” than a language $A \in \text{TIME}(n^3)$ if B reduces to A.
- But isn’t this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^3 steps?
Paradox Resolved

• The so-called contradiction is the result of flawed logic.
• Suppose we solve the problem “$x \in B$?” via “$R(x) \in A$?”
• We must consider the time spent by $R(x)$ and its length $|R(x)|$:
 – Because $R(x)$ (not x) is solved by A.
HAMILTONIAN PATH

• A Hamiltonian path of a graph is a path that visits every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, \ldots, n.

• A Hamiltonian path can be expressed as a permutation π of $\{1, 2, \ldots, n\}$ such that
 - $\pi(i) = j$ means the ith position is occupied by node j.
 - $(\pi(i), \pi(i + 1)) \in G$ for $i = 1, 2, \ldots, n - 1$.
HAMILTONIAN PATH (concluded)

• So

\[
\begin{pmatrix}
 1 & 2 & \cdots & n \\
 \pi(1) & \pi(2) & \cdots & \pi(n)
\end{pmatrix}.
\]

• HAMILTONIAN PATH asks if a graph has a Hamiltonian path.
Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF\(^a\) $R(G)$ such that $R(G)$ is satisfiable if and only if G has a Hamiltonian path.
- $R(G)$ has n^2 boolean variables x_{ij}, $1 \leq i, j \leq n$.
- x_{ij} means the ith position in the Hamiltonian path is occupied by node j.
- Our reduction will produce clauses.

\(^a\)Remember that R does not have to be onto.
A Hamiltonian Path

\[x_{12} = x_{21} = x_{34} = x_{45} = x_{53} = x_{69} = x_{76} = x_{88} = x_{97} = 1; \]
\[\pi(1) = 2, \pi(2) = 1, \pi(3) = 4, \pi(4) = 5, \pi(5) = 3, \pi(6) = 9, \pi(7) = 6, \pi(8) = 8, \pi(9) = 7. \]
The Clauses of $R(G)$ and Their Intended Meanings

1. Each node j must appear in the path.
 - $x_{1j} \lor x_{2j} \lor \cdots \lor x_{nj}$ for each j.

2. No node j appears twice in the path.
 - $\neg x_{ij} \lor \neg x_{kj} (\equiv \neg(x_{ij} \land x_{kj}))$ for all i, j, k with $i \neq k$.

3. Every position i on the path must be occupied.
 - $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$ for each i.

4. No two nodes j and k occupy the same position in the path.
 - $\neg x_{ij} \lor \neg x_{ik} (\equiv \neg(x_{ij} \land x_{ik}))$ for all i, j, k with $j \neq k$.

5. Nonadjacent nodes i and j cannot be adjacent in the path.
 - $\neg x_{ki} \lor \neg x_{k+1,j} (\equiv \neg(x_{k,i} \land x_{k+1,j}))$ for all $(i, j) \notin E$ and $k = 1, 2, \ldots, n - 1$.
The Proof

- $R(G)$ contains $O(n^3)$ clauses.
- $R(G)$ can be computed efficiently (simple exercise).
- Suppose $T \models R(G)$.
- From the 1st and 2nd types of clauses, for each node j there is a unique position i such that $T \models x_{ij}$.
- From the 3rd and 4th types of clauses, for each position i there is a unique node j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.
The Proof (concluded)

• The 5th type of clauses furthermore guarantee that
 \((\pi(1), \pi(2), \ldots, \pi(n))\) is a Hamiltonian path.

• Conversely, suppose \(G\) has a Hamiltonian path

 \[(\pi(1), \pi(2), \ldots, \pi(n)),\]

 where \(\pi\) is a permutation.

• Clearly, the truth assignment

 \[T(x_{ij}) = \text{true} \text{ if and only if } \pi(i) = j\]

 satisfies all clauses of \(R(G')\).
A Commenta

- An answer to “Is $R(G)$ satisfiable?” answers the question “Is G Hamiltonian?”

- But a “yes” does not give a Hamiltonian path for G.
 - Providing a witness is not a requirement of reduction.

- A “yes” to “Is $R(G)$ satisfiable?” plus a satisfying truth assignment does provide us with a Hamiltonian path for G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.
Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph \(G = (V, E) \), we shall construct a variable-free circuit \(R(G) \).
- The output of \(R(G) \) is true if and only if there is a path from node 1 to node \(n \) in \(G \).
- Idea: the Floyd-Warshall algorithm.\(^a\)

\(^a\)Floyd (1962); Marshall (1962).
The Gates

- The gates are
 - \(g_{ijk} \) with \(1 \leq i, j \leq n \) and \(0 \leq k \leq n \).
 - \(h_{ijk} \) with \(1 \leq i, j, k \leq n \).

- \(g_{ijk} \): There is a path from node \(i \) to node \(j \) without passing through a node bigger than \(k \).

- \(h_{ijk} \): There is a path from node \(i \) to node \(j \) passing through \(k \) but not any node bigger than \(k \).

- Input gate \(g_{ij0} = \text{true} \) if and only if \(i = j \) or \((i, j) \in E \).
The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where $k = 1, 2, \ldots, n$.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where $k = 1, 2, \ldots, n$.
- g_{1nn} is the output gate.
- Interestingly, $R(G)$ uses no \neg gates.
 - It is a monotone circuit.
Reduction of CIRCUIT SAT to SAT

- Given a circuit C, we will construct a boolean expression $R(C)$ such that $R(C)$ is satisfiable if and only if C is.
 - $R(C)$ will turn out to be a CNF.
 - $R(C)$ is basically a depth-2 circuit; furthermore, each gate has out-degree 1.

- The variables of $R(C)$ are those of C plus g for each gate g of C.
 - The g’s propagate the truth values for the CNF.

- Each gate of C will be turned into equivalent clauses.
- Recall that clauses are \landed together by definition.
The Clauses of $R(C')$

g is a variable gate x: Add clauses ($\neg g \lor x$) and ($g \lor \neg x$).

- Meaning: $g \iff x$.

g is a true gate: Add clause (g).

- Meaning: g must be true to make $R(C')$ true.

g is a false gate: Add clause ($\neg g$).

- Meaning: g must be false to make $R(C')$ true.

g is a \neg gate with predecessor gate h: Add clauses ($\neg g \lor \neg h$) and ($g \lor h$).

- Meaning: $g \iff \neg h$.
The Clauses of $R(C')$ (continued)

g is a \lor gate with predecessor gates h and h': Add clauses $(\neg g \lor h \lor h')$, $(g \lor \neg h)$, and $(g \lor \neg h')$.
- The conjunction of the above clauses is equivalent to

$$[g \Rightarrow (h \lor h')] \land [(h \lor h') \Rightarrow g]$$

$$\equiv g \Leftrightarrow (h \lor h').$$

g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(g \lor \neg h \lor \neg h')$.
- It is equivalent to

$$g \Leftrightarrow (h \land h').$$
The Clauses of $R(C')$ (concluded)

g is the output gate: Add clause (g).

- Meaning: g must be true to make $R(C')$ true.

- Note: If gate g feeds gates h_1, h_2, \ldots, then variable g appears in the clauses for h_1, h_2, \ldots in $R(C')$.

An Example

\[(h_1 \iff x_1) \land (h_2 \iff x_2) \land (h_3 \iff x_3) \land (h_4 \iff x_4)\]
\[\land [g_1 \iff (h_1 \land h_2)] \land [g_2 \iff (h_3 \lor h_4)]\]
\[\land [g_3 \iff (g_1 \land g_2)] \land (g_4 \iff \neg g_2)\]
\[\land [g_5 \iff (g_3 \lor g_4)] \land g_5.\]
An Example (concluded)

- The result is a CNF.
- The CNF adds new variables to the circuit’s original input variables.
- The CNF has size proportional to the circuit’s number of gates.
- Had we used the idea on p. 210 for the reduction, the resulting formula may have an exponential length because of the copying.

\(^a\text{Contributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.}\)
Composition of Reductions

Proposition 28 If R_{12} is a reduction from L_1 to L_2 and R_{23} is a reduction from L_2 to L_3, then the composition $R_{12} \circ R_{23}$ is a reduction from L_1 to L_3.

- So reducibility is transitive.\(^a\)

\(^a\)See Proposition 8.2 of the textbook for a proof.