Complementing a TM’s Halting States

- Let M decide L, and M' be M after “yes” \leftrightarrow “no”.
- If M is a deterministic TM, then M' decides \overline{L}.
 - So M and M' decide languages that complement each other.
- But if M is an NTM, then M' may not decide \overline{L}.
 - It is possible that M and M' accept the same input x (see next page).
 - So M and M' may accept languages that are not even disjoint.
Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time $f(n)$, where $f : \mathbb{N} \to \mathbb{N}$, if
 - N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than $f(|x|)$.

- We charge only the “depth” of the computation tree.
Time Complexity Classes under Nondeterminism

- \(\text{NTIME}(f(n)) \) is the set of languages decided by NTMs within time \(f(n) \).
- \(\text{NTIME}(f(n)) \) is a complexity class.
NP ("Nondeterministic Polynomial")

- Define

\[NP \triangleq \bigcup_{k>0} \text{NTIME}(n^k). \]

- Clearly \(P \subseteq NP \).

- Think of \(NP \) as efficiently *verifiable* problems (see p. 337).
 - Boolean satisfiability (p. 121 and p. 196), e.g.

- The most important open problem in computer science is whether \(P = NP \).
Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 6 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic TM M in time $O(cf(n))$, where $c > 1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search.
 - M does not need to know $f(n)$.
 - As N is time-bounded, the depth-first search will not run indefinitely.
The Proof (concluded)

• If any path leads to “yes,” then M immediately enters the “yes” state.

• If none of the paths lead to “yes,” then M enters the “no” state.

• The simulation takes time $O(c^f(n))$ for some $c > 1$ because the computation tree has that many nodes.

Corollary 7 $\text{NTIME}(f(n))) \subseteq \bigcup_{c>1} \text{TIME}(c^f(n))$.\(^a\)

\(^a\)Mr. Kai-Yuan Hou (B99201038, R03922014) on October 6, 2015: $\bigcup_{c>1} \text{TIME}(c^f(n)) \subseteq \text{NTIME}(f(n)))$?
NTIME vs. TIME

• Does converting an NTM into a TM require exploring all computation paths of the NTM as done in Theorem 6 (p. 118)?

• This is a key question in theory with important practical implications.
A Nondeterministic Algorithm for Satisfiability

\(\phi \) is a boolean formula with \(n \) variables.

1: \textbf{for} \(i = 1, 2, \ldots, n \) \textbf{do}
2: \hspace{1em} Guess \(x_i \in \{0, 1\} \); \{Nondeterministic choices.\}
3: \hspace{1em} \textbf{end for}
4: \{Verification:\}
5: \hspace{1em} \textbf{if} \(\phi(x_1, x_2, \ldots, x_n) = 1 \) \textbf{then}
6: \hspace{2em} “yes”;
7: \hspace{1em} \textbf{else}
8: \hspace{2em} “no”;
9: \hspace{1em} \textbf{end if}
Computation Tree for Satisfiability

$x_1 = 0$

$x_2 = 1$

$x_3 = 1$

$x_4 = 0$

$x_5 = 0$

$x_6 = 1$

$x_7 = 1$

$x_8 = 0$
Analysis

- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment\(^a\) out of 2^n.
- Recall that ϕ is satisfiable if and only if there is a truth assignment that satisfies ϕ.

\(^a\)Equivalently, a sequence of nondeterministic choices.
Analysis (concluded)

• The algorithm decides language

\[\{ \phi : \phi \text{ is satisfiable} \} . \]

 – Suppose \(\phi \) is satisfiable.
 * There is a truth assignment that satisfies \(\phi \).
 * So there is a computation path that results in “yes.”

 – Suppose \(\phi \) is not satisfiable.
 * That means every truth assignment makes \(\phi \) false.
 * So every computation path results in “no.”

• General paradigm: Guess a “proof” then verify it.
The Traveling Salesman Problem

• We are given \(n \) cities 1, 2, \ldots, \(n \) and integer distance \(d_{ij} \) between any two cities \(i \) and \(j \).

• Assume \(d_{ij} = d_{ji} \) for convenience.

• The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.\(^a\)

• The decision version TSP (D) asks if there is a tour with a total distance at most \(B \), where \(B \) is an input.\(^b\)

\(^a\)Each city is visited exactly once.
\(^b\)Both problems are extremely important. They are equally hard (p. 409 and p. 509).
A Shortest Path
A Nondeterministic Algorithm for TSP (D)

1: for $i = 1, 2, \ldots, n$ do
2: \hspace{1em} Guess $x_i \in \{1, 2, \ldots, n\}$; \{The ith city.\}\(^a\)
3: end for
4: {Verification:}
5: if x_1, x_2, \ldots, x_n are distinct and $\sum_{i=1}^{n-1} d_{x_i, x_{i+1}} \leq B$ then
6: \hspace{1em} “yes”;
7: else
8: \hspace{1em} “no”;
9: end if

\(^a\)Can be made into a series of $\log_2 n$ binary choices for each x_i so that the next-state count (2) is a constant, independent of input size. Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.
Analysis

• Suppose the input graph contains at least one tour of the cities with a total distance at most B.
 – Then there is a computation path for that tour.a
 – And it leads to “yes.”

• Suppose the input graph contains no tour of the cities with a total distance at most B.
 – Then every computation path leads to “no.”

aIt does not mean the algorithm will follow that path. It just means such a computation path (i.e., a sequence of nondeterministic choices) exists.
Remarks on the $P \stackrel{?}{=} NP$ Open Problema

- Many practical applications depend on answers to the $P \stackrel{?}{=} NP$ question.

- Verification of password should be easy (so it is in NP).
 - A computer should not take a long time to let a user log in.

- A password system should be hard to crack (loosely speaking, cracking it should not be in P).

- It took logicians 63 years to settle the Continuum Hypothesis; how long will it take for this one?

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.
Nondeterministic Space Complexity Classes

- Let L be a language.
- Then
 \[L \in \text{NSPACE}(f(n)) \]
 if there is an NTM with input and output that decides L
 and operates within space bound $f(n)$.
- $\text{NSPACE}(f(n))$ is a set of languages.
- As in the linear speedup theorem,\(^a\) constant coefficients
do not matter.

\(^a\)Theorem 5 (p. 95).
Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- REACHABILITY asks, given nodes a and b, does G contain a path from a to b?
- Can be easily solved in polynomial time by breadth-first search.
- How about its *nondeterministic* space complexity?
The First Try: NSPACE($n \log n$)

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x_1 := a$; \{Assume $a \neq b$.\}
3: for $i = 2, 3, \ldots, m$ do
4: \hspace{1em} Guess $x_i \in \{v_1, v_2, \ldots, v_m\}$; \{The ith node.\}
5: end for
6: for $i = 2, 3, \ldots, m$ do
7: \hspace{1em} if $(x_{i-1}, x_i) \notin E$ then
8: \hspace{2em} “no”;
9: \hspace{1em} end if
10: \hspace{1em} if $x_i = b$ then
11: \hspace{2em} “yes”;
12: \hspace{1em} end if
13: end for
14: “no”;

©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University
In Fact, \text{REACHABILITY} \in \text{NSPACE}(\log n)

1: Determine the number of nodes \(m \); \{Note \(m \leq n \).\}
2: \(x := a; \)
3: \textbf{for} \(i = 2, 3, \ldots, m \) \textbf{do}
4: \quad \text{Guess} \(y \in \{v_1, v_2, \ldots, v_m\} \); \{The next node.\}
5: \quad \textbf{if} \ (x, y) \not\in E \textbf{ then}
6: \quad \quad \text{“no”;}
7: \quad \textbf{end if}
8: \quad \textbf{if} \ y = b \textbf{ then}
9: \quad \quad \text{“yes”;}
10: \quad \textbf{end if}
11: \quad \textbf{end for}
12: \quad \textbf{end for}
13: \quad \text{“no”;}
Space Analysis

• Variables m, i, x, and y each require $O(\log n)$ bits.

• Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.

• Hence

\[
\text{REACHABILITY} \in \text{NSPACE}(\log n).
\]

 – REACHABILITY with more than one terminal node also has the same complexity.

 – In fact, REACHABILITY for undirected graphs is in $\text{SPACE}(\log n)$.\(^a\)

• REACHABILITY $\in \text{P}$ (see, e.g., p. 240).

\(^a\)Reingold (2005).
Undecidability
He [Turing] invented the idea of software, essentially.[.] It’s software that’s really the important invention.
— Freeman Dyson (2015)
Universal Turing Machinea

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.b
 - Both M and x are over the alphabet of U.

- U simulates M on x so that
 \[U(M; x) = M(x). \]

- U is like a modern computer, which executes any valid machine code, or a Java virtual machine, which executes any valid bytecode.

aTuring (1936).

bSee pp. 57–58 of the textbook.
The Halting Problem

• **Undecidable problems** are problems that have no algorithms.
 – Equivalently, they are languages that are not recursive.

• We now define a concrete undecidable problem, the **halting problem**:

\[H \triangleq \{ M; x : M(x) \neq \uparrow \}. \]

 – Does \(M \) halt on input \(x \)?

• \(H \) is called the **halting set**.
\(H \) Is RecursivelyEnumerable

- Use the universal TM \(U \) to simulate \(M \) on \(x \).
- When \(M \) is about to halt, \(U \) enters a “yes” state.
- If \(M(x) \) diverges, so does \(U \).
- This TM accepts \(H \).
H Is Not Recursivea

- Suppose H is recursive.
- Then there is a TM M_H that decides H.
- Consider the program $D(M)$ that calls M_H:
 1: if $M_H(M; M) =$ “yes” then
 2: ↗; {Writing an infinite loop is easy.}
 3: else
 4: “yes”;
 5: end if

aTuring (1936).
H Is Not Recursive (concluded)

- Consider $D(D)$:
 - $D(D) = \uparrow \Rightarrow M_H(D; D) = \text{"yes"} \Rightarrow D; D \in H \Rightarrow D(D) \neq \uparrow$, a contradiction.
 - $D(D) = \text{"yes"} \Rightarrow M_H(D; D) = \text{"no"} \Rightarrow D; D \notin H \Rightarrow D(D) = \uparrow$, a contradiction.
Comments

• Two levels of interpretations of M:\(^\text{a}\)
 – A sequence of 0s and 1s (data).
 – An encoding of instructions (programs).

• There are no paradoxes with $D(D)$.
 – Concepts should be familiar to computer scientists.
 – Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

\(^a\)Eckert & Mauchly (1943); von Neumann (1945); Turing (1946).
It seemed unworthy of a grown man
to spend his time on such trivialities,
but what was I to do? [...]
The whole of the rest of my life might be
consumed in looking at
that blank sheet of paper.
— Bertrand Russell (1872–1970),
Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider $R = \{A : A \not\in A\}$.

- If $R \in R$, then $R \not\in R$ by definition.
- If $R \not\in R$, then $R \in R$ also by definition.
- In either case, we have a “contradiction.”b

Eubulides: The Cretan says, “All Cretans are liars.”

aE.g., Quine (1966), \textit{The Ways of Paradox and Other Essays} and Hofstadter (1979), \textit{Gödel, Escher, Bach: An Eternal Golden Braid}.

bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your discovery of the contradiction […] has shaken the basis on which I intended to build arithmetic.”
Self-Loop Paradoxes (continued)

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient with imaginary symptoms and ailments.

Sharon Stone in *The Specialist* (1994): “I’m not a woman you can trust.”

Numbers 12:3, Old Testament: “Moses was the most humble person in all the world [⋯]” (attributed to Moses).

Psalms 116:11, Old Testament: “Everyone is a liar.”

\(^a\)Like Gödel and the pianist Glenn Gould (1932–1982).
Self-Loop Paradoxes (continued)

A restaurant in Boston: No Name Restaurant.

The Egyptian Book of the Dead: “ye live in me and I would live in you.”

\[\text{a}\]

\[\text{a}\]See also John 14:10 and 17:21.
Self-Loop Paradoxes (concluded)

Jerome K. Jerome (1887), *Three Men in a Boat*: “How could I wake you, when you didn’t wake me?”

Winston Churchill (January 23, 1948): “For my part, I consider that it will be found much better by all parties to leave the past to history, especially as I propose to write that history myself.”

Bertrand Russella (1872–1970)

Norbert Wiener (1953), “It is impossible to describe Bertrand Russell except by saying that he looks like the Mad Hatter.”

Karl Popper (1974), “perhaps the greatest philosopher since Kant.”

aNobel Prize in Literature (1950).
Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L' (such as H) is known to be undecidable.

• Find a computable transformation R (called reductiona) from L' to L such thatb

$$\forall x \{ x \in L' \text{ if and only if } R(x) \in L \}.$$

• Now we can answer “$x \in L'$?” for any x by answering “$R(x) \in L$?” because it has the same answer.

• L' is said to be reduced to L.

aPost (1944).
bContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
R algorithm for L'

$x \rightarrow R \rightarrow R(x) \rightarrow \text{algorithm for } L \rightarrow \text{yes/no}$
Reductions in Proving Undecidability (concluded)

- If L were decidable, \(" R(x) \in L? \) becomes computable and we have an algorithm to decide L', a contradiction!

- So L must be undecidable.

Theorem 8 Suppose language L_1 can be reduced to language L_2. If L_1 is undecidable, then L_2 is undecidable.
Special Cases and Reduction

• Suppose L_1 can be reduced to L_2.\(^a\)

• As the reduction R maps members of L_1 to a *subset* of L_2,\(^b\) we *may* say L_1 is a “special case” of L_2.\(^c\)

• That is one way to understand the use of the somewhat confusing term “reduction.”

\(^a\)Intuitively, L_2 can be used to solve L_1.

\(^b\)Because R may not be onto.

\(^c\)Contributed by Ms. Mei-Chih Chang (D03922022) and Mr. Kai-Yuan Hou (B99201038, R03922014) on October 13, 2015.
Subsets and Decidability

- Suppose L_1 is undecidable and $L_1 \subseteq L_2$.
- Is L_2 undecidable?\(^a\)
- It depends.
- When $L_2 = \Sigma^*$, L_2 is decidable: Just answer “yes.”
- If $L_2 - L_1$ is decidable, then L_2 is undecidable.
 - Clearly,
 \[
 x \in L_1 \text{ if and only if } x \in L_2 \text{ and } x \notin L_2 - L_1.
 \]
 - Therefore, if L_2 were decidable, then L_1 would be.

\(^a\)Contributed by Ms. Mei-Chih Chang (D03922022) on October 13, 2015.
Subsets and Decidability (concluded)

• Suppose \(L_2 \) is decidable and \(L_1 \subseteq L_2 \).

• Is \(L_1 \) decidable?

• It depends again.

• When \(L_1 = \emptyset \), \(L_1 \) is decidable: Just answer “no.”

• But if \(L_2 = \Sigma^* \) and \(L_1 = H \), then \(L_1 \) is undecidable.
The Universal Halting Problem

• The universal halting problem:

\[H^* \triangleq \{ M : M \text{ halts on all inputs} \}. \]

• It is also called the totality problem.
H* Is Not Recursive

- We will reduce \(H \) to \(H^* \).

- Given the question “\(M; x \in H \)”, construct the following machine (this is the reduction):

\[
M_x(y) \{ M(x); \}
\]

- \(M \) halts on \(x \) if and only if \(M_x \) halts on all inputs.

- In other words, \(M; x \in H \) if and only if \(M_x \in H^* \).

- So if \(H^* \) were recursive (recall the box for \(L \) on p. 150), \(H \) would be recursive, a contradiction.

\(^a\)Kleene (1936).

\(^b\)Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. \(M_x \) ignores its input \(y \); \(x \) is part of \(M_x \)’s code but not \(M_x \)’s input.
More Undecidability

- $\{ M; x : \text{there is a } y \text{ such that } M(x) = y \}$.
- $\{ M; x : \text{the computation } M \text{ on input } x \text{ uses all states of } M \}$.
- $\{ M; x; y : M(x) = y \}$.
Complements of Recursive Languages

The complement of L, denoted by \overline{L}, is the language $\Sigma^* - L$.

Lemma 9 If L is recursive, then so is \overline{L}.

- Let L be decided by M, which is deterministic.
- Swap the “yes” state and the “no” state of M.
- The new machine decides \overline{L}.

\(^{a}\)Recall p. 113.
Recursive and Recursively Enumerable Languages

Lemma 10 (Kleene’s theorem; Post, 1944) \(L \) is recursive if and only if both \(L \) and \(\overline{L} \) are recursively enumerable.

- Suppose both \(L \) and \(\overline{L} \) are recursively enumerable, accepted by \(M \) and \(\overline{M} \), respectively.
- Simulate \(M \) and \(\overline{M} \) in an \textit{interleaved} fashion.
- If \(M \) accepts, then halt on state “yes” because \(x \in L \).
- If \(\overline{M} \) accepts, then halt on state “no” because \(x \notin L \).
- The other direction is trivial.

\(^a\)Either \(M \) or \(\overline{M} \) (but not both) must accept the input and halt.
A Very Useful Corollary and Its Consequences

Corollary 11 \(L \) is recursively enumerable but not recursive, then \(\overline{L} \) is not recursively enumerable.

- Suppose \(\overline{L} \) is recursively enumerable.
- Then both \(L \) and \(\overline{L} \) are recursively enumerable.
- By Lemma 10 (p. 159), \(L \) is recursive, a contradiction.

Corollary 12 \(\overline{H} \) is not recursively enumerable.\(^a\)

\(^a\)Recall that \(\overline{H} \triangleq \{ M; x : M(x) = \uparrow \} \).
R, RE, and coRE

RE: The set of all recursively enumerable languages.

core: The set of all languages whose complements are recursively enumerable.

R: The set of all recursive languages.

- Note that coRE is not \(\overline{\text{RE}} \).
 - \(\text{coRE} \cong \{ L : \overline{L} \in \text{RE} \} = \{ \overline{L} : L \in \text{RE} \} \).
 - \(\overline{\text{RE}} \cong \{ L : L \notin \text{RE} \} \).
R, RE, and coRE (concluded)

• $R = RE \cap \text{coRE}$ (p. 159).

• There exist languages in RE but not in R and not in coRE.
 – Such as H (p. 139, p. 140, and p. 160).

• There are languages in coRE but not in RE.
 – Such as \bar{H} (p. 160).

• There are languages in neither RE nor coRE.
\[H \] Is Complete for RE\(^a\)

- Let \(L \) be any recursively enumerable language.
- Assume \(M \) accepts \(L \).
- Clearly, one can decide whether \(x \in L \) by asking if \(M : x \in H \).
- Hence all recursively enumerable languages are reducible to \(H \)!
- \(H \) is said to be \textbf{RE-complete}.

\(^a\)Post (1944).