
Sunflowers

• Fix p ∈ Z
+ and � ∈ Z

+.

• A sunflower is a family of p sets {P1, P2, . . . , Pp },
called petals, each of cardinality at most �.

• Furthermore, all pairs of sets in the family must have

the same intersection (called the core of the sunflower).

����
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A Sample Sunflower

{{ 1, 2, 3, 5 }, { 1, 2, 6, 9 }, { 0, 1, 2, 11 },
{ 1, 2, 12, 13 }, { 1, 2, 8, 10 }, { 1, 2, 4, 7 }}.
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The Erdős-Rado Lemma

Lemma 88 Let Z be a family of more than M
Δ
= (p− 1)��!

nonempty sets, each of cardinality � or less. Then Z must

contain a sunflower (with p petals).

• Induction on �.

• For � = 1, p different singletons form a sunflower (with

an empty core).

• Suppose � > 1.

• Consider a maximal subset D ⊆ Z of disjoint sets.

– Every set in Z −D intersects some set in D.
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The Proof of the Erdős-Rado Lemma (continued)

For example,

Z = {{ 1, 2, 3, 5 }, { 1, 3, 6, 9 }, { 0, 4, 8, 11 },
{ 4, 5, 6, 7 }, { 5, 8, 9, 10 }, { 6, 7, 9, 11 }},

D = {{ 1, 2, 3, 5 }, { 0, 4, 8, 11 }}.
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The Proof of the Erdős-Rado Lemma (continued)

• Suppose D contains at least p sets.

– D constitutes a sunflower with an empty core.

• Suppose D contains fewer than p sets.

– Let C be the union of all sets in D.

– |C | ≤ (p− 1)�.

– C intersects every set in Z by D’s maximality.

– There is a d ∈ C that intersects more than
M

(p−1)� = (p− 1)�−1(�− 1)! sets in Z .

– Consider Z ′ = {Z − { d } : Z ∈ Z , d ∈ Z }.
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The Proof of the Erdős-Rado Lemma (concluded)

• (continued)

– Z ′ has more than M ′ Δ
= (p− 1)�−1(�− 1)! sets.

– M ′ is just M with � replaced with �− 1.

– Z ′ contains a sunflower by induction, say

{P1, P2, . . . , Pp }.

– Now,

{P1 ∪ { d }, P2 ∪ { d }, . . . , Pp ∪ { d } }

is a sunflower in Z .
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Comments on the Erdős-Rado Lemma

• A family of more than M sets must contain a sunflower.

• Plucking a sunflower means replacing the sets in the

sunflower by its core.

• By repeatedly finding a sunflower and plucking it, we can

reduce a family with more than M sets to a family with

at most M sets.

• If Z is a family of sets, the above result is denoted by

pluck(Z).

• pluck(Z) is not unique.a

aIt depends on the sequence of sunflowers one plucks. Fortunately,

this issue is not material to the proof.
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An Example of Plucking

• Recall the sunflower on p. 811:

Z = {{ 1, 2, 3, 5 }, { 1, 2, 6, 9 }, { 0, 1, 2, 11 },
{ 1, 2, 12, 13 }, { 1, 2, 8, 10 }, { 1, 2, 4, 7 }}

• Then

pluck(Z) = {{ 1, 2 }}.
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Razborov’s Theorem

Theorem 89 (Razborov, 1985) There is a constant c

such that for large enough n, all monotone circuits for

cliquen,k with k = n1/4 have size at least ncn1/8

.

• We shall approximate any monotone circuit for

cliquen,k by a restricted kind of crude circuit.

• The approximation will proceed in steps: one step for

each gate of the monotone circuit.

• Each step introduces few errors (false positives and false

negatives).

• Yet, the final crude circuit has exponentially many

errors.
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The Proof

• Fix k = n1/4.

• Fix � = n1/8.

• Note thata

2

(
�

2

)
≤ k − 1.

• p will be fixed later to be n1/8 logn.

• Fix M = (p− 1)��!.

– Recall the Erdős-Rado lemma (p. 812).

aCorrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.
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The Proof (continued)

• Each crude circuit used in the approximation process is

of the form CC(X1, X2, . . . , Xm), where:

– Xi ⊆ V .

– |Xi| ≤ �.

– m ≤ M .

• It answers true if any Xi is a clique.

• We shall show how to approximate any monotone circuit

for cliquen,k by such a crude circuit, inductively.

• The induction basis is straightforward:

– Input gate gij is the crude circuit CC({i, j}).
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The Proof (continued)

• A monotone circuit is the or or and of two subcircuits.

• We will build approximators of the overall circuit from

the approximators of the two subcircuits.

– Start with two crude circuits CC(X ) and CC(Y).
– X and Y are two families of at most M sets of nodes,

each set containing at most � nodes.

– We will construct the approximate or and the

approximate and of these subcircuits.

– Then show both approximations introduce few errors.
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The Proof: or

• CC(X ∪Y) is equivalent to the or of CC(X ) and CC(Y).
– Trivially, a node set C ∈ X ∪ Y is a clique if and only

if C ∈ X is a clique or C ∈ Y is a clique.

• Violations in using CC(X ∪ Y) occur when
| X ∪ Y | > M .

• Such violations are eliminated by using

CC(pluck(X ∪ Y))

as the approximate or of CC(X ) and CC(Y).
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The Proof: or (continued)

• If CC(Z) is true, then CC(pluck(Z)) must be true.

– The quick reason: If Y is a clique, then a subset of Y

must also be a clique.

– Let Y ∈ Z be a clique.

– There must exist an X ∈ pluck(Z) such that X ⊆ Y .

– This X is also a clique.
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The Proof: or (continued)

Y

X
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The Proof: or (concluded)

• CC(pluck(X ∪ Y)) introduces a false positive if a

negative example makes both CC(X ) and CC(Y) return
false but makes CC(pluck(X ∪ Y)) return true.

• CC(pluck(X ∪ Y)) introduces a false negative if a

positive example makes either CC(X ) or CC(Y) return
true but makes CC(pluck(X ∪ Y)) return false.

• We next count the number of false positives and false

negatives introduceda by CC(pluck(X ∪ Y)).
• Let us work on false negatives for or first.

aCompared with CC(X ∪ Y) of course.
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The Number of False Negativesa

Lemma 90 CC(pluck(X ∪Y)) introduces no false negatives.

• Each plucking replaces sets in a crude circuit by their

common subset.

• This makes the test for cliqueness less stringent.b

aCC(pluck(X ∪ Y)) introduces a false negative if a positive example

makes either CC(X ) or CC(Y) return true but makes CC(pluck(X ∪Y))

return false.
bRecall p. 823.
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The Number of False Positives

Lemma 91 CC(pluck(X ∪ Y)) introduces at most
2M
p−1 2

−p(k − 1)n false positives.

• Each plucking operation replaces the sunflower

{Z1, Z2, . . . , Zp } with its common core Z.

• A false positive is necessarily a coloring such that:

– There is a pair of identically colored nodes in each

petal Zi (and so CC(Z1, Z2, . . . , Zp) returns false).

– But the core contains distinctly colored nodes (thus

forming a clique).

– This implies at least one node from each

identical-color pair was plucked away.
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Proof of Lemma 91 (continued)
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Proof of Lemma 91 (continued)

• We now count the number of such colorings.

• Color nodes in V at random with k − 1 colors.

• Let R(X) denote the event that there are repeated

colors in set X .
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Proof of Lemma 91 (continued)

• Now

prob[R(Z1) ∧ · · · ∧R(Zp) ∧ ¬R(Z) ] (24)

≤ prob[R(Z1) ∧ · · · ∧R(Zp) | ¬R(Z) ]

=

p∏
i=1

prob[R(Zi) | ¬R(Z) ]

≤
p∏

i=1

prob[R(Zi) ]. (25)

– First equality holds because R(Zi) are independent

given ¬R(Z) as Z contains their only common nodes.

– Last inequality holds as the likelihood of repetitions

in Zi decreases given no repetitions in its subset Z.
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Proof of Lemma 91 (continued)

• Consider two nodes in Zi.

• The probability that they have identical color is

1

k − 1
.

• Now

prob[R(Zi) ] ≤
(|Zi|

2

)
k − 1

≤
(
�
2

)
k − 1

≤ 1

2
.

• So the probabilitya that a random coloring is a new false

positive is at most 2−p by inequality (25) on p. 830.

aProportion, if you so prefer.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 831



Proof of Lemma 91 (continued)

• As there are (k − 1)n different colorings, each plucking

introduces at most 2−p(k − 1)n false positives.

• Recall that | X ∪ Y | ≤ 2M .

• When the procedure pluck(X ∪ Y) ends, the set system

contains ≤ M sets.
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Proof of Lemma 91 (concluded)

• Each plucking reduces the number of sets by p− 1.

• Hence at most 2M/(p− 1) pluckings occur in

pluck(X ∪ Y).
• At most

2M

p− 1
2−p(k − 1)n

false positives are introduced.a

aNote that the numbers of errors are added not multiplied. Recall that

we count how many new errors are introduced by each approximation

step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.
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The Proof: and

• The approximate and of crude circuits CC(X ) and

CC(Y) is
CC(pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })).

• We need to count the number of errors this approximate

and introduces on the positive and negative examples.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 834



The Proof: and (continued)

• The approximate and introduces a false positive if a

negative example makes either CC(X ) or CC(Y) return
false but makes the approximate and return true.

• The approximate and introduces a false negative if a

positive example makes both CC(X ) and CC(Y) return
true but makes the approximate and return false.

• Introduction of errors means we ignore scenarios where

the and of CC(X ) and CC(Y) is already wrong.
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The Proof: and (continued)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false

positives and no false negatives over our positive and

negative examples.a

– Suppose CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) returns
true.

– Then some Xi ∪ Yj is a clique.

– Thus Xi ∈ X and Yj ∈ Y are cliques, making both

CC(X ) and CC(Y) return true.

– So CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no
false positives.

aUnlike the or case on p. 822, we are not claiming that CC({Xi ∪
Yj : Xi ∈ X , Yj ∈ Y }) is equivalent to the and of CC(X ) and CC(Y).

Equivalence is more than we need in either case.
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The Proof: and (concluded)

• (continued)

– On the other hand, suppose both CC(X ) and CC(Y)
accept a positive example with a clique C of size k.

– This clique C must contain an Xi ∈ X and a Yj ∈ Y.
– As this clique C also contains Xi ∪ Yj ,

a the new

circuit returns true.

– CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no false

negatives.

• We now bound the number of false positives and false

negatives introducedb by the approximate and.
aSee next page.
bCompared with CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) of course.
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Yj Xi

Clique of size k
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The Number of False Positives

Lemma 92 The approximate and introduces at most

M22−p(k − 1)n false positives.

• We prove this claim in stages.

• We already knew CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y })
introduces no false positives.a

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })
introduces no additional false positives because we are

testing potentially fewer sets for cliqueness.

aRecall p. 836.
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Proof of Lemma 92 (concluded)

• | {Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � } | ≤ M2.

• Each plucking reduces the number of sets by p− 1.

• So pluck({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })
involves ≤ M2/(p− 1) pluckings.

• Each plucking introduces at most 2−p(k − 1)n false

positives by the proof of Lemma 91 (p. 827).

• The desired upper bound is

[M2/(p− 1) ] 2−p(k − 1)n ≤ M22−p(k − 1)n.
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The Number of False Negatives

Lemma 93 The approximate and introduces at most

M2
(
n−�−1
k−�−1

)
false negatives.

• We again prove this claim in stages.

• We knew CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y }) introduces no
false negatives.a

aRecall p. 836.
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Proof of Lemma 93 (continued)

• CC({Xi ∪ Yj : Xi ∈ X , Yj ∈ Y, |Xi ∪ Yj | ≤ � })
introduces ≤ M2

(
n−�−1
k−�−1

)
false negatives.

– Deletion of set Z
Δ
= Xi ∪ Yj larger than � introduces

false negatives only if Z is part of a clique.

– There are
(n−|Z |
k−|Z |

)
such cliques.

∗ It is the number of positive examples whose clique

contains Z.

–
(n−|Z |
k−|Z |

) ≤ (
n−�−1
k−�−1

)
as |Z | > �.

– There are at most M2 such Zs.
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Proof of Lemma 93 (concluded)

• Plucking introduces no false negatives.

– Recall that if CC(Z) is true, then CC(pluck(Z))

must be true.a

aRecall p. 823.
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Two Summarizing Lemmas

From Lemmas 91 (p. 827) and 92 (p. 839), we have:

Lemma 94 Each approximation step introduces at most

M22−p(k − 1)n false positives.

From Lemmas 90 (p. 826) and 93 (p. 841), we have:

Lemma 95 Each approximation step introduces at most

M2
(
n−�−1
k−�−1

)
false negatives.
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The Proof (continued)

• The above two lemmas show that each approximation

step introduces “few” false positives and false negatives.

• We next show that the resulting crude circuit has “a

lot” of false positives or false negatives.
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The Final Crude Circuit

Lemma 96 Every final crude circuit is:

1. Identically false—thus wrong on all positive examples.

2. Or outputs true on at least half of the negative examples.

• Suppose it is not identically false.

• By construction, it accepts at least those graphs that

have a clique on some set X of nodes, with

|X | ≤ � = n1/8 < n1/4 = k.
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Proof of Lemma 96 (concluded)

• The proof of Lemma 91 (p. 827ff) shows that at least

half of the colorings assign different colors to nodes in X .

• So at least half of the colorings — thus negative

examples — have a clique in X and are accepted.
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The Proof (continued)

• Recall the constants on p. 819:

k
Δ
= n1/4,

�
Δ
= n1/8,

p
Δ
= n1/8 logn,

M
Δ
= (p− 1)��! < n(1/3)n1/8

for large n.
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The Proof (continued)

• Suppose the final crude circuit is identically false.

– By Lemma 95 (p. 844), each approximation step

introduces at most M2
(
n−�−1
k−�−1

)
false negatives.

– There are
(
n
k

)
positive examples.

– The original monotone circuit for cliquen,k has at

least (
n
k

)
M2

(
n−�−1
k−�−1

) ≥ 1

M2

(
n− �

k

)�

≥ n(1/12)n1/8

gates for large n.
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The Proof (concluded)

• Suppose the final crude circuit is not identically false.

– Lemma 96 (p. 846) says that there are at least

(k − 1)n/2 false positives.

– By Lemma 94 (p. 844), each approximation step

introduces at most M22−p(k − 1)n false positives

– The original monotone circuit for cliquen,k has at

least

(k − 1)n/2

M22−p(k − 1)n
=

2p−1

M2
≥ n(1/3)n1/8

gates.
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Alexander Razborov (1963–)
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P 	= NP Proved?

• Razborov’s theorem says that there is a monotone

language in NP that has no polynomial monotone

circuits.

• If we can prove that all monotone languages in P have

polynomial monotone circuits, then P 	= NP.

• But Razborov proved in 1985 that some monotone

languages in P have no polynomial monotone circuits!
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