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Midterm Examination on May 16, 2019

Spring Semester, 2019

Problem 1 (20 points) The problem DOMINATING SET asks, given an undirected

graph G = (V,E) and a goal k, if there exists a set D ⊆ V with at most k nodes

such that every node not in D is adjacent to at least one element of D. Prove that

DOMINATING SET is NP-complete. (Hint: Recall that the NP-complete problem NODE

COVER asks, given an undirected graph G = (V,E) and a goal k, if there exists a set

C ⊆ V with at most k nodes such that each edge of G has at least one of endpoints in

C.)

Proof: It is clear that DOMINATING SET is in NP: guess a set with at most k nodes

and verify that it is a dominating set of the graph. Given an instance (G(V,E), k) of

NODE COVER, we transform it to an instance (G′(V ′, E ′), k) of DOMINATING SET as

follows. For each edge (u, v) ∈ E, we add a new node wu,v that is connected to both u

and v. So V ′ = V ∪{wu,v | (u, v) ∈ E} and E ′ = E ∪{(u,wu,v), (wu,v, v) | (u, v) ∈ E}. It is

clear that the reduction runs in polynomial time. We now prove that G has a node cover

of at most size k if and only if G′ has a dominating set of at most size k.

(→): If there exists a node cover set C of at most size k in G, then C is also a

dominating set of G′.

(←): Suppose that there exists a dominating set D of at most size k in G′. For all

node wu,v ∈ D corresponding to some edge (u, v) ∈ E, we replace wu,v of D by u to

produce D′. Note that if u is already in D, we just remove wu,v. By removing wu,v

from D, the only nodes that might become uncovered are wu,v, u, and v, but they

are covered by u. Clearly, D′ is a node cover of G.

Problem 2 (20 points) The problem PARTITION asks, given a set S of integers, if

there exists a partition of S into two subsets S1 and S2 = S−S1 such that
∑
x∈S1

x =
∑
x∈S2

x.

Prove that PARTITION is NP-complete. (Hint: Recall that the NP-complete problem

SUBSET SUM asks, given a set X of integers and a goal k, if there exists a subset Y ⊆ X

adding up to exactly k.)



Proof: It is clear that PARTITION is in NP: guess a subset S1 of S and verify that

whether
∑
x∈S1

x =
∑
x∈S2

x. We now reduce SUBSET SUM to PARTITION. The reduction

is S = X ∪ {t− 2k}, where t is the sum of members of X. It is clear that the reduction

runs in polynomial time. We now prove that (X, k) ∈ SUBSET SUM if and only if

S ∈ PARTITION.

(→): If there exists a subset Y ⊆ X adding up to k, then the remaining members in

X adding up to t−k. Therefore, there exists a partition of X ′ into X1 = Y ∪{t−2k}
and X2 = X ′ −X1 such that each partition sums to t− k.

(←): If there exists a partition of X ′ into two sets X1 and X2 such that each

partition sums to t − k, then a set of numbers adding up to t − k is obtained by

removing this number from one of two sets which contains the number t− 2k.

Problem 3 (20 points) The problem UNREACHABILITY asks, given an undirected

graph G = (V,E), two nodes a and b, and a goal k, if there does not exist a simple path

of length at least k from node a to b. Prove that UNREACHABILITY is coNP-complete.

Proof: Recall that L is NP-complete if and only if its complemet L̄ = Σ∗ − L is

coNP-complete. The problem REACHABILITY (L) askes, given an undirected graph

G = (V,E), two nodes a and b, and a goal k, if there exists a simple path of length

at least k from node a to b. Thus we only need to prove that REACHABILITY (L) is

NP-complete. It is clear that REACHABILITY (L) is in NP: guess a simple path of

length at least k from node a to b and verify it. Recall that HAMILTONIAN PATH

is NP-complete. Clearly, there exists a Hamiltonian path from a to b in G if and only

if there exists a simple path of length k from a to b in G. Hence the reduction from

HAMILTONIAN PATH produces G and k = |V | − 1.

Problem 4 (20 points) Recall the Legendre symbol (a | p), where p is an odd prime,

(a | p) =


0, if p | a,
1, if a is a quadratic residue module p,

−1, if a is a quadratic nonresidue module p.

Prove that
p∑

x=1

(x | p) = 0.



Proof: For a prime p, there exists a primitive root r module p. Obviously, (r | p) = −1.

Since (r, p) = 1, the map x→ rx(modp) defines a bijection on the set of residues modulo

p. Now,

p∑
x=1

(x | p) =

p∑
x=1

(rx | p)

=

p∑
x=1

(r | p)(x | p)

= −
p∑

x=1

(x | p).

Hence
p∑

x=1

(x | p) = 0.

Problem 5 (20 points) The problem COMPOSITENESS asks if an positive integer N

is a composite number. The problem PRIMES asks if an positive integer N is a prime

number. We know if N is an odd composite, then (M |N) ≡ M (N−1)/2 mod N for at

most half of M ∈ Φ(N) = {m | 1 ≤ m < N , gcd(m,N) = 1 }.

(1) Decribe a Morte Carlo (randomized) algorithm for COMPOSITENESS and give a

brief analysis of the algorithm’s error probabilities.

(2) Why is the algorithm not an algorithm for PRIMES?

Ans:

(1) See pp. 586–588 of the lecture notes.

(2) Because it contains false positives (for PRIMES).


