
Randomization vs. Nondeterminisma

• What are the differences between randomized algorithms

and nondeterministic algorithms?

• Think of a randomized algorithm as a nondeterministic

one but with a probability associated with every

guess/branch.

• So each computation path of a randomized algorithm

has a probability associated with it.

aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Al-

hasan (D01922034) on November 27, 2012.
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Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is

called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is

always correct (no false positives; no type 1

errors).

– If the algorithm answers in the negative, then it may

make an error (false negatives; type 2 errors).

aMetropolis & Ulam (1949).
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Monte Carlo Algorithms (continued)

• The algorithm makes a false negative with probability

≤ 0.5.a

• Again, this probability refers tob

prob[ algorithm answers “no” |G has a perfect matching ]

not

prob[G has a perfect matching | algorithm answers “no” ].

aEquivalently, among the coin flip sequences, at most half of them

lead to the wrong answer.
bIn general, prob[ algorithm answers “no” | input is a yes instance ].
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Monte Carlo Algorithms (concluded)

• This probability 0.5 is not over the space of all graphs or

determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.

• In contrast, to calculate

prob[G has a perfect matching | algorithm answers “no” ],

we will need the distribution of G.

• But it is an empirical statement that is very hard to

verify.
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The Markov Inequalitya

Lemma 67 Let x be a random variable taking nonnegative

integer values. Then for any k > 0,

prob[x ≥ kE[x ] ] ≤ 1/k.

• Let pi denote the probability that x = i.

E[x ] =
∑
i

ipi =
∑

i<kE[x ]

ipi +
∑

i≥kE[x ]

ipi

≥
∑

i≥kE[x ]

ipi ≥ kE[x ]
∑

i≥kE[x ]

pi

≥ kE[x ]× prob[x ≥ kE[x ]].

aAndrei Andreyevich Markov (1856–1922).
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Andrei Andreyevich Markov (1856–1922)
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fsat for k-sat Formulas (p. 500)

• Let φ(x1, x2, . . . , xn) be a k-sat formula.

• If φ is satisfiable, then return a satisfying truth

assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this

problem.
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A Random Walk Algorithm for φ in CNF Form

1: Start with an arbitrary truth assignment T ;

2: for i = 1, 2, . . . , r do

3: if T |= φ then

4: return “φ is satisfiable with T”;

5: else

6: Let c be an unsatisfied clause in φ under T ; {All of

its literals are false under T .}
7: Pick any x of these literals at random;

8: Modify T to make x true;

9: end if

10: end for

11: return “φ is unsatisfiable”;
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3sat vs. 2sat Again

• Note that if φ is unsatisfiable, the algorithm will answer

“unsatisfiable.”

• The random walk algorithm needs expected exponential

time for 3sat.

– In fact, it runs in expected O((1.333 · · ·+ ε)n) time

with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art as of 2014 is expected O(1.30704n)

time for 3sat and expected O(1.46899n) time for 4sat.c

aUse this setting per run of the algorithm.
bSchöning (1999). Makino, Tamaki, & Yamamoto (2011) improve the

bound to deterministic O(1.3303n).
cHertli (2014).
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Random Walk Works for 2sata

Theorem 68 Suppose the random walk algorithm with

r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= φ.

• Assume our starting T differs from T̂ in i values.

– Their Hamming distance is i.

– Recall T is arbitrary.

aPapadimitriou (1991).
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The Proof

• Let t(i) denote the expected number of repetitions of the

flipping stepa until a satisfying truth assignment is

found.

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= φ.

• If T �= T̂ or any other satisfying truth assignment, then

we need to flip the coin at least once.

• We flip a coin to pick among the 2 literals of a clause

not satisfied by the present T .

• At least one of the 2 literals is true under T̂ because T̂

satisfies all clauses.
aThat is, Statement 7.
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The Proof (continued)

• So we have at least a 50% chance of moving closer to T̂ .

• Thus

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ

from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n− 1) + 1

because at i = n, we can only decrease i.
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The Proof (continued)

• Now, put the necessary relations together:

t(0) = 0, (10)

t(i) ≤ t(i− 1) + t(i+ 1)

2
+ 1, 0 < i < n, (11)

t(n) ≤ t(n− 1) + 1. (12)

• Technically, this is a one-dimensional random walk with

an absorbing barrier at i = 0 and a reflecting barrier at

i = n (if we replace “≤” with “=”).a

aThe proof in the textbook does exactly that. But a student pointed

out difficulties with this proof technique on December 8, 2004. So our

proof here uses the original inequalities.
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The Proof (continued)

• Add up the relations for

2t(1), 2t(2), 2t(3), . . . , 2t(n− 1), t(n) to obtaina

2t(1) + 2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(0) + t(1) + 2t(2) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 1) + 1.

• Simplify it to yield

t(1) ≤ 2n− 1. (13)

aAdding up the relations for t(1), t(2), t(3), . . . , t(n−1) will also work,

thanks to Mr. Yen-Wu Ti (D91922010).
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The Proof (continued)

• Add up the relations for 2t(2), 2t(3), . . . , 2t(n− 1), t(n)

to obtain

2t(2) + · · ·+ 2t(n− 1) + t(n)

≤ t(1) + t(2) + 2t(3) + · · ·+ 2t(n− 2) + 2t(n− 1) + t(n)

+2(n− 2) + 1.

• Simplify it to yield

t(2) ≤ t(1) + 2n− 3 ≤ 2n− 1 + 2n− 3 = 4n− 4

by Eq. (13) on p. 544.
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The Proof (continued)

• Continuing the process, we shall obtain

t(i) ≤ 2in− i2.

• The worst upper bound happens when i = n, in which

case

t(n) ≤ n2.

• We conclude that

t(i) ≤ t(n) ≤ n2

for 0 ≤ i ≤ n.
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The Proof (concluded)

• So the expected number of steps is at most n2.

• The algorithm picks r = 2n2.

• Apply the Markov inequality (p. 535) with k = 2 to

yield the desired probability of 0.5.

• The proof does not yield a polynomial bound for 3sat.a

aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8,

2006.
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Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

≤ 1

2m

by Markov’s inequality.

• Alternatively, with the same running time, we can run

the “r = 2n2” algorithm m times.

• The error probability is now reduced to

≤ 2−m.
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Primality Tests

• primes asks if a number N is a prime.

• The classic algorithm tests if k |N for k = 2, 3, . . . ,
√
N .

• But it runs in Ω(2(log2 N)/2) steps.
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The Fermat Test for Primality

Fermat’s “little” theorem (p. 486) suggests the following

primality test for any given number N :

1: Pick a number a randomly from { 1, 2, . . . , N − 1 };
2: if aN−1 �≡ 1 mod N then

3: return “N is composite”;

4: else

5: return “N is (probably) a prime”;

6: end if
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The Fermat Test for Primality (concluded)

• Carmichael numbers are composite numbers that will

pass the Fermat test for all a ∈ { 1, 2, . . . , N − 1 }.a
– The Fermat test will return “N is a prime” for all

Carmichael numbers N .

• Unfortunately, there are infinitely many Carmichael

numbers.b

• In fact, the number of Carmichael numbers less than N

exceeds N2/7 for N large enough.

• So the Fermat test is an incorrect algorithm for primes.

aCarmichael (1910). Lo (1994) mentions an investment strategy based

on such numbers!
bAlford, Granville, & Pomerance (1992).
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Square Roots Modulo a Prime

• Equation x2 ≡ a mod p has at most two (distinct) roots

by Lemma 64 (p. 491).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are

called quadratic residues.

∗ They are

12 mod p, 22 mod p, . . . , (p− 1)2 mod p.

• We shall show that a number either has two roots or has

none, and testing which is the case is trivial.a

aBut no efficient deterministic general-purpose square-root-extracting

algorithms are known yet.
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Euler’s Test

Lemma 69 (Euler) Let p be an odd prime and

a �= 0 mod p.

1. If

a(p−1)/2 ≡ 1 mod p,

then x2 ≡ a mod p has two roots.

2. If

a(p−1)/2 �≡ 1 mod p,

then

a(p−1)/2 ≡ −1 mod p

and x2 ≡ a mod p has no roots.
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The Proof (continued)

• Let r be a primitive root of p.

• Fermat’s “little” theorem says rp−1 ≡ 1 mod p, so

r(p−1)/2

is a square root of 1.

• In particular,

r(p−1)/2 ≡ 1 or −1 mod p.

• But as r is a primitive root, r(p−1)/2 �≡ 1 mod p.

• Hence r(p−1)/2 ≡ −1 mod p.
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The Proof (continued)

• Let a = rk mod p for some k.

• Suppose a(p−1)/2 ≡ 1 mod p.

• Then

1 ≡ a(p−1)/2 ≡ rk(p−1)/2 ≡
[
r(p−1)/2

]k
≡ (−1)k mod p.

• So k must be even.
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The Proof (continued)

• Suppose a = r2j mod p for some 1 ≤ j ≤ (p− 1)/2.

• Then

a(p−1)/2 ≡ rj(p−1) ≡ 1 mod p.

• The two distinct roots of a are

rj ,−rj(≡ rj+(p−1)/2 mod p).

– If rj ≡ −rj mod p, then 2rj ≡ 0 mod p, which implies

rj ≡ 0 mod p, a contradiction as r is a primitive root.
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The Proof (continued)

• As 1 ≤ j ≤ (p− 1)/2, there are (p− 1)/2 such a’s.

• Each such a ≡ r2j mod p has 2 distinct square roots.

• The square roots of all these a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is { 1, 2, . . . , p− 1 }.
• As a result,

a = r2j mod p, 1 ≤ j ≤ (p− 1)/2,

exhaust all the quadratic residues.
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The Proof (concluded)

• Suppose a = r2j+1 mod p now.

• Then it has no square roots because all the square roots

have been taken.

• Finally,

a(p−1)/2 ≡
[
r(p−1)/2

]2j+1

≡ (−1)2j+1 ≡ −1 mod p.
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The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 69 (p. 553),

a(p−1)/2 mod p = ±1

for a �≡ 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) Δ
=

⎧⎪⎪⎨
⎪⎪⎩

0, if p | a,
1, if a is a quadratic residue modulo p,

−1, if a is a quadratic nonresidue modulo p.

• It is sometimes pronounced “a over p.”

aAndrien-Marie Legendre (1752–1833).
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The Legendre Symbol and Quadratic Residuacity Test

(concluded)

• Euler’s test (p. 553) implies

a(p−1)/2 ≡ (a | p) mod p

for any odd prime p and any integer a.

• Note that (ab | p) = (a | p)(b | p).
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Gauss’s Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd

primes. Then (q | p) = (−1)m, where m is the number of

residues in R
Δ
= { iq mod p : 1 ≤ i ≤ (p− 1)/2 } that are

greater than (p− 1)/2.

• All residues in R are distinct.

– If iq = jq mod p, then p | (j − i) or p | q.
– But neither is possible.

• No two elements of R add up to p.

– If iq + jq ≡ 0 mod p, then p | (i+ j) or p | q.
– But neither is possible.
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The Proof (continued)

• Replace each of the m elements a ∈ R such that

a > (p− 1)/2 by p− a.

– This is equivalent to performing −a mod p.

• Call the resulting set of residues R′.

• All numbers in R′ are at most (p− 1)/2.

• In fact, R′ = { 1, 2, . . . , (p− 1)/2 } (see illustration next

page).

– Otherwise, two elements of R would add up to p,a

which has been shown to be impossible.

aBecause then iq ≡ −jq mod p for some i �= j.
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p = 7 and q = 5.
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The Proof (concluded)

• Alternatively, R′ = {±iq mod p : 1 ≤ i ≤ (p− 1)/2 },
where exactly m of the elements have the minus sign.

• Take the product of all elements in the two

representations of R′.

• So

[(p− 1)/2]! ≡ (−1)mq(p−1)/2[(p− 1)/2]! mod p.

• Because gcd([(p− 1)/2]!, p) = 1, the above implies

1 = (−1)mq(p−1)/2 mod p.
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Legendre’s Law of Quadratic Reciprocitya

• Let p and q be two distinct odd primes.

• The next result says (p | q) and (q | p) are distinct if and

only if both p and q are 3 mod 4.

Lemma 71 (Legendre, 1785; Gauss)

(p | q)(q | p) = (−1)
p−1
2

q−1
2 .

aFirst stated by Euler in 1751. Legendre (1785) did not give a cor-

rect proof. Gauss proved the theorem when he was 19. He gave at

least 8 different proofs during his life. The 152nd proof appeared in

1963. A computer-generated formal proof was given in Russinoff (1990).

As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law

of Quadratic Reciprocity is the first nontrivial theorem that a student

encounters in the mathematics curriculum.”
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The Proof (continued)

• Sum the elements of R′ in the previous proof in mod2.

• On one hand, this is just
∑(p−1)/2

i=1 i mod 2.

• On the other hand, the sum equals

mp+

(p−1)/2∑
i=1

(
iq − p

⌊
iq

p

⌋)
mod 2

= mp+

⎛
⎝q

(p−1)/2∑
i=1

i− p

(p−1)/2∑
i=1

⌊
iq

p

⌋⎞⎠ mod 2.

– m of the iq mod p are replaced by p− iq mod p.

– But signs are irrelevant under mod2.

– m is as in Lemma 70 (p. 561).
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The Proof (continued)

• Ignore odd multipliers to make the sum equal

m+

⎛
⎝(p−1)/2∑

i=1

i−
(p−1)/2∑

i=1

⌊
iq

p

⌋⎞⎠ mod 2.

• Equate the above with
∑(p−1)/2

i=1 i modulo 2.

• Now simplify to obtain

m ≡
(p−1)/2∑

i=1

⌊
iq

p

⌋
mod 2.
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The Proof (continued)

• ∑(p−1)/2
i=1 	 iq

p 
 is the number of integral points below the

line

y = (q/p)x

for 1 ≤ x ≤ (p− 1)/2.

• Gauss’s lemma (p. 561) says (q | p) = (−1)m.

• Repeat the proof with p and q reversed.

• Then (p | q) = (−1)m
′
, where m′ is the number of

integral points above the line y = (q/p)x for

1 ≤ y ≤ (q − 1)/2.
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The Proof (concluded)

• As a result,

(p | q)(q | p) = (−1)m+m′
.

• But m+m′ is the total number of integral points in the

[1, p−1
2 ]× [1, q−1

2 ] rectangle, which is

p− 1

2

q − 1

2
.
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Eisenstein’s Rectangle

(p,q)

(p - 1)/2

(q - 1)/2

Above, p = 11, q = 7, m = 7, m′ = 8.
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The Jacobi Symbola

• The Legendre symbol only works for odd prime moduli.

• The Jacobi symbol (a |m) extends it to cases where m

is not prime.

– a is sometimes called the numerator and m the

denominator.

• Trivially, (1 |m) = 1.

• Define (a | 1) = 1.

aCarl Jacobi (1804–1851).
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The Jacobi Symbol (concluded)

• Let m = p1p2 · · · pk be the prime factorization of m.

• When m > 1 is odd and gcd(a,m) = 1, then

(a |m)
Δ
=

k∏
i=1

(a | pi).

– Note that the Jacobi symbol equals ±1.

– It reduces to the Legendre symbol when m is a prime.
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is

defined.

1. (ab |m) = (a |m)(b |m).

2. (a |m1m2) = (a |m1)(a |m2).

3. If a ≡ b mod m, then (a |m) = (b |m).

4. (−1 |m) = (−1)(m−1)/2 (by Lemma 70 on p. 561).

5. (2 |m) = (−1)(m
2−1)/8.a

6. If a and m are both odd, then

(a |m)(m | a) = (−1)(a−1)(m−1)/4.

aBy Lemma 70 (p. 561) and some parity arguments.
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Properties of the Jacobi Symbol (concluded)

• Properties 3–6 allow us to calculate the Jacobi symbol

without factorization.

– It will also yield the same result as Euler’s testa

when m is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that (a |m) = 1/(a |m) because (a |m) = ±1.b

aRecall p. 553.
bContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on

December 6, 2011.
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Calculation of (2200 | 999)
(2200 | 999) = (202 | 999)

= (2 | 999)(101 | 999)
= (−1)(999

2−1)/8(101 | 999)
= (−1)124750(101 | 999) = (101 | 999)
= (−1)(100)(998)/4(999 | 101) = (−1)24950(999 | 101)
= (999 | 101) = (90 | 101) = (−1)(101

2−1)/8(45 | 101)
= (−1)1275(45 | 101) = −(45 | 101)
= −(−1)(44)(100)/4(101 | 45) = −(101 | 45) = −(11 | 45)
= −(−1)(10)(44)/4(45 | 11) = −(45 | 11)
= −(1 | 11) = −1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 72 The group of set Φ(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,

pk, or 2pk for some nonnegative integer k and an odd prime

p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Testa

Lemma 73 If (M |N) ≡ M (N−1)/2 mod N for all

M ∈ Φ(N), then N is a prime. (Assume N is odd.)

• Assume N = mp, where p is an odd prime, gcd(m, p) = 1,

and m > 1 (not necessarily prime).

• Let r ∈ Φ(p) such that (r | p) = −1.

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod p,

M = 1 mod m.

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the text-

book’s proof for Lemma 11.8 is incorrect in January 1999 while he was

a senior.
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The Proof (continued)

• By the hypothesis,

M (N−1)/2 = (M |N) = (M | p)(M |m) = −1 mod N.

• Hence

M (N−1)/2 = −1 mod m.

• But because M = 1 mod m,

M (N−1)/2 = 1 mod m,

a contradiction.
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The Proof (continued)

• Second, assume that N = pa, where p is an odd prime

and a ≥ 2.

• By Theorem 72 (p. 576), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2
= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• As r ∈ Φ(N) (prove it), we have

rN−1 = 1 mod N.

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) | (N − 1),

which implies that p | (N − 1).

• But this is impossible given that p |N .
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The Proof (continued)

• Third, assume that N = mpa, where p is an odd prime,

gcd(m, p) = 1, m > 1 (not necessarily prime), and a is

even.

• The proof mimics that of the second case.

• By Theorem 72 (p. 576), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2
= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• In particular,

MN−1 = 1 mod pa (14)

for all M ∈ Φ(N).

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod pa,

M = 1 mod m.

• Because M = r mod pa and Eq. (14),

rN−1 = 1 mod pa.
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The Proof (concluded)

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) | (N − 1),

which implies that p | (N − 1).

• But this is impossible given that p |N .
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The Number of Witnesses to Compositeness

Theorem 74 (Solovay & Strassen, 1977) If N is an

odd composite, then (M |N) ≡ M (N−1)/2 mod N for at most

half of M ∈ Φ(N).

• By Lemma 73 (p. 577) there is at least one a ∈ Φ(N)

such that (a |N) �≡ a(N−1)/2 mod N .

• Let B
Δ
= { b1, b2, . . . , bk } ⊆ Φ(N) be the set of all

distinct residues such that (bi |N) ≡ b
(N−1)/2
i mod N .

• Let aB
Δ
= { abi mod N : i = 1, 2, . . . , k }.

• Clearly, aB ⊆ Φ(N), too.
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The Proof (concluded)

• | aB | = k.

– abi ≡ abj mod N implies N | a(bi − bj), which is

impossible because gcd(a,N) = 1 and N > | bi − bj |.
• aB ∩ B = ∅ because

(abi)
(N−1)/2 ≡ a(N−1)/2b

(N−1)/2
i �≡ (a |N)(bi |N) ≡ (abi |N).

• Combining the above two results, we know

|B |
φ(N)

≤ |B |
|B ∪ aB | = 0.5.
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1: if N is even but N �= 2 then

2: return “N is composite”;

3: else if N = 2 then

4: return “N is a prime”;

5: end if

6: Pick M ∈ { 2, 3, . . . , N − 1 } randomly;

7: if gcd(M,N) > 1 then

8: return “N is composite”;

9: else

10: if (M |N) ≡ M (N−1)/2 mod N then

11: return “N is (probably) a prime”;

12: else

13: return “N is composite”;

14: end if

15: end if
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Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for compositeness).

– When the algorithm says the number is composite, it

is always correct.
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Analysis (concluded)

• The probability of a false negative (again, for

compositeness) is at most one half.

– Suppose the input is composite.

– By Theorem 74 (p. 584),

prob[ algorithm answers “no” |N is composite ] ≤ 0.5.

– Note that we are not referring to the probability that

N is composite when the algorithm says “no.”

• So it is a Monte Carlo algorithm for compositeness.a

aNot primes.
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The Improved Density Attack for compositeness

All numbers < N

Witnesses to
compositeness of

N via Jacobi

Witnesses to
compositeness of

N via common
factor
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Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in

time p(n) and has 2 nondeterministic choices at each

step.

• N is a polynomial Monte Carlo Turing machine

for a language L if the following conditions hold:

– If x ∈ L, then at least half of the 2p(n) computation

paths of N on x halt with “yes” where n = |x |.
– If x �∈ L, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo

TMs is denoted RP (randomized polynomial time).a

aAdleman & Manders (1977).
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Comments on RP

• In analogy to Proposition 41 (p. 331), a “yes” instance

of an RP problem has many certificates (witnesses).

• There are no false positives.

• If we associate nondeterministic steps with flipping fair

coins, then we can phrase RP in the language of

probability.

– If x ∈ L, then N(x) halts with “yes” with probability

at least 0.5.

– If x �∈ L, then N(x) halts with “no.”
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Comments on RP (concluded)

• The probability of false negatives is ≤ 0.5.

• But any constant ε between 0 and 1 can replace 0.5.

– Repeat the algorithm k
Δ
= �− 1

log2 ε� times and answer

“no” only if all the runs answer “no.”

– The probability of false negatives becomes εk ≤ 0.5.
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Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except

that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with more demands

on the number of accepting paths.

• compositeness ∈ RP;a primes ∈ coRP;

primes ∈ RP.b

– In fact, primes ∈ P.c

• RP ∪ coRP is an alternative “plausible” notion of

efficient computation.
aRabin (1976); Solovay & Strassen (1977).
bAdleman & Huang (1987).
cAgrawal, Kayal, & Saxena (2002).
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ZPPa (Zero Probabilistic Polynomial)

• The class ZPP is defined as RP ∩ coRP.

• A language in ZPP has two Monte Carlo algorithms, one

with no false positives (RP) and the other with no false

negatives (coRP).

• If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

– A positive answer from the one without false

positives.

– A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L ∈ ZPP.}
2: {N1 has no false positives, and N2 has no false

negatives.}
3: while true do

4: if N1(x) = “yes” then

5: return “yes”;

6: end if

7: if N2(x) = “no” then

8: return “no”;

9: end if

10: end while
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ZPP (concluded)

• The expected running time for the correct answer to

emerge is polynomial.

– The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5 (why?).

– Let p(n) be the running time of each run of the

while-loop.

– The expected running time for a definite answer is

∞∑
i=1

0.5iip(n) = 2p(n).

• Essentially, ZPP is the class of problems that can be

solved, without errors, in expected polynomial time.
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