Randomization vs. Nondeterminism

- What are the differences between randomized algorithms and nondeterministic algorithms?
- Think of a randomized algorithm as a nondeterministic one but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

Contribution: Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.
Monte Carlo Algorithmsa

- The randomized bipartite perfect matching algorithm is called a \textbf{Monte Carlo algorithm} in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no \textbf{false positives}; no \textbf{type 1 errors}).
 - If the algorithm answers in the negative, then it may make an error (\textbf{false negatives}; \textbf{type 2 errors}).

aMetropolis & Ulam (1949).
Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability ≤ 0.5.\(^a\)

- Again, this probability refers to\(^b\)

 $\text{prob[algorithm answers “no” | } G \text{ has a perfect matching]}$

 not

 $\text{prob[} G \text{ has a perfect matching | algorithm answers “no”}]$.

\(^a\)Equivalently, among the coin flip sequences, at most half of them lead to the wrong answer.

\(^b\)In general, $\text{prob[algorithm answers “no” | input is a yes instance]}$.

Monte Carlo Algorithms (concluded)

• This probability 0.5 is *not* over the space of all graphs or determinants, but *over* the algorithm’s own coin flips.
 – It holds for *any* bipartite graph.

• In contrast, to calculate

\[
\text{prob}[G \text{ has a perfect matching} | \text{algorithm answers “no”}],
\]

we will need the distribution of \(G\).

• But it is an empirical statement that is very hard to verify.
The Markov Inequality\(^a\)

Lemma 67 Let \(x\) be a random variable taking nonnegative integer values. Then for any \(k > 0\),

\[
\text{prob}[x \geq kE[x]] \leq 1/k.
\]

- Let \(p_i\) denote the probability that \(x = i\).

\[
E[x] = \sum_i ip_i = \sum_{i<kE[x]} ip_i + \sum_{i\geq kE[x]} ip_i
\]

\[
\geq \sum_{i\geq kE[x]} ip_i \geq kE[x] \sum_{i\geq kE[x]} p_i
\]

\[
\geq kE[x] \times \text{prob}[x \geq kE[x]].
\]

\(^a\)Andrei Andreyevich Markov (1856–1922).
Andrei Andreyevich Markov (1856–1922)
FSAT for k-SAT Formulas (p. 500)

- Let $\phi(x_1, x_2, \ldots, x_n)$ be a k-SAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return “no.”
- We next propose a randomized algorithm for this problem.
A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T;
2: for $i = 1, 2, \ldots, r$ do
3: if $T \models \phi$ then
4: return “ϕ is satisfiable with T”;
5: else
6: Let c be an unsatisfied clause in ϕ under T; \{All of its literals are false under T.\}
7: Pick any x of these literals at random;
8: Modify T to make x true;
9: end if
10: end for
11: return “ϕ is unsatisfiable”;
3SAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will answer “unsatisfiable.”
- The random walk algorithm needs expected exponential time for 3SAT.
 - In fact, it runs in expected $O((1.333 \cdots + \epsilon)^n)$ time with $r = 3n$,\(^a\) much better than $O(2^n)$.\(^b\)
- We will show immediately that it works well for 2SAT.
- The state of the art as of 2014 is expected $O(1.30704^n)$ time for 3SAT and expected $O(1.46899^n)$ time for 4SAT.\(^c\)

\(^a\)Use this setting per run of the algorithm.
\(^b\)Schöning (1999). Makino, Tamaki, & Yamamoto (2011) improve the bound to deterministic $O(1.3303^n)$.
\(^c\)Hertli (2014).
Random Walk Works for 2SAT^a

Theorem 68 Suppose the random walk algorithm with $r = 2n^2$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in i values.
 - Their Hamming distance is i.
 - Recall T is arbitrary.

The Proof

- Let \(t(i) \) denote the expected number of repetitions of the flipping step\(^a\) until a satisfying truth assignment is found.
- It can be shown that \(t(i) \) is finite.
- \(t(0) = 0 \) because it means that \(T = \hat{T} \) and hence \(T \models \phi \).
- If \(T \neq \hat{T} \) or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present \(T \).
- At least one of the 2 literals is true under \(\hat{T} \) because \(\hat{T} \) satisfies all clauses.

\(^a\)That is, Statement 7.
The Proof (continued)

• So we have at least a 50% chance of moving closer to \(\hat{T} \).

• Thus

\[
t(i) \leq \frac{t(i - 1) + t(i + 1)}{2} + 1
\]

for \(0 < i < n \).

– Inequality is used because, for example, \(T \) may differ from \(\hat{T} \) in both literals.

• It must also hold that

\[
t(n) \leq t(n - 1) + 1
\]

because at \(i = n \), we can only decrease \(i \).
The Proof (continued)

• Now, put the necessary relations together:

$$t(0) = 0,$$ \hspace{1cm} (10)

$$t(i) \leq \frac{t(i-1) + t(i+1)}{2} + 1, \quad 0 < i < n, \hspace{1cm} (11)$$

$$t(n) \leq t(n-1) + 1. \hspace{1cm} (12)$$

• Technically, this is a one-dimensional random walk with an absorbing barrier at $i = 0$ and a reflecting barrier at $i = n$ (if we replace “≤” with “=”).\(^a\)

\(^a\)The proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.
The Proof (continued)

- Add up the relations for
 \[2t(1), 2t(2), 2t(3), \ldots, 2t(n-1), t(n) \]
 to obtain\(^a\)

 \[
 2t(1) + 2t(2) + \cdots + 2t(n-1) + t(n) \\
 \leq t(0) + t(1) + 2t(2) + \cdots + 2t(n-2) + 2t(n-1) + t(n) \\
 + 2(n-1) + 1.
 \]

- Simplify it to yield

 \[t(1) \leq 2n - 1. \quad (13) \]

\(^a\)Adding up the relations for \(t(1), t(2), t(3), \ldots, t(n-1) \) will also work,
thanks to Mr. Yen-Wu Ti (D91922010).
The Proof (continued)

- Add up the relations for $2t(2), 2t(3), \ldots, 2t(n - 1), t(n)$ to obtain

$$2t(2) + \cdots + 2t(n - 1) + t(n) \leq t(1) + t(2) + 2t(3) + \cdots + 2t(n - 2) + 2t(n - 1) + t(n) + 2(n - 2) + 1.$$

- Simplify it to yield

$$t(2) \leq t(1) + 2n - 3 \leq 2n - 1 + 2n - 3 = 4n - 4$$

by Eq. (13) on p. 544.
The Proof (continued)

• Continuing the process, we shall obtain
 \[t(i) \leq 2in - i^2. \]

• The worst upper bound happens when \(i = n \), in which case
 \[t(n) \leq n^2. \]

• We conclude that
 \[t(i) \leq t(n) \leq n^2 \]
 for \(0 \leq i \leq n \).
The Proof (concluded)

- So the expected number of steps is at most n^2.
- The algorithm picks $r = 2n^2$.
- Apply the Markov inequality (p. 535) with $k = 2$ to yield the desired probability of 0.5.
- The proof does not yield a polynomial bound for 3SAT.\(^a\)

\(^a\)Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.
Boosting the Performance

- We can pick $r = 2mn^2$ to have an error probability of

 $$\leq \frac{1}{2m}$$

 by Markov’s inequality.

- Alternatively, with the same running time, we can run the “$r = 2n^2$” algorithm m times.

- The error probability is now reduced to

 $$\leq 2^{-m}.$$
Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k = 2, 3, \ldots, \sqrt{N}$.
- But it runs in $\Omega(2^{(\log_2 N)/2})$ steps.
The Fermat Test for Primality

Fermat’s “little” theorem (p. 486) suggests the following primality test for any given number N:

1: Pick a number a randomly from $\{1, 2, \ldots, N - 1\}$;
2: if $a^{N-1} \not\equiv 1 \mod N$ then
3: return “N is composite”;
4: else
5: return “N is (probably) a prime”;
6: end if
The Fermat Test for Primality (concluded)

- **Carmichael numbers** are composite numbers that will pass the Fermat test for \(a \in \{ 1, 2, \ldots, N - 1 \} \).\(^a\)
 - The Fermat test will return “\(N \) is a prime” for all Carmichael numbers \(N \).

- Unfortunately, there are infinitely many Carmichael numbers.\(^b\)

- In fact, the number of Carmichael numbers less than \(N \) exceeds \(N^{2/7} \) for \(N \) large enough.

- So the Fermat test is an incorrect algorithm for PRIMES.

\(^a\)Carmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!

\(^b\)Alford, Granville, & Pomerance (1992).
Square Roots Modulo a Prime

• Equation \(x^2 \equiv a \mod p \) has at most two (distinct) roots by Lemma 64 (p. 491).

 – The roots are called square roots.

 – Numbers \(a \) with square roots and \(\gcd(a, p) = 1 \) are called quadratic residues.

 * They are

 \[
 1^2 \mod p, 2^2 \mod p, \ldots, (p - 1)^2 \mod p.
 \]

 • We shall show that a number either has two roots or has none, and testing which is the case is trivial.\(^a\)

\(^a\)But no efficient deterministic general-purpose square-root-extracting algorithms are known yet.
Euler’s Test

Lemma 69 (Euler) Let p be an odd prime and $a \neq 0 \bmod p$.

1. If

 $$a^{(p-1)/2} \equiv 1 \bmod p,$$

 then $x^2 \equiv a \bmod p$ has two roots.

2. If

 $$a^{(p-1)/2} \not\equiv 1 \bmod p,$$

 then

 $$a^{(p-1)/2} \equiv -1 \bmod p$$

 and $x^2 \equiv a \bmod p$ has no roots.
The Proof (continued)

• Let r be a primitive root of p.

• Fermat’s “little” theorem says $r^{p-1} \equiv 1 \mod p$, so

\[r^{(p-1)/2} \]

is a square root of 1.

• In particular,

\[r^{(p-1)/2} \equiv 1 \text{ or } -1 \mod p. \]

• But as r is a primitive root, $r^{(p-1)/2} \not\equiv 1 \mod p$.

• Hence $r^{(p-1)/2} \equiv -1 \mod p$.

The Proof (continued)

• Let $a = r^k \mod p$ for some k.

• Suppose $a^{(p-1)/2} \equiv 1 \mod p$.

• Then
 \[
 1 \equiv a^{(p-1)/2} \equiv r^{k(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^k \equiv (-1)^k \mod p.
 \]

• So k must be even.
The Proof (continued)

• Suppose \(a = r^{2j} \mod p \) for some \(1 \leq j \leq (p - 1)/2 \).

• Then

\[
a^{(p-1)/2} \equiv r^{j(p-1)} \equiv 1 \mod p.
\]

• The two distinct roots of \(a \) are

\[
r^j, -r^j (\equiv r^{j+(p-1)/2} \mod p).
\]

– If \(r^j \equiv -r^j \mod p \), then \(2r^j \equiv 0 \mod p \), which implies \(r^j \equiv 0 \mod p \), a contradiction as \(r \) is a primitive root.
The Proof (continued)

- As \(1 \leq j \leq (p - 1)/2\), there are \((p - 1)/2\) such \(a\)'s.
- Each such \(a \equiv r^{2j} \mod p\) has 2 distinct square roots.
- The square roots of all these \(a\)'s are distinct.
 - The square roots of different \(a\)'s must be different.
- Hence the set of square roots is \(\{1, 2, \ldots, p - 1\}\).
- As a result,
 \[
a = r^{2j} \mod p,\; 1 \leq j \leq (p - 1)/2,
 \]
 exhaust all the quadratic residues.
The Proof (concluded)

• Suppose \(a = r^{2j+1} \mod p \) now.

• Then it has no square roots because all the square roots have been taken.

• Finally,

\[
\begin{align*}
 a^{(p-1)/2} &\equiv \left[r^{(p-1)/2} \right]^{2j+1} \\
 &\equiv (-1)^{2j+1} \equiv -1 \mod p.
\end{align*}
\]
The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 69 (p. 553),
\[
a^{(p-1)/2} \mod p = \pm 1
\]
for \(a \not\equiv 0 \mod p\).

• For odd prime \(p\), define the Legendre symbol \((a \mid p)\) as
\[
(a \mid p) \overset{\Delta}{=} \begin{cases}
0, & \text{if } p \mid a, \\
1, & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1, & \text{if } a \text{ is a quadratic nonresidue modulo } p.
\end{cases}
\]

• It is sometimes pronounced “\(a \text{ over } p\).”

aAndrien-Marie Legendre (1752–1833).
The Legendre Symbol and Quadratic Residuacity Test
(concluded)

• Euler’s test (p. 553) implies

\[a^{(p-1)/2} \equiv (a \mid p) \mod p \]

for any odd prime \(p \) and any integer \(a \).

• Note that \((ab \mid p) = (a \mid p)(b \mid p)\).
Gauss’s Lemma

Lemma 70 (Gauss) Let p and q be two distinct odd primes. Then $(q | p) = (-1)^m$, where m is the number of residues in $R \triangleq \{ iq \mod p : 1 \leq i \leq (p - 1)/2 \}$ that are greater than $(p - 1)/2$.

- All residues in R are distinct.
 - If $iq = jq \mod p$, then $p | (j - i)$ or $p | q$.
 - But neither is possible.

- No two elements of R add up to p.
 - If $iq + jq \equiv 0 \mod p$, then $p | (i + j)$ or $p | q$.
 - But neither is possible.
The Proof (continued)

• Replace each of the \(m \) elements \(a \in R \) such that
 \[a > \frac{p - 1}{2} \]
 by \(p - a \).
 - This is equivalent to performing \(-a \mod p\).

• Call the resulting set of residues \(R' \).

• All numbers in \(R' \) are at most \(\frac{p - 1}{2} \).

• In fact, \(R' = \{1, 2, \ldots, \frac{p - 1}{2}\} \) (see illustration next page).
 - Otherwise, two elements of \(R \) would add up to \(p \),
 which has been shown to be impossible.

\[^a \text{Because then } iq \equiv -jq \mod p \text{ for some } i \neq j. \]
\[p = 7 \text{ and } q = 5. \]
The Proof (concluded)

- Alternatively, \(R' = \{ \pm iq \mod p : 1 \leq i \leq (p - 1)/2 \} \), where exactly \(m \) of the elements have the minus sign.

- Take the product of all elements in the two representations of \(R' \).

- So

\[
[(p - 1)/2]! \equiv (-1)^m q^{(p-1)/2} [((p - 1)/2)! \mod p].
\]

- Because \(\gcd([(p - 1)/2]!, p) = 1 \), the above implies

\[
1 = (-1)^m q^{(p-1)/2} \mod p.
\]
Legendre’s Law of Quadratic Reciprocitya

- Let p and q be two distinct odd primes.
- The next result says $(p \mid q)$ and $(q \mid p)$ are distinct if and only if both p and q are 3 mod 4.

Lemma 71 (Legendre, 1785; Gauss)

$$ (p \mid q)(q \mid p) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}}. $$

aFirst stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990). As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum.”
The Proof (continued)

- Sum the elements of R' in the previous proof in mod 2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

$$m p + \sum_{i=1}^{(p-1)/2} \left(i q - p \left\lfloor \frac{i q}{p} \right\rfloor \right) \mod 2$$

$$= m p + \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{i q}{p} \right\rfloor \right) \mod 2.$$

- m of the $i q \mod p$ are replaced by $p - i q \mod p$.
- But signs are irrelevant under mod 2.
- m is as in Lemma 70 (p. 561).
The Proof (continued)

- Ignore odd multipliers to make the sum equal

\[m + \left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2. \]

- Equate the above with \(\sum_{i=1}^{(p-1)/2} i \) modulo 2.

- Now simplify to obtain

\[m \equiv \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2. \]
The Proof (continued)

- \[\sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \] is the number of integral points below the line

\[y = \left(\frac{q}{p} \right) x \]

for \(1 \leq x \leq (p-1)/2 \).

- Gauss’s lemma (p. 561) says \((q \mid p) = (-1)^m \).

- Repeat the proof with \(p \) and \(q \) reversed.

- Then \((p \mid q) = (-1)^{m'} \), where \(m' \) is the number of integral points above the line \(y = \left(\frac{q}{p} \right) x \) for \(1 \leq y \leq (q-1)/2 \).
The Proof (concluded)

- As a result,
 \[(p \mid q)(q \mid p) = (-1)^{m+m'}\]

- But \(m + m'\) is the total number of integral points in the \([1, \frac{p-1}{2}] \times [1, \frac{q-1}{2}]\) rectangle, which is
 \[\frac{p-1}{2} \cdot \frac{q-1}{2} .\]
Eisenstein’s Rectangle

Above, \(p = 11 \), \(q = 7 \), \(m = 7 \), \(m' = 8 \).
The Jacobi Symbol\(^a\)

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol \((a \mid m)\) extends it to cases where \(m\) is not prime.
 - \(a\) is sometimes called the **numerator** and \(m\) the **denominator**.
- Trivially, \((1 \mid m) = 1\).
- Define \((a \mid 1) = 1\).

\(^a\)Carl Jacobi (1804–1851).
The Jacobi Symbol (concluded)

- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.

- When $m > 1$ is odd and $\gcd(a, m) = 1$, then

\[
(a \mid m) \triangleq \prod_{i=1}^{k} (a \mid p_i).
\]

- Note that the Jacobi symbol equals ± 1.
- It reduces to the Legendre symbol when m is a prime.
Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1. \((ab \mid m) = (a \mid m)(b \mid m)\).
2. \((a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2)\).
3. If \(a \equiv b \mod m\), then \((a \mid m) = (b \mid m)\).
4. \((-1 \mid m) = (-1)^{(m-1)/2}\) (by Lemma 70 on p. 561).
5. \((2 \mid m) = (-1)^{(m^2-1)/8}\).
6. If \(a\) and \(m\) are both odd, then
 \[(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}. \]

\(^a\)By Lemma 70 (p. 561) and some parity arguments.
Properties of the Jacobi Symbol (concluded)

• Properties 3–6 allow us to calculate the Jacobi symbol \(\text{without} \) factorization.

 – It will also yield the same result as Euler’s test\(^a\) when \(m \) is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that \((a | m) = 1/(a | m) \) because \((a | m) = \pm 1 \).\(^b\)

\(^a\)Recall p. 553.

\(^b\)Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.
Calculation of \((2200 \mid 999)\)

\[
(2200 \mid 999) = (202 \mid 999) \\
= (2 \mid 999)(101 \mid 999) \\
= (-1)^{999^2 - 1}/8 (101 \mid 999) \\
= (-1)^{124750} (101 \mid 999) = (101 \mid 999) \\
= (-1)(100)^{998}/4 (999 \mid 101) = (-1)^{24950} (999 \mid 101) \\
= (999 \mid 101) = (90 \mid 101) = (-1)^{101^2 - 1}/8 (45 \mid 101) \\
= (-1)^{1275} (45 \mid 101) = -(45 \mid 101) \\
= -(-1)(44)(100)/4 (101 \mid 45) = -(101 \mid 45) = -(11 \mid 45) \\
= -(-1)(10)(44)/4 (45 \mid 11) = -(45 \mid 11) \\
= -(1 \mid 11) = -1.
\]
A Result Generalizing Proposition 10.3 in the Textbook

Theorem 72 The group of set $\Phi(n)$ under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, p^k, or $2p^k$ for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.
The Jacobi Symbol and Primality Test

Lemma 73 If \((M \mid N) \equiv M^{(N-1)/2} \mod N\) for all \(M \in \Phi(N)\), then \(N\) is a prime. (Assume \(N\) is odd.)

- Assume \(N = mp\), where \(p\) is an odd prime, \(\gcd(m, p) = 1\), and \(m > 1\) (not necessarily prime).
- Let \(r \in \Phi(p)\) such that \((r \mid p) = -1\).
- The Chinese remainder theorem says that there is an \(M \in \Phi(N)\) such that
 \[
 M \equiv r \mod p, \\
 M \equiv 1 \mod m.
 \]

\(\text{a}\)Mr. Clement Hsiao (B4506061, R88526067) pointed out that the textbook’s proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.
The Proof (continued)

• By the hypothesis,

\[M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N. \]

• Hence

\[M^{(N-1)/2} = -1 \mod m. \]

• But because \(M = 1 \mod m, \)

\[M^{(N-1)/2} = 1 \mod m, \]

a contradiction.
The Proof (continued)

• Second, assume that $N = p^a$, where p is an odd prime and $a \geq 2$.

• By Theorem 72 (p. 576), there exists a primitive root r modulo p^a.

• From the assumption,

$$M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N$$

for all $M \in \Phi(N)$.
The Proof (continued)

• As $r \in \Phi(N)$ (prove it), we have

$$r^{N-1} = 1 \mod N.$$

• As r’s exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p - 1)$,

$$p^{a-1}(p - 1) \mid (N - 1),$$

which implies that $p \mid (N - 1)$.

• But this is impossible given that $p \mid N$.

The Proof (continued)

• Third, assume that \(N = mp^a \), where \(p \) is an odd prime, \(\gcd(m, p) = 1 \), \(m > 1 \) (not necessarily prime), and \(a \) is even.

• The proof mimics that of the second case.

• By Theorem 72 (p. 576), there exists a primitive root \(r \) modulo \(p^a \).

• From the assumption,

\[
M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N
\]

for all \(M \in \Phi(N) \).
The Proof (continued)

• In particular,

\[M^{N-1} = 1 \mod p^a \]

(14)

for all \(M \in \Phi(N) \).

• The Chinese remainder theorem says that there is an \(M \in \Phi(N) \) such that

\[
M = r \mod p^a, \\
M = 1 \mod m.
\]

• Because \(M = r \mod p^a \) and Eq. (14),

\[r^{N-1} = 1 \mod p^a. \]
The Proof (concluded)

• As r’s exponent modulo $N = p^a$ is $\phi(N) = p^{a-1}(p - 1)$,

 $$p^{a-1}(p - 1) \mid (N - 1),$$

 which implies that $p \mid (N - 1)$.

• But this is impossible given that $p \mid N$.
The Number of Witnesses to Compositeness

Theorem 74 (Solovay & Strassen, 1977) If N is an odd composite, then $(M \mid N) \equiv M^{(N-1)/2} \mod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 73 (p. 577) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \not\equiv a^{(N-1)/2} \mod N$.
- Let $B \triangleq \{ b_1, b_2, \ldots, b_k \} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i \mid N) \equiv b_i^{(N-1)/2} \mod N$.
- Let $aB \triangleq \{ ab_i \mod N : i = 1, 2, \ldots, k \}$.
- Clearly, $aB \subseteq \Phi(N)$, too.
The Proof (concluded)

- $|aB| = k$.

 - $ab_i \equiv ab_j \mod N$ implies $N | a(b_i - b_j)$, which is impossible because $\gcd(a, N) = 1$ and $N > |b_i - b_j|$.

- $aB \cap B = \emptyset$ because

 $$
 (a^i)^{(N-1)/2} \equiv a^{(N-1)/2} b_i^{(N-1)/2} \not\equiv (a \mid N) (b_i \mid N) \equiv (ab_i \mid N).
 $$

- Combining the above two results, we know

 $$
 \frac{|B|}{\phi(N)} \leq \frac{|B|}{|B \cup aB|} = 0.5.
 $$
1. if N is even but $N \neq 2$ then
2. return “N is composite”;
3. else if $N = 2$ then
4. return “N is a prime”;
5. end if
6. Pick $M \in \{2, 3, \ldots, N - 1\}$ randomly;
7. if $\gcd(M, N) > 1$ then
8. return “N is composite”;
9. else
10. if $(M | N) \equiv M^{(N-1)/2} \mod N$ then
11. return “N is (probably) a prime”;
12. else
13. return “N is composite”;
14. end if
15. end if
Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for COMPOSITENESS).
 – When the algorithm says the number is composite, it is always correct.
Analysis (concluded)

• The probability of a false negative (again, for COMPOSITENESS) is at most one half.
 – Suppose the input is composite.
 – By Theorem 74 (p. 584),
 \[
 \text{prob[algorithm answers “no” | } N \text{ is composite}] \leq 0.5.
 \]
 – Note that we are not referring to the probability that \(N\) is composite when the algorithm says “no.”

• So it is a Monte Carlo algorithm for COMPOSITENESS.a

aNot PRIMES.
The Improved Density Attack for COMPOSITENESS

All numbers $< N$

Witnesses to compositeness of N via common factor

Witnesses to compositeness of N via Jacobi
Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.

• N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
 – If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with “yes” where $n = |x|$.
 – If $x \notin L$, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo TMs is denoted \mathbf{RP} (randomized polynomial time).\(^a\)

\(^a\)Adleman & Manders (1977).
Comments on RP

- In analogy to Proposition 41 (p. 331), a “yes” instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of probability.
 - If \(x \in L \), then \(N(x) \) halts with “yes” with probability at least 0.5.
 - If \(x \notin L \), then \(N(x) \) halts with “no.”
Comments on RP (concluded)

- The probability of false negatives is ≤ 0.5.
- But *any* constant ϵ between 0 and 1 can replace 0.5.
 - Repeat the algorithm $k \overset{\Delta}{=} \lceil -\frac{1}{\log_2 \epsilon} \rceil$ times and answer “no” only if all the runs answer “no.”
 - The probability of false negatives becomes $\epsilon^k \leq 0.5$.
Where RP Fits

• $P \subseteq RP \subseteq NP$.

 – A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.

 – A Monte Carlo TM is an NTM with more demands on the number of accepting paths.

• $\text{compositeness} \in RP$; $\text{primes} \in \text{coRP}$; $\text{primes} \in RP$.

 – In fact, $\text{primes} \in P$.

• $RP \cup \text{coRP}$ is an alternative “plausible” notion of efficient computation.

\(^a\)Rabin (1976); Solovay & Strassen (1977).

\(^b\)Adleman & Huang (1987).

\(^c\)Agrawal, Kayal, & Saxena (2002).
ZPP\textsuperscript{\textnormal{a}} (Zero Probabilistic Polynomial)

- The class ZPP is defined as RP \cap coRP.
- A language in ZPP has two Monte Carlo algorithms, one with no false positives (RP) and the other with no false negatives (coRP).
- If we repeatedly run both Monte Carlo algorithms, *eventually* one definite answer will come (unlike RP).
 - A *positive* answer from the one without false positives.
 - A *negative* answer from the one without false negatives.

\textsuperscript{\textnormal{a}}Gill (1977).
The ZPP Algorithm (Las Vegas)

1: \{Suppose \(L \in \text{ZPP}. \}\}
2: \{N_1 \text{ has no false positives, and } N_2 \text{ has no false negatives.}\}
3: \textbf{while true do}
4: \quad \textbf{if } N_1(x) = \text{“yes”} \text{ then}
5: \quad \quad \textbf{return } \text{“yes”};
6: \quad \textbf{end if}
7: \quad \textbf{if } N_2(x) = \text{“no”} \text{ then}
8: \quad \quad \textbf{return } \text{“no”};
9: \quad \textbf{end if}
10: \textbf{end while}
ZPP (concluded)

- The *expected* running time for the correct answer to emerge is polynomial.
 - The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
 - Let $p(n)$ be the running time of each run of the while-loop.
 - The expected running time for a definite answer is
 \[
 \sum_{i=1}^{\infty} 0.5^i p(n) = 2p(n).
 \]
- Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.