
Cook’s Theorem: the First NP-Complete Problem

Theorem 39 (Cook, 1971) sat is NP-complete.

• sat ∈ NP (p. 119).

• circuit sat reduces to sat (p. 281).

• Now we only need to show that all languages in NP can

be reduced to circuit sat.a

aAs a bonus, this also shows circuit sat is NP-complete.
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The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that

x ∈ L if and only if R(x) is satisfiable.

• Equivalently, for each input x, M(x) = “yes” for some

computation path if and only if R(x) is satisfiable.

• How to come up with a polynomial-sized R(x) when

there are exponentially many computation paths?
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The Proof (continued)

• A straightforward proof is to construct a variable-free

circuit Ri(x) for the ith computation path.a

• Then add a small circuit to output 1 if and only if there

is an Ri(x) that outputs a “yes.”

• Clearly, the resulting circuit outputs 1 if and only if M

accepts x.

• But, it is too large because there are exponentially many

computation paths.

• Need to do better.

aThe circuit for Theorem 34 (p. 304) will do.
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The Proof (continued)

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c|x |k−1) ∈ { 0, 1 }|x |k−1.

• Once B is given, the computation is deterministic.

• Each choice of B results in a deterministic

polynomial-time computation.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:

C(Ti−1,j−1, Ti−1,j, Ti−1,j+1, c) = Tij .
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The Proof (continued)

C

c
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The Computation Tableau for NTMs and R(x)
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The Proof (concluded)

• Note that c1, c2, . . . , c|x |k−1 constitute the variables of

R(x).

– Some call them the choice gates of the circuit.

• The overall circuit R(x) (on p. 324) is satisfiable if and

only if there is a truth assignment B such that the

computation table accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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Stephen Arthur Cooka (1939–)

Richard Karp, “It is to our

everlasting shame that we

were unable to persuade

the math department [of

UC-Berkeley] to give him

tenure.”

aTuring Award (1982). See http://conservancy.umn.edu/handle/107226

for an interview in 2002.
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A Corollary

The construction in the above proof yields the following,

more general result.

Corollary 40 If L ∈ NTIME(T (n)), then a

nondeterministic circuit with O(T 2(n)) gates can decide L.
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NP-Complete Problems
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Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)

I predict that scientists will one day adopt a new

principle: “NP-complete problems are hard.”

That is, solving those problems efficiently is

impossible on any device that could be built

in the real world, whatever the final laws

of physics turn out to be.

— Scott Aaronson (2008)
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Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R }

is in P.

• R is said to be polynomially balanced if (x, y) ∈ R

implies | y | ≤ |x |k for some k ≥ 1.
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An Alternative Characterization of NP

Proposition 41 (Edmonds, 1965) Let L ⊆ Σ∗ be a

language. Then L ∈ NP if and only if there is a polynomially

decidable and polynomially balanced relation R such that

L = {x : ∃y (x, y) ∈ R }.

• Suppose such an R exists.

• L can be decided by this NTM:

– On input x, the NTM guesses a y of length ≤ |x |k.
– It then tests if (x, y) ∈ R in polynomial time.

– It returns “yes” if the test is positive.
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The Proof (concluded)

• Now suppose L ∈ NP.

• NTM N decides L in time |x |k.

• Define R as follows: (x, y) ∈ R if and only if y is the

encoding of an accepting computation of N on input x.

• R is polynomially balanced as N runs in polynomial

time.

• R is polynomially decidable because it can be efficiently

verified by consulting N ’s transition function.

• Finally L = {x : (x, y) ∈ R for some y } because N

decides L.
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Jack Edmonds (1934–)
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Comments

• Any “yes” instance x of an NP problem has at least one

succinct certificate or polynomial witness y.

• “No” instances have none.

• Certificates are short and easy to verify.

– An alleged satisfying truth assignment for sat; an

alleged Hamiltonian path for hamiltonian path.

• Certificates may be hard to generate,a but verification

must be easy.

• NP is thus the class of easy-to-verifyb problems.

aUnless P equals NP.
bThat is, in polynomial time.
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Comments (concluded)

• The degree k is not an input.

• How to find the k needed by the NTM is of no concern.a

• We only need to prove there exists an NTM that accepts

L in nondeterministic polynomial time.

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

November 3, 2015.
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You Have an NP-Complete Problem (for Your Thesis)

• From Propositions 29 (p. 293) and Proposition 32

(p. 296), it is the least likely to be in P.

• Your options are:

– Approximations.

– Special cases.

– Average performance.

– Randomized algorithms.

– Exponential-time algorithms that work well in

practice.

– “Heuristics” (and pray that it works for your thesis).
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I thought NP-completeness was an interesting idea:

I didn’t quite realize its potential impact.

— Stephen Cook (1998)

I was indeed surprised by Karp’s work

since I did not expect so many

wonderful problems were NP-complete.

— Leonid Levin (1998)
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Correct Use of Reduction in Proving NP-Completeness

• Recall that L1 reduces to L2 if there is an efficient

function R such that for all inputs x (p. 266),

x ∈ L1 if and only if R(x) ∈ L2.

• When L1 is known to be NP-complete and when

L2 ∈ NP, then L2 is NP-complete.a

• A common mistake is to focus on solving x ∈ L1 or

solving R(x) ∈ L2.

• The correct way is to, given a certificate for x ∈ L1 (a

satisfying truth assignment, e.g.), construct a certificate

for R(x) ∈ L2 (a Hamiltonian path, e.g.), and vice versa.

aProposition 33 (p. 297).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 338



3sat

• k-sat, where k ∈ Z
+, is the special case of sat.

• The formula is in CNF and all clauses have exactly k

literals (repetition of literals is allowed).

• For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
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3sat Is NP-Completea

• Recall Cook’s Theorem (p. 319) and the reduction of

circuit sat to sat (p. 281).

• The resulting CNF has at most 3 literals for each clause.

– This accidentally shows that 3sat where each clause

has at most 3 literals is NP-complete.

• Finally, duplicate one literal once or twice to make it a

3sat formula.

– So

x1 ∨ x2 becomes x1 ∨ x2 ∨ x2.

aGarey, Johnson, & Stockmeyer (1976).
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Michael R. Garey (1945–)
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David S. Johnson (1945–)
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Larry Stockmeyer (1948–2004)

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 343



The Satisfiability of Random 3sat Expressions

• Consider a random 3sat expressions φ with n variables

and cn clauses.

• Each clause is chosen independently and uniformly from

the set of all possible clauses.

• Intuitively, the larger the c, the less likely φ is satisfiable

as more constraints are added.

• Indeed, there is a cn such that for c < cn(1− ε), φ is

satisfiable almost surely, and for c > cn(1 + ε), φ is

unsatisfiable almost surely.a

aFriedgut & Bourgain (1999). As of 2006, 3.52 < cn < 4.596.
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Another Variant of 3sat

Proposition 42 3sat is NP-complete for expressions in

which each variable is restricted to appear at most three

times, and each literal at most twice. (3sat here requires

only that each clause has at most 3 literals.)
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The Proof (continued)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by

x2, and so on.

– x1, x2, . . . , xk are k new variables.
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The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the

expression.

– It is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– So x1, x2, . . . , xk must assume an identical truth

value for the whole expression to be satisfied.

• Note that each clause ¬xi ∨ xj above has only 2 literals.

• The resulting equivalent expression satisfies the

conditions for x.
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An Example

• Suppose we are given the following 3sat expression

· · · (¬x ∨ w ∨ g) ∧ · · · ∧ (x ∨ y ∨ z) · · · .

• The transformed expression is

· · · (¬ x1 ∨w∨g)∧· · ·∧( x2 ∨y∨z) · · · ( ¬x1 ∨ x2 )∧( ¬x2 ∨ x1 ).

– Variable x1 appears 3 times.

– Literal x1 appears once.

– Literal ¬x1 appears 2 times.
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2sat Is in NL ⊆ P

• Let φ be an instance of 2sat: Each clause has 2 literals.

• NL is a subset of P (p. 244).

• By Eq. (3) on p. 258, coNL equals NL.

• We need to show only that recognizing unsatisfiable

2sat expressions is in NL.

• See the textbook for the complete proof.
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Generalized 2sat: max2sat

• Consider a 2sat formula.

• Let K ∈ N.

• max2sat asks whether there is a truth assignment that

satisfies at least K of the clauses.

– max2sat becomes 2sat when K equals the number

of clauses.
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Generalized 2sat: max2sat (concluded)

• max2sat is an optimization problem.

– With binary search, one can nail the maximum

number of satisfiable clauses of 2sat formulas.

• max2sat ∈ NP: Guess a truth assignment and verify

the count.

• We now reduce 3sat to max2sat.
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max2sat Is NP-Completea

• Consider the following 10 clauses:

(x) ∧ (y) ∧ (z) ∧ (w)

(¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬z ∨ ¬x)
(x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w)

• Let the 2sat formula r(x, y, z, w) represent the

conjunction of these clauses.

• The clauses are symmetric with respect to x, y, and z.

• How many clauses can we satisfy?

aGarey, Johnson, & Stockmeyer (1976).
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The Proof (continued)

All of x, y, z are true: By setting w to true, we satisfy

4 + 0 + 3 = 7 clauses, whereas by setting w to false, we

satisfy only 3 + 0 + 3 = 6 clauses.

Two of x, y, z are true: By setting w to true, we satisfy

3 + 2 + 2 = 7 clauses, whereas by setting w to false, we

satisfy 2 + 2 + 3 = 7 clauses.
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The Proof (continued)

One of x, y, z is true: By setting w to false, we satisfy

1 + 3 + 3 = 7 clauses, whereas by setting w to true, we

satisfy only 2 + 3 + 1 = 6 clauses.

None of x, y, z is true: By setting w to false, we satisfy

0 + 3 + 3 = 6 clauses, whereas by setting w to true, we

satisfy only 1 + 3 + 0 = 4 clauses.
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The Proof (continued)

• A truth assignment that satisfies x ∨ y ∨ z can be

extended to satisfy 7 of the 10 clauses of r(x, y, z, w),

and no more.

• A truth assignment that does not satisfy x ∨ y ∨ z can

be extended to satisfy only 6 of them, and no more.

• The reduction from 3sat φ to max2sat R(φ):

– For each clause Ci = (α ∨ β ∨ γ) of φ, add group

r(α, β, γ, wi) to R(φ).

• If φ has m clauses, then R(φ) has 10m clauses.
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The Proof (continued)

• Finally, set K = 7m.

• We now show that K clauses of R(φ) can be satisfied if

and only if φ is satisfiable.
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The Proof (continued)

• Suppose K = 7m clauses of R(φ) can be satisfied.

– 7 clauses of each group r(α, β, γ, wi) must be satisfied

because each group can have at most 7 clauses

satisfied.a

– Hence each clause Ci = (α∨ β ∨ γ) of φ is satisfied by

the same truth assignment.

– So φ is satisfied.

aIf 70% of the world population are male and if at most 70% of each

country’s population are male, then each country must have exactly 70%

male population.
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The Proof (concluded)

• Suppose φ is satisfiable.

– Let T satisfy all clauses of φ.

– Each group r(α, β, γ, wi) can set its wi appropriately

to have 7 clauses satisfied.

– So K = 7m clauses are satisfied.
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naesat

• The naesat (for “not-all-equal” sat) is like 3sat.

• But there must be a satisfying truth assignment under

which no clauses have all three literals equal in truth

value.

• Equivalently, there is a truth assignment such that each

clause has a literal assigned true and a literal assigned

false.

• Equivalently, there is a satisfying truth assignment

under which each clause has a literal assigned false.
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naesat (concluded)

• Take

φ = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)

∧ (x1 ∨ x2 ∨ x3)

as an example.

• Then {x1 = true, x2 = false, x3 = false }
nae-satisfies φ because

(false ∨ true ∨ true) ∧ (false ∨ false ∨ true)

∧ (true ∨ false ∨ false).
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naesat Is NP-Completea

• Recall the reduction of circuit sat to sat on p. 281ff.

• It produced a CNF φ in which each clause has 1, 2, or 3

literals.

• Add the same variable z to all clauses with fewer than 3

literals to make it a 3sat formula.

• Goal: The new formula φ(z) is nae-satisfiable if and

only if the original circuit is satisfiable.

aSchaefer (1978).
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The Proof (continued)

• The following simple observation will be useful.

• Suppose T nae-satisfies a boolean formula φ.

• Let T̄ take the opposite truth value of T on every

variable.

• Then T̄ also nae-satisfies φ.a

aHesse’s Siddhartha (1922), “The opposite of every truth is just as

true!”
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The Proof (continued)

• Suppose T nae-satisfies φ(z).

– T̄ also nae-satisfies φ(z).

– Under T or T̄ , variable z takes the value false.

– This truth assignment T must satisfy all the clauses

of φ.

∗ Because z is not the reason that makes φ(z) true

under T anyway.

– So T |= φ.

– And the original circuit is satisfiable.
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The Proof (concluded)

• Suppose there is a truth assignment that satisfies the

circuit.

– Then there is a truth assignment T that satisfies

every clause of φ.

– Extend T by adding T (z) = false to obtain T ′.

– T ′ satisfies φ(z).

– So in no clauses are all three literals false under T ′.

– In no clauses are all three literals true under T ′.

∗ Need to go over the detailed construction on

pp. 282–284.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 364



Undirected Graphs

• An undirected graph G = (V,E) has a finite set of

nodes, V , and a set of undirected edges, E.

• It is like a directed graph except that the edges have no

directions and there are no self-loops.

• Use [ i, j ] to mean there is an undirected edge between

node i and node j.
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Independent Sets

• Let G = (V,E) be an undirected graph.

• I ⊆ V .

• I is independent if there is no edge between any two

nodes i, j ∈ I .

• independent set: Given an undirected graph and a

goal K, is there an independent set of size K?

• Many applications.
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independent set Is NP-Complete

• This problem is in NP: Guess a set of nodes and verify

that it is independent and meets the count.

• We will reduce 3sat to independent set.

• If a graph contains a triangle, any independent set can

contain at most one node of the triangle.

• The results of the reduction will be graphs whose nodes

can be partitioned into disjoint triangles, one for each

clause.a

aRecall that a reduction does not have to be an onto function.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 368



The Proof (continued)

• Let φ be a 3sat formula with m clauses.

• We will construct graph G with K = m.

• Furthermore, φ is satisfiable if and only if G has an

independent set of size K.

• Here is the reduction:

– There is a triangle for each clause with the literals as

the nodes.

– Add edges between x and ¬x for every variable x.
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(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)
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Same literal labels that appear in the same clause or

different clauses yield distinct nodes.
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The Proof (continued)

• Suppose G has an independent set I of size K = m.

– An independent set can contain at most m nodes,

one from each triangle.

– So I contains exactly one node from each triangle.

– Truth assignment T assigns true to those literals in I .

– T is consistent because contradictory literals are

connected by an edge; hence both cannot be in I .

– T satisfies φ because it has a node from every

triangle, thus satisfying every clause.a

aThe variables without a truth value can be assigned arbitrarily. Con-

tributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.
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The Proof (concluded)

• Suppose φ is satisfiable.

– Let truth assignment T satisfy φ.

– Collect one node from each triangle whose literal is

true under T .

– The choice is arbitrary if there is more than one true

literal.

– This set of m nodes must be independent by

construction.

∗ Because both literals x and ¬x cannot be assigned

true.
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Other independent set-Related NP-Complete
Problems

Corollary 43 independent set is NP-complete for

4-degree graphs.

Theorem 44 independent set is NP-complete for planar

graphs.

Theorem 45 (Garey & Johnson, 1977)) independent

set is NP-complete for 3-degree planar graphs.
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Is independent edge set Also NP-Complete?

• independent edge set: Given an undirected graph

and a goal K, is there an independent edge set of size K?

• This problem is equivalent to maximum matching!

• Maximum matching can be solved in polynomial time.a

aEdmonds (1965); Micali & V. Vazirani (1980).
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A Maximum Matching
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node cover

• We are given an undirected graph G and a goal K.

• node cover: Is there a set C with K or fewer nodes

such that each edge of G has at least one of its

endpoints (i.e., incident nodes) in C?

• Many applications.
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node cover (concluded)
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node cover Is NP-Complete

Corollary 46 (Karp, 1972) node cover is NP-complete.

• I is an independent set of G = (V,E) if and only if

V − I is a node cover of G.a

I

aFinish the reduction!
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Richard Karpa (1935–)

aTuring Award (1985).
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Remarksa

• Are independent set and node cover in P if K is a

constant?

– Yes, because one can do an exhaustive search on all

the possible node covers or independent sets (both
(
n
K

)
= O(nK) of them, a polynomial).b

• Are independent set and node cover NP-complete

if K is a linear function of n?

– independent set with K = n/3 and node cover

with K = 2n/3 remain NP-complete by our

reductions.

aContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
bn = |V |.
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