The Relation between Nondeterministic and
Deterministic Space Is Only Quadratic

Corollary 26 Let f(n) > logn be proper. Then
NSPACE(f(n)) € SPACE(f*(n)).

e Apply Savitch’s proof to the configuration graph of the
NTM on its input.

e From p. 240, the configuration graph has O(c/(™)

nodes; hence each node takes space O(f(n)).

e But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(c/ (™) space!

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253

The Proof (continued)

The way out is not to generate the graph at all.
Instead, keep the graph implicit.

We checked node connectedness only when 2 = 0 on

p. 250, by examining the input graph G.
Suppose we are given configurations xr and y.

Then we go over the Turing machine’s program to
determine if there is an instruction that can turn z into

y in one step.?

e So connectivity is checked locally and on demand.

@Thanks to a lively class discussion on October 15, 2003.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 254

The Proof (continued)

e The z variable in the algorithm on p. 250 simply runs
through all possible valid configurations.

— Let z=0,1,...,0(c/(™).

— Make sure z is a valid configuration before
proceeding with it.?
x Adopt the same width for each symbol and state of

the NTM and for the cursor position on the input
string.P

— If it is not, advance to the next z.

@Thanks to a lively class discussion on October 13, 2004.
PContributed by Mr. Jia-Ming Zheng (R04922024) on October 17,

2017.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 255

The Proof (concluded)
Each z has length O(f(n)).

So each node needs space O(f(n)).

The depth of the recursive call on p. 250 is O(log cf(”>),
which is O(f(n)).

The total space is therefore O(f%(n)).

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 256

Implications of Savitch's Theorem

Corollary 27 PSPACE = NPSPACE.
e Nondeterminism is less powerful with respect to space.

e Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 257

Nondeterministic Space Is Closed under Complement

e Closure under complement is trivially true for

deterministic complexity classes (p. 225).

e It is known that?

coNSPACE(f(n)) = NSPACE(f(n)). (3)

coNLL. = NL.

e But it is not known whether coNP = NP.

aSzelepscényi (1987); Immerman (1988).

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 258

Reductions and Completeness

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 259

It is unworthy of excellent men

to lose hours like slaves

in the labor of computation.
— Gottfried Wilhelm von Leibniz (1646-1716)

I thought perhaps you might be members of

that lowly section of the university
known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 260

Degrees of Difficulty

e When is a problem more difficult than another?

e B reduces to A if:

— There is a transformation R which for every problem

instance = of B yields a problem instance R(x) of A.?

— The answer to “R(z) € A?” is the same as the

answer to “x € B?”

— R is easy to compute.

e We say problem A is at least as hard as” problem B if B

reduces to A.

aSee also p. 146.
POr simply “harder than” for brevity.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 261

Reduction

> algorithm

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.?

@More general reductions are possible, such as the Turing (1939) re-
duction and the Cook (1971) reduction.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 262

Degrees of Difficulty (concluded)

e This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A
must be at least as hard.

— If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.?

— So if B is hard to solve, A must be hard (if not
harder), too!

@Thanks to a lively class discussion on October 13, 2009.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 263

Comments?

Suppose B reduces to A via a transformation R.P

The input z is an instance of B.
The output R(x) is an instance of A.

R(xz) may not span all possible instances of A.°

— Some instances of A may never appear in R’s range.

e But z must be an arbitrary instance for B.

2Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
PSometimes, we say “B can be reduced to A.”
°R(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 20009.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

Is “Reduction” a Confusing Choice of Word?#

If B reduces to A, doesn’t that intuitively make A
smaller and simpler?

But our definition means just the opposite.
Our definition says in this case B is a special case of A.P

e Hence A is harder.

#Moore & Mertens (2011).
PSee also p. 149.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 265

Reduction between Languages

e Language L, is reducible to L, if there is a function R

computable by a deterministic TM in space O(logn).

e Furthermore, for all inputs =, x € Ly if and only if
R(ZU) c L2.

e R is said to be a (Karp) reduction from L; to L.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 266

Reduction between Languages (concluded)

e Note that by Theorem 24 (p. 237), R runs in polynomial

time.

— In most cases, a polynomial-time R suffices for
proofs.?

e Suppose R is a reduction from L to Ls.

e Then solving “R(x) € L2?” is an algorithm for solving
“r e L 7P

2In fact, unless stated otherwise, we will only require that the reduc-
tion R run in polynomial time. It is often called a polynomial-time

many-one reduction.
POf course, it may not be the most efficient.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 267

A Paradox?

Degree of difficulty is not defined in terms of absolute

complexity.

So a language B € TIME(n%?) may be “easier” than a
language A € TIME(n?) if B reduces to A.

But isn’t this a contradiction if the best algorithm for B

requires n”? steps?

That is, how can a problem requiring n”? steps be
reducible to a problem solvable in n® steps?

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 268

Paradox Resolved
e The so-called contradiction is the result of flawed logic.

e Suppose we solve the problem “x € B?” via “R(x) € A?”

e We must consider the time spent by R(z) and its length
| B(x) |
— Because R(x) (not x) is solved by A.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 269

HAMILTONIAN PATH

e A Hamiltonian path of a graph is a path that visits
every node of the graph exactly once.

e Suppose graph GG has n nodes: 1,2,...,n.

e A Hamiltonian path can be expressed as a permutation
mof {1,2,...,n} such that

— 7(i) = j means the ith position is occupied by node j.

— (m(i),w(i+ 1)) e Gfori=1,2,...,n— 1.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 270

HAMILTONIAN PATH (concluded)

e HAMILTONIAN PATH asks if a graph has a Hamiltonian
path.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 271

Reduction of HAMILTONIAN PATH to SAT

e Given a graph G, we shall construct a CNF# R(G) such
that R(G) is satisfiable if and only if G has a

Hamiltonian path.

e R(G) has n* boolean variables x;;, 1 < 1,5 < n.

® T;; INcans
the 7th position in the Hamiltonian path is

occupied by node j.

e Our reduction will produce clauses.

2Remember that R does not have to be onto.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 272

A Hamiltonian Path

T12 = T21 = T34 = T4 = T53 = Teg = T76 = Ly = Lo7 = 1;
(1) =2,72)=1,73) =4,7(4) =5,7(5) =3,7(6) =
9,7(7) =6,7(8) =8,7(9) =7,

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 273

The Clauses of R(G) and Their Intended Meanings

1. Each node 5 must appear in the path.

e T1; Vx2; V-V x,; for each j.

. No node j appears twice in the path.
o —x;; V(= —(xij Axgy)) for all 4,5, k with i # k.

. Every position ¢ on the path must be occupied.

e ;1 VxioV---Vxin for each 1.

. No two nodes j and k occupy the same position in the path.
o x;; V ﬁxik(z ﬁ(aﬁij A\ azzk)) for all 7, 7, k with j # k.

. Nonadjacent nodes 2 and 7 cannot be adjacent in the path.

o Xy V Try1,(= (Tki A xks1,;)) for all (i,7) € E and
k=1,2,....n—1.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 274

The Proof

R(G) contains O(n?) clauses.

R(G) can be computed efficiently (simple exercise).
Suppose T' = R(G).

From the 1st and 2nd types of clauses, for each node j

there is a unique position ¢ such that 7' = z;;.

From the 3rd and 4th types of clauses, for each position
i there is a unique node j such that T' |= z;;.

So there is a permutation 7 of the nodes such that
m(i) = j if and only if T' = z;;.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 275

The Proof (concluded)

e The 5th type of clauses furthermore guarantee that
(w(1),7(2),...,7(n)) is a Hamiltonian path.

e Conversely, suppose G has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(xz;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276

A Comment?

e An answer to “Is R(G) satisfiable?” answers the
question “Is G Hamiltonian?”

e But a “yes” does not give a Hamiltonian path for G.

— Providing a witness is not a requirement of reduction.

e A “yes” to “Is R(G) satisfiable?” plus a satisfying truth

assignment does provide us with a Hamiltonian path for

G.

2Contributed by Ms. Amy Liu (J94922016) on May 29, 2006.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 277

Reduction of REACHABILITY to CIRCUIT VALUE
e Note that both problems are in P.

e Given a graph G = (V, F), we shall construct a
variable-free circuit R(G).

e The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

e Idea: the Floyd-Warshall algorithm.?

2Floyd (1962); Marshall (1962).

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278

The Gates
The gates are
— gijr With 1 <4, <nand 0 <k <n.
— hijr with 1 <4,j5,k < n.

gijk: There is a path from node ¢ to node j without
passing through a node bigger than k.

hiji: There is a path from node i to node j passing
through k£ but not any node bigger than k.

Input gate g;;0 = true if and only if i = j or (¢,5) € E.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 279

The Construction

hiji 1s an AND gate with predecessors g; i r—1 and
9k,j,k—1, where k = 1, 2, e ..y .

gijk 1s an OR gate with predecessors g; j r—1 and h; j i,

where k =1,2,...,n.
Jinn 18 the output gate.

Interestingly, R(G) uses no — gates.

— It is a monotone circuit.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 280

Reduction of CIRCUIT SAT to SAT

Given a circuit C', we will construct a boolean expression

R(C) such that R(C) is satisfiable if and only if C is.
— R(C') will turn out to be a CNF.

— R(C) is basically a depth-2 circuit; furthermore, each
gate has out-degree 1.

The variables of R(C) are those of C plus g for each
gate g of C.

— The g’s propagate the truth values for the CNF.
Each gate of C' will be turned into equivalent clauses.

Recall that clauses are Aed together by definition.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 281

The Clauses of R(C)

g is a variable gate x: Add clauses (—g V z) and (g V —x).
e Meaning: g & .

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a — gate with predecessor gate h: Add clauses
(g V —h) and (g V h).

e Meaning: g & —h.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 282

The Clauses of R(C') (continued)

g is a V gate with predecessor gates h and h': Add
clauses (—gV hV Rh'), (g vV —h), and (g V —h').

e The conjunction of the above clauses is equivalent to
[g= (AVH)IA[(RVE)=g]
= g< (hVh).

g is a A gate with predecessor gates h and h': Add
clauses (—g V h), (—g V k'), and (g V =h V =h').

e It is equivalent to

g< (hAR.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 283

The Clauses of R(C') (concluded)

g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

e Note: If gate g feeds gates hq, ho, ..., then variable g
appears in the clauses for hy, ho, ... in R(C).

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 284

An Example

(hl p— 213‘1) A\ (hg = .I‘Q) AN (hg p— 213‘3) A\ (h4 p— 213‘4)

g1 (hi Ah2)] A g2 < (h3V hy)]
(93 (91 AN g2) | A (94 & —g2)
g5 < (93 V g4) | N gs.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 285

An Example (concluded)

The result is a CNF.

The CNF adds new variables to the circuit’s original

input variables.

The CNF has size proportional to the circuit’s number

of gates.

Had we used the idea on p. 207 for the reduction, the
resulting formula may have an exponential length

because of the copying.?

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 286

Composition of Reductions

Proposition 28 If Ri5 s a reduction from L to Loy and
Ro3 is a reduction from Lo to Ls, then the composition

R15 0 Ro3 is a reduction from Ly to Ls.

e So reducibility is transitive.?

@See Proposition 8.2 of the textbook for a proof.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 287

Completeness®

As reducibility is transitive, problems can be ordered
with respect to their difficulty.

Is there a mazrimal element (the so-called hardest

problem)?

It is not obvious that there should be a maximal
element.

— Many infinite structures (such as integers and real

numbers) do not have maximal elements.

Surprisingly, most of the complexity classes that we have

seen so far have maximal elements!

2Post (1944); Cook (1971); Levin (1973).

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 288

Completeness (concluded)

e Let C be a complexity class and L € C.

e L is C-complete if every L' € C can be reduced to L.
— Most of the complexity classes we have seen so far

have complete problems!

e Complete problems capture the difficulty of a class

because they are the hardest problems in the class.®

@See also p. 161.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 289

Hardness

Let C be a complexity class.

L is C-hard if every L’ € C can be reduced to L.

It is not required that L € C.

If L is C-hard, then by definition, every C-complete

problem can be reduced to L.?

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,
2003.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 290

lllustration of Completeness and Hardness

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 291

Closedness under Reductions

e A class C is closed under reductions if whenever L is
reducible to L’ and L' € C, then L € C.

e It is easy to show that P, NP, coNP, L, NL, PSPACE,
and EXP are all closed under reductions.

e I is not closed under reductions.?

2Balcdzar, Diaz, & Gabarré (1988).

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 292

Complete Problems and Complexity Classes

Proposition 29 Let C' and C be two complexity classes
such that C' C C. Assume C' is closed under reductions and
L is C-complete. Then C =C’ if and only if L € C’.

e Suppose L € C’ first.

e Every language A € C reduces to L € C’.

e Because C’ is closed under reductions, A € C’.
Hence C C C'.

As C' C C, we conclude that C = C’.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 293

The Proof (concluded)

e On the other hand, suppose C = C’.
e As L is C-complete, L € C.

e Thus, trivially, L € C’.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 294

Two Important Corollaries

Proposition 29 implies the following.

Corollary 30 P = NP if and only if an NP-complete
problem 1s in P.

Corollary 31 L = P if and only if a P-complete problem 1is
wn L.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 295

Complete Problems and Complexity Classes, Again

Proposition 32 Let C' and C be two complexity classes

closed under reductions. If L is complete for both C and C’,
then C = C'.

e All languages A € C reduce to L € C and L € C'.
e Since C’ is closed under reductions, A € C’.
e Hence C CC'.

e The proof for C' C C is symmetric.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 296

Complete Problems and Complexity Classes, Again
(concluded)

Proposition 33 Let C be a complexity class. If L s
C-complete and L is reducible to L' € C, then L’ is also
C-complete.

e Every language A € C reduces to L.

e By Proposition 28 (p. 287), A reduces to L'.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 297

Table of Computation

Let M = (K, X, 46, s) be a single-string polynomial-time
deterministic TM deciding L.

Its computation on input x can be thought of as a

|2 |* x | z|* table, where | x |¥ is the time bound.

— It is essentially a sequence of configurations.
Rows correspond to time steps 0 to |z |¥ — 1.
Columns are positions in the string of M.

The (7, 7)th table entry represents the contents of
position j of the string after 7 steps of computation.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 298

Some Conventions To Simplify the Table

M halts after at most |z |* — 2 steps.?

Assume a large enough k to make it true for |z | > 2.

Pad the table with | |[s so that each row has length |z |*.

— The computation will never reach the right end of
the table for lack of time.

If the cursor scans the jth position at time ¢ when M is
at state ¢ and the symbol is o, then the (7, j)th entry is

a new symbol oy.

2|z |F — 3 may be safer.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 299

Some Conventions To Simplify the Table (continued)

Y

o If g is “yes” or “no,” simply use “yes” or “no” instead of

Ogq-

Modify M so that the cursor starts not at > but at the
first symbol of the input.

The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost >.

So the first symbol in every row is a > and not a >,.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 300

Some Conventions To Simplify the Table (concluded)

e N will halt before the last row is reached.

e All subsequent rows will be identical to the row where
M halts.

o M accepts z if and only if the (|x |¥ — 1, j)th entry is
“yes” for some position j.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 301

Comments

e Each row is essentially a configuration.

e If the input z = 010001, then the first row is

Exk

,>osiooo1|_||_|---|_]

e A typical row looks like

k
|z |

A

~

r>1o1ooqo111o1oo| |- |

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 302

Comments (concluded)

e The last rows must look like

Xk
7\

Ve

[> o o e “yes

’7 . . .

e Three out of the table’s 4 borders are known:

>abcdefl

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 303

A P-Complete Problem

Theorem 34 (Ladner, 1975) CIRCUIT VALUE is
P-complete.

e It is easy to see that CIRCUIT VALUE € P.

For any L € P, we will construct a reduction R from L
to CIRCUIT VALUE.

Given any input x, R(x) is a variable-free circuit such
that x € L if and only if R(x) evaluates to true.

Let M decide L in time nF.

Let T" be the computation table of M on x.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 304

The Proof (continued)

e Recall that three out of T’s 4 borders are known.

e Sowheni=0,orj=0,orj=]|xz|"—1, the value of T},

is known.

— The jth symbol of x or | |, a >, or a | |, respectively.

e Consider other entries 1j;.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 305

The Proof (continued)

o T’L’j depends on Only T'—l,j—l: T’i—l,j: and Ti—l,j—l—l:

Ti1j—1 | Tic1y | Tic1,+1

e T; does not depend on any other entries!

e T;,; does not depend on i, j, or x either (given T;_; j_1,

Ti—1,j, and Tj—1 j41).

e The dependency is thus “local.”

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 306

The Proof (continued)

e Let I' denote the set of all symbols that can appear on
the table: ' =X U{o,:0€ ¥,qe K }.

e Encode each symbol of I' as an m-bit number,* where

m = ﬂOgg\FH-

a2Called state assignment in circuit design.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 307

The Proof (continued)

e Let the m-bit binary string S;;1.5:52 - - - Sijm encode T;;.
e We may treat them interchangeably without ambiguity.

e The computation table is now a table of binary entries
Sijg, where
0<i<nF-—1,
0<j<nF-1,
1 </l <m.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 308

The Proof (continued)

e Fach bit S;;» depends on only 3m other bits:
Tic1j-1: Sicij—11 Si—1j-12 - Si—1,j-1,m
Ti_1 ;e Si—1,j.1 Si—1,5,2 e Sic1jm
Ti1j+1: Si—1j+11 Si—1j+12 - Si—1j+1,m

e So truth values for the 3m bits determine S ;.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 309

The Proof (continued)

e This means there is a boolean function Fy with 3m

inputs such that

Sije

T;_1,j-1

\

Ve

= Fu(Sic1-11,5i-1-12,---
Ti—1,5

N\

Si—l,j,b Si—l,j,27 IR Si—l,j,m7

Ti—1,5+1

A\

Si—1,j+1,159i—1,j4+1,25 - - -

forall 2,7 >0and 1 </ <m.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 310

The Proof (continued)

These F)’s depend only on M’s specification, not on =z, 1,

or 7j.
Their sizes are constant.?

These boolean functions can be turned into boolean

circuits (see p. 2006).

Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.
— Schematically, C(Ti—l,j—h Ti—l,ja Ti—l,j—l—l) = Tij.b

2]t means independence of the input x.
b is like an ASIC (application-specific IC) chip.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 311

Circuit C

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 312

The Proof (concluded)

A copy of circuit C' is placed at each entry of the table.

— Exceptions are the top row and the two extreme

column borders.
R(x) consists of (|z |¥ —1)(|z |¥ — 2) copies of circuit C.

Without loss of generality, assume the output

“yes”/“HO” appear at pOSitiOH (‘ XL ‘k — 17 1)-

Encode “yes” as 1 and “no” as 0.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 313

The Computation Tableau and R(x)

abcdefl_l

St
[

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 314

A Corollary

The construction in the above proof yields the following,

more general result.

Corollary 35 If L € TIME(T (n)), then a circuit with
O(T?(n)) gates can decide L.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 315

MONOTONE CIRCUIT VALUE

A monotone boolean circuit’s output cannot change
from true to false when one input changes from false to

true.

Monotone boolean circuits are hence less expressive than

general circuits.

— They can compute only monotone boolean functions.

Monotone circuits do not contain — gates (prove it).

MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied

to monotone circuits.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 316

MONOTONE CIRCUIT VALUE Is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as
hard as CIRCUIT VALUE.

Corollary 36 (Goldschlager, 1977) MONOTONE CIRCUIT
VALUE 18 P-complete.

e Given any general circuit, “move the —’s downwards”
using de Morgan’s laws® to yield a monotone circuit

with the same output.

Theorem 37 (Goldschlager, 1977) PLANAR MONOTONE
CIRCUIT VALUE s P-complete.

®How? Need to make sure no exponential blowup.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 317

MAXIMUM FLOW Is P-Complete

Theorem 38 (Goldschlager, Shaw, & Staples, 1982)
MAXIMUM FLOW 18 P-complete.

©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 318

