What then do you call proof?
— Henry James (1843-1916),
The Wings of the Dove (1902)

Leibniz knew what a proof is.

Descartes did not.
— Tan Hacking (1973)
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What Is a Proof?

A proof convinces a party of a certain claim.

— “g oy £ 2" for all ,y,2 € ZT and n > 2.7

— “Graph G is Hamiltonian.”
— “zP = £ mod p for prime p and p fx.”
In mathematics, a proof is a fixed sequence of theorems.

— Think of it as a written examination.

We will extend a proof to cover a proof process by which
the validity of the assertion is established.

— Recall a job interview or an oral examination.
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Prover and Verifier

There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

The verifier’s objective is to accept only correct

assertions (soundness).

The verifier usually has an easier job than the prover.

e The setup is very much like the Turing test.?

2Turing (1950).
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Interactive Proof Systems

An interactive proof for a language L is a sequence of
questions and answers between the two parties.

At the end of the interaction, the verifier decides
whether the claim is true or false.

The verifier must be a probabilistic polynomial-time
algorithm.

The prover runs an exponential-time algorithm.?

— If the prover is not more powerful than the verifier,

no interaction is needed!
aSee the problem to Note 12.3.7 on p. 296 and Proposition 19.1 on
p. 475, both of the textbook, about alternative complexity assumptions
without affecting the definition. Contributed by Mr. Young-San Lin
(B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.
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Interactive Proof Systems (concluded)

e The system decides L if the following two conditions

hold for any common input x.

— If x € L, then the probability that x is accepted by

the verifier is at least 1 — 2~/ =1,

— If x € L, then the probability that x is accepted by
the verifier with any prover replacing the original

prover 1s at most 2-lzl

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |z |.
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An Interactive Proof
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P>

e IP is the class of all languages decided by an interactive

proof system.

e When x € L, the completeness condition can be
modified to require that the verifier accept with

certainty without affecting IP.P

e Similar things cannot be said of the soundness condition
when = & L.

e Verifier’s coin flips can be public.©

2Goldwasser, Micali, & Rackoft (1985).

PGoldreich, Mansour, & Sipser (1987).
°Goldwasser & Sipser (1989).
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The Relations of IP with Other Classes
e NP C IP.

— IP becomes NP when the verifier is deterministic and

there is only one round of interaction.?

e BPP C IP.

— IP becomes BPP when the verifier ignores the

prover’s messages.

e I[P = PSPACE.P

@Recall Proposition 40 on p. 328.
bShamir (1990).
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Graph Isomorphism
Vl :V2 :{1,2,...,n}.
Graphs G = (V1, E1) and G4 = (V3 Ey) are

isomorphic if there exists a permutation 7 on
{1,2,...,n} so that (u,v) € By & (n(u), 7(v)) € Es.

The task is to answer if G; = Gs.

No known polynomial-time algorithms.®

The problem is in NP (hence IP).

It is not likely to be NP-complete.”

aThe recent bound of Babai (2015) is 29(108" ") for some constant c.
PSchéning (1987).
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GRAPH NONISOMORPHISM
Vl :V2 :{1,2,...,7?,}.
Graphs Gl = (Vl, E1> and GQ = (VQ,EQ) are

nonisomorphic if there exist no permutations 7 on
{1,2,...,n} so that (u,v) € Fy < (w(u),n(v)) € Es.

The task is to answer if G1 2 Go.

Again, no known polynomial-time algorithms.
— It is in coNP, but how about NP or BPP?
— It is not likely to be coNP-complete.?

e Surprisingly, GRAPH NONISOMORPHISM € IP.P

2Schoéning (1987).
PGoldreich, Micali, & Wigderson (1986).
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A 2-Round Algorithm

Victor selects a random 7 € {1,2 };
Victor selects a random permutation 7 on {1,2,...,n };
Victor applies m on graph G; to obtain graph H;
Victor sends (G1, H) to Peggy;
if G1 =2 H then
Peggy sends 7 = 1 to Victor;
else
Peggy sends 7 = 2 to Victor;
end if
if j =1 then
Victor accepts; {G1 2 G2.}
. else
Victor rejects; {G1 = Ga.}
: end if

1:
2:
3:
4:
5:
6:
7
8:
9:

T = e e T
el =
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Analysis

e Victor runs in probabilistic polynomial time.

e Suppose G1 2 Go.
— Peggy is able to tell which G; is isomorphic to H, so j = 1.

— So Victor always accepts.

e Suppose G1 = Go.
— No matter which ¢ is picked by Victor, Peggy or any

prover sees 2 identical copies.

— Peggy or any prover with exponential power has only

probability one half of guessing ¢ correctly.

— So Victor erroneously accepts with probability 1/2.

e Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

e Suppose I know a satisfying assignment to a satisfiable

boolean expression.
e I can convince Alice of this by giving her the assignment.

e But then I give her more knowledge than is necessary.
— Alice can claim that she found the assignment!
— Login authentication faces essentially the same issue.

— See
www.wired.com/wired/archive/1.05/atm_pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

Suppose I always give Alice random bits.

Alice extracts no knowledge from me by any measure,

but I prove nothing.

Question 1: Can we design a protocol to convince Alice
(the knowledge) of a secret without revealing anything

extra?

Question 2: How to define this idea rigorously?
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Zero Knowledge Proofs®

An interactive proof protocol (P, V') for language L has the
perfect zero-knowledge property if:

e For every verifier V', there is an algorithm M with

expected polynomial running time.

e M on any input x € L generates the same probability
distribution as the one that can be observed on the

communication channel of (P, V') on input x.

2Goldwasser, Micali, & Rackoft (1985).
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Comments

e Zero knowledge is a property of the prover.

— It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

A verifier cannot use the transcript of the interaction
to convince a third-party of the validity of the claim.

The proof is hence not transferable.
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Comments (continued)

e Whatever a verifier can “learn” from the specified prover
P via the communication channel could as well be

computed from the verifier alone.
e The verifier does not learn anything except “x € L.”

e Zero-knowledge proofs yield no knowledge in the sense
that they can be constructed by the verifier who believes

the statement, and yet these proofs do convince him.
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Comments (continued)

e The “paradox” is resolved by noting that it is not the
transcript of the conversation that convinces the verifier.

e But the fact that this conversation was held “on line.”
e Computational zero-knowledge proofs are based on

complexity assumptions.

— M only needs to generate a distribution that is
computationally indistinguishable from the verifier’s

view of the interaction.
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Comments (concluded)

If one-way functions exist, then zero-knowledge proofs
exist for every problem in NP.?

If one-way functions exist, then zero-knowledge proofs
exist for every problem in PSPACE.P

The verifier can be restricted to the honest one (i.e., it
follows the protocol).©

The coins can be public.?

The digital money Zcash (2016) is based on
zero-knowledge proofs.

2Goldreich, Micali, & Wigderson (1986).

bOstrovsky & Wigderson (1993).
“Vadhan (2006).

dVadhan (2006).
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Quadratic Residuacity

e Let n be a product of two distinct primes.

e Assume extracting the square root of a quadratic residue
modulo n is hard without knowing the factors.

e We next present a zero-knowledge proof for the input
x e

being a quadratic residue.
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/Zero-Knowledge Proof of Quadratic Residuacity

1: form=1,2,...,logy,n do
Peggy chooses a random v € Z and sends
y = v? mod n to Victor;
Victor chooses a random bit ¢+ and sends it to Peggy;
Peggy sends z = u'v mod n, where u is a square root
of z; {u® = v mod n.}
Victor checks if 22 = 2’y mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;
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A Useful Corollary of Lemma 81 (p. 680)

Corollary 82 Let n = pg be a product of two distinct
primes. (1) If x and y are both quadratic residues modulo n,
then xy € Z* is a quadratic residue modulo n. (2) If x is a
quadratic residue modulo n and y is a quadratic nonresidue

modulo n, then xy € Z* 1s a quadratic nonresidue modulo n.
e Suppose x and y are both quadratic residues modulo n.
e Let 2 = a® mod n and y = b* mod n.

e Now zy is a quadratic residue as zy = (ab)? mod n.
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The Proof (concluded)

e Suppose x is a quadratic residue modulo n and y is a

quadratic nonresidue modulo n.
e By Lemma 81 (p. 680), (z|p) = (z|q) =1 but, say,
(ylp) = -1

e Now zy is a quadratic nonresidue as (zy |p) = —1, again
by Lemma 81 (p. 680).
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Analysis

Suppose x is a quadratic residue.
Then x’s square root u can be computed by Peggy.

Peggy can answer all challenges.

= (u2)7’ v? = z'y mod n.

So Victor will accept x.
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Analysis (continued)

e Suppose x is a quadratic nonresidue.

— Corollary 82 (p. 708) says if a is a quadratic residue,

then xa is a quadratic nonresidue.

As y is a quadratic residue, 'y can be a quadratic

residue (see Line 5) only when i = 0.

Peggy can answer only one of the two possible

challenges, when 7 = 0.2

So Peggy will be caught in any given round with
probability one half.

2Line 5 (22 = 2'y mod n) cannot equate a quadratic residue z? with

a quadratic nonresidue x'y when 7 = 1.
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Analysis (continued)

How about the claim of zero knowledge?

The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!
Here is how.
Suppose x is a quadratic residue.?

In each round of interaction with Peggy, the transcript is

a triplet (y,1, 2).

We present an efficient Bob that generates (y,, 2z) with

the same probability without accessing Peggy’s power.

aThere is no zero-knowledge requirement when x ¢ L.
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Analysis (concluded)

: Bob chooses a random 2z € Z;

. Bob chooses a random bit i;

. Bob calculates y = 2?2~ mod n;?

. Bob writes (y, 4, z) into the transcript;

2Recall Line 5 on p. 707: Victor checks if z? = z'y mod n.
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Comments
e Assume z is a quadratic residue.

e For (y,i,z), y is a random quadratic residue, i is a

random bit, and z is a random number.

e Bob cheats because (y,1, 2) is not generated in the same

order as in the original transcript.

— Bob picks Peggy’s answer z first.

— Bob then picks Victor’s challenge <.
— Bob finally patches the transcript.
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Comments (concluded)

e So it is not the transcript that convinces Victor, but

that conversation with Pegqgy is held “on line.”

e The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

e But we skip the details.?

20r apply Vadhan (2006).
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/Zero-Knowledge Proof of 3 Colorability?
1: fori=1,2,...,|E|? do
Peggy chooses a random permutation 7 of the 3-coloring ¢;
Peggy samples encryption schemes randomly, commits® them,
and sends 7(¢(1)), 7w(p(2)),...,7(d(|V'|)) encrypted to Victor;
Victor chooses at random an edge e € E and sends it to Peggy

for the coloring of the endpoints of e;
if e = (u,v) € E then

Peggy reveals the colors w(¢(u)) and w(¢(v)) and “proves”

that they correspond to their encryptions;
else

Peggy stops;
end if

2Goldreich, Micali, & Wigderson (1986).
PContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.
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if the “proof” provided in Line 6 is not valid then

Victor rejects and stops;
end if

if () = (@(v)) or m(¢(w)), w($(v)) & {1,2,3} then

Victor rejects and stops;
end if
: end for

: Victor accepts;
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Analysis

If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

Suppose the graph is not 3-colorable and Victor follows
the protocol.

Let e be an edge that is not colored legally.

Victor will pick it with probability 1/m per round,

where m = | F/|.

Then however Peggy plays, Victor will reject with
probability at least 1/m per round.
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Analysis (concluded)

So Victor will accept with probability at most

(1-m )™ <e™

Thus the protocol is a valid IP protocol.

This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

The proof that the protocol is zero-knowledge to any

verifier is intricate.?

2But no longer necessary because of Vadhan (2006).
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Comments

e Each 7(¢(i)) is encrypted by a different cryptosystem in
Line 3.2

— Otherwise, the coloring will be revealed in Line 6.

e Each edge e must be picked randomly.P

— Otherwise, Peggy will know Victor’s game plan and

plot accordingly.

2Contributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
PContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approzimability
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All science is dominated by

the idea of approximation.
— Bertrand Russell (1872-1970)
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Just because the problem is NP-complete

does not mean that

you should not try to solve it.
— Stephen Cook (2002)

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 723



Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?
— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there NP problems that cannot be approximated
well (assuming NP # P)?

Are there NP problems that cannot be approximated at
all (assuming NP # P)?
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Some Definitions

e Given an optimization problem, each problem

instance = has a set of feasible solutions F'(x).

e Each feasible solution s € F'(x) has a cost ¢(s) € Z™.

— Here, cost refers to the quality of the feasible
solution, not the time required to obtain it.

— It is our objective function: total distance, number

of satisfied clauses, cut size, etc.
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Some Definitions (concluded)

e The optimum cost is

OPT(x) = sénﬁi(r}c) c(s)

for a minimization problem.

e It is

OPT(x) =
() S€F (o) (s)

for a maximization problem.
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Approximation Algorithms

e Let (polynomial-time) algorithm M on x returns a
feasible solution.

e )M is an e-approximation algorithm, where € > 0, if

for all z,
|c(M(z)) — oPT(z) |
max(OPT(x), c(M(x)))

— For a minimization problem,

< €.

(M ()~ mincpn ofs) _
(M (x)) =€

— For a maximization problem,

MaXsc F(x) c(s) —c(M(x))

MaXscp(z) C(S)

<e
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Lower and Upper Bounds

e For a minimization problem,

min cls) < e(M(z) < TEHD ),

e For a maximization problem,

(1 —€) x max c(s) < c¢(M(x)) < max c(s).

seF (x) SEF (x)
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Lower and Upper Bounds (concluded)
e ¢ ranges between 0 (best) and 1 (worst).

e For minimization problems, an e-approximation

algorithm returns solutions within

1 —¢€

[OPT,

OPT]

e For maximization problems, an e-approximation

algorithm returns solutions within

[ (1 —€) x OPT, OPT].
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Approximation Thresholds

For each NP-complete optimization problem, we shall be
interested in determining the smallest € for which there

is a polynomial-time e-approximation algorithm.
But sometimes ¢ has no minimum value.

The approximation threshold is the greatest lower
bound of all ¢ > 0 such that there is a polynomial-time

e-approximation algorithm.

By a standard theorem in real analysis, such a threshold

exists.?

2Bauldry (2009).
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Approximation Thresholds (concluded)

e The approximation threshold of an optimization
problem is anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

e [f P = NP, then all optimization problems in NP have

an approximation threshold of 0.

e So assume P # NP for the rest of the discussion.
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Approximation Ratio

e c-approximation algorithms can also be measured via

the approximation ratio:®

c(M(x))
oPT(x)

e For a minimization problem, the approximation ratio is

e(M(z) _ 1

Mingepz)c(s) — 1 —e€

1<

(19)

e For a maximization problem, the approximation ratio is
c(M(z))

1—€e<
MaXsecF(x) C(S)

< 1. (20)

2Williamson & Shmoys (2011).
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Approximation Ratio (concluded)

e Suppose there is an approximation algorithm that
achieves an approximation ratio of 6.
— For a minimization problem, it implies a
(1 — 0~ 1)-approximation algorithm by Eq. (19).
— For a maximization problem, it implies a

(1 — #)-approximation algorithm by Eq. (20).
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NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

This turns out to produce an approximation ratio of?

c(M(x))
OPT(x)

= O(logn).

So it is not an e-approximation algorithm for any
constant € < 1 (see p. 733).

2Chvatal (1979).
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A 0.5-Approximation Algorithm?

. C = ()

. while F # () do
Delete an arbitrary edge |u,v] from F;
Add u and v to C; {Add 2 nodes to C' each time.}
Delete edges incident with u or v from FE;

: end while

. return C';

aGavril (1974).
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Analysis

It is easy to see that (' is a node cover.
C' contains | C'|/2 edges.?
No two edges of C share a node.P

Any node cover C' must contain at least one node from
each of the edges of C.

— If there is an edge in C' both of whose ends are
outside C’, then C’ will not be a cover.

The edges deleted in Line 3.
PTn fact, C as a set of edges is a mazimal matching.
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Analysis (continued)
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Analysis (concluded)
This means that opT(G) > |C'|/2.

The approximation ratio is hence

cl

orPT(G)

So we have a 0.5-approximation algorithm.?

e And the approximation threshold is therefore < 0.5.

aRecall p. 733.
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The 0.5 Bound Is Tight for the Algorithm?

aContributed by Mr. Jeng-Chung Li (R92922087) on December 20,
2003. Konig’s theorem says the size of a maximum matching equals
that of a minimum node cover in a bipartite graph.
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Remarks

e The approximation threshold is at least?®

1
1 (1o\f _ 21) ~ 0.2651.

e The approximation threshold is 0.5 if one assumes the

unique games conjecture (UGC).P

e This ratio 0.5 is also the lower bound for any “greedy”

algorithms.®

2Dinur & Safra (2002).

PKhot & Regev (2008).
“Davis & Impagliazzo (2004).
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Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth

assignment that satisfies the most.

e MAX2SAT is already NP-complete (p. 349), so MAXSAT is
NP-complete.

e Consider the more general k-MAXGSAT for constant k.
— Let ® = { ¢1,¢2,...,0m } be a set of boolean

expressions in n variables.

— Each ¢; is a general expression involving up to k

variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.
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