Magic $3/4$?

- The number $3/4$ bounds the probability (ratio) of a right answer away from $1/2$.
- Any constant *strictly* between $1/2$ and 1 can be used without affecting the class BPP.
- In fact, as with RP,
 \[
 \frac{1}{2} + \frac{1}{q(n)}
 \]
 for any polynomial $q(n)$ can replace $3/4$.
- The next algorithm shows why.
The Majority Vote Algorithm

Suppose \(L \) is decided by \(N \) by majority \((1/2) + \epsilon\).

1: for \(i = 1, 2, \ldots, 2k + 1 \) do
2: Run \(N \) on input \(x \);
3: end for
4: if “yes” is the majority answer then
5: “yes”;
6: else
7: “no”;
8: end if
Analysis

• By Corollary 77 (p. 604), the probability of a false answer is at most $e^{-\epsilon^2 k}$.

• By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most 1/4.

• Even if ϵ is any inverse polynomial, k remains a polynomial in n.

• The running time remains polynomial: $2k + 1$ times N’s running time.
Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.
- \((\text{RP} \cup \text{coRP}) \subseteq (\text{NP} \cup \text{coNP})\).
- \((\text{RP} \cup \text{coRP}) \subseteq \text{BPP}\).
- Whether \(\text{BPP} \subseteq (\text{NP} \cup \text{coNP})\) is unknown.
- But it is unlikely that \(\text{NP} \subseteq \text{BPP}\).\(^a\)

\(^a\)See p. 621.
coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for \(L \in \text{BPP} \) becomes one for \(\overline{L} \) by reversing the answer.
- So \(\overline{L} \in \text{BPP} \) and \(\text{BPP} \subseteq \text{coBPP} \).
- Similarly \(\text{coBPP} \subseteq \text{BPP} \).
- Hence \(\text{BPP} = \text{coBPP} \).
- This approach does not work for RP.\(^a\)

\(^a\)It did not work for NP either.
BPP and coBPP

“yes” — “no”

“no” — “yes”
“The Good, the Bad, and the Ugly”
Circuit Complexity

• Circuit complexity is based on boolean circuits instead of Turing machines.

• A boolean circuit with \(n \) inputs computes a boolean function of \(n \) variables.

• Now, identify \texttt{true}/1 with “yes” and \texttt{false}/0 with “no.”

• Then a boolean circuit with \(n \) inputs accepts certain strings in \(\{0, 1\}^n \).

• To relate circuits with an arbitrary language, we need one circuit for each possible input length \(n \).
Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence
 \(C = (C_0, C_1, \ldots) \) of boolean circuits, where \(C_n \) has \(n \) boolean inputs.

• For input \(x \in \{0, 1\}^* \), \(C_{|x|} \) outputs 1 if and only if \(x \in L \).

• In other words,

\[
C_n \text{ accepts } L \cap \{0, 1\}^n.
\]
Formal Definitions (concluded)

- \(L \subseteq \{0, 1\}^* \) has **polynomial circuits** if there is a family of circuits \(C \) such that:
 - The size of \(C_n \) is at most \(p(n) \) for some fixed polynomial \(p \).
 - \(C_n \) accepts \(L \cap \{0, 1\}^n \).
Exponential Circuits Suffice for All Languages

- Theorem 16 (p. 208) implies that there are languages that cannot be solved by circuits of size $2^n/(2n)$.
- But surprisingly, circuits of size 2^{n+2} can solve all problems, decidable or otherwise!
Exponential Circuits Suffice for All Languages (continued)

Proposition 78 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2}.

- We will show that for any language $L \subseteq \{0, 1\}^*$, $L \cap \{0, 1\}^n$ can be decided by a circuit of size 2^{n+2}.
- Define boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, where

$$f(x_1x_2\cdots x_n) = \begin{cases} 1 & x_1x_2\cdots x_n \in L, \\ 0 & x_1x_2\cdots x_n \not\in L. \end{cases}$$
The Proof (concluded)

- Clearly, any circuit that implements f decides $L \cap \{0, 1\}^n$.
- Now,
 $$f(x_1 x_2 \cdots x_n) = (x_1 \land f(1x_2 \cdots x_n)) \lor (\neg x_1 \land f(0x_2 \cdots x_n)).$$
- The circuit size $s(n)$ for $f(x_1 x_2 \cdots x_n)$ hence satisfies
 $$s(n) = 4 + 2s(n - 1)$$
 with $s(1) = 1$.
- Solve it to obtain $s(n) = 5 \times 2^{n-1} - 4 \leq 2^{n+2}$.
The Circuit Complexity of P

Proposition 79 All languages in P have polynomial circuits.

- Let $L \in P$ be decided by a TM in time $p(n)$.
- By Corollary 34 (p. 312), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0, 1\}^n$.
- The size of that circuit depends only on L and the length of the input.
- The size of that circuit is polynomial in n.
Polynomial Circuits vs. P

- Is the converse of Proposition 79 true?
 - Do polynomial circuits accept only languages in P?

- No.

- Polynomial circuits can accept \textit{undecidable} languages!
BPP’s Circuit Complexity: Adleman’s Theorem

Theorem 80 (Adleman, 1978) All languages in BPP have polynomial circuits.

• Our proof will be nonconstructive in that only the existence of the desired circuits is shown.
 – Recall our proof of Theorem 16 (p. 208).
 – Something exists if its probability of existence is nonzero.

• It is not known how to efficiently generate circuit C_n.
 – If the construction of C_n can be made efficient, then $P = BPP$, an unlikely result.
The Proof

- Let $L \in \text{BPP}$ be decided by a precise polynomial-time NTM N by clear majority.

- We shall prove that L has polynomial circuits C_0, C_1, \ldots.
 - These deterministic circuits do not err.

- Suppose N runs in time $p(n)$, where $p(n)$ is a polynomial.

- Let $A_n = \{ a_1, a_2, \ldots, a_m \}$, where $a_i \in \{0, 1\}^{p(n)}$.

- Each $a_i \in A_n$ represents a sequence of nondeterministic choices (i.e., a computation path) for N.

- Pick $m = 12(n + 1)$.
The Proof (continued)

- Let x be an input with $|x| = n$.

- Circuit C_n simulates N on x with all sequences of choices in A_n and then takes the majority of the m outcomes.\(^a\)
 - Note that each A_n yields a circuit.

- As N with a_i is a polynomial-time deterministic TM, it can be simulated by polynomial circuits of size $O(p(n)^2)$.
 - See the proof of Proposition 79 (p. 619).

\(^a\)As m is even, there may be no clear majority. Still, the probability of that happening is very small and does not materially affect our general conclusion. Thanks to a lively class discussion on December 14, 2010.
The Circuit

Majority logic
The Proof (continued)

- The size of C_n is therefore $O(mp(n)^2) = O(np(n)^2)$.
 - This is a polynomial.
- We now confirm the existence of an A_n making C_n correct on all n-bit inputs.
- Call a_i **bad** if it leads N to an error (a false positive or a false negative) for x.
- Select A_n uniformly randomly.
The Proof (continued)

• For each $x \in \{0, 1\}^n$, $1/4$ of the computations of N are erroneous.

• Because the sequences in A_n are chosen randomly and independently, the expected number of bad a_i's is $m/4$.

• Also note after fixing the input x, the circuit is a function of the random bits.

So the proof will not work for NP. Contributed by Mr. Ching-Hua Yu (D00921025) on December 11, 2012.
The Proof (continued)

• By the Chernoff bound (p. 599), the probability that the number of bad a_i’s is $m/2$ or more is at most

$$e^{-m/12} < 2^{-(n+1)}.$$

• The error probability of using the majority rule is thus

$$< 2^{-(n+1)}$$

for each $x \in \{0, 1\}^n$.
The Proof (continued)

• The probability that there is an x such that A_n results in an incorrect answer is

\[< 2^n 2^{-(n+1)} = 2^{-1}. \]

– Recall the union bound (Boole’s inequality):

\[\text{prob}\left[A \cup B \cup \cdots \right] \leq \text{prob}[A] + \text{prob}[B] + \cdots. \]

• We just showed that at least half of them are correct.

• So with probability ≥ 0.5, a random A_n produces a correct C_n for all inputs of length n.

– Of course, verifying this fact may take a long time.
The Proof (concluded)

- Because this probability exceeds 0, an A_n that makes majority vote work for all inputs of length n exists.

- Hence a correct C_n exists.\(^a\)

- We have used the **probabilistic method** popularized by Erdős.\(^b\)

- This result answers the question on p. 530 with a “yes.”

\(^a\)Quine (1948), “To be is to be the value of a bound variable.”

\(^b\)A counting argument in the probabilistic language.
Leonard Adlemana (1945–)

aTuring Award (2002).
Paul Erdős (1913–1996)
Cryptography
Whoever wishes to keep a secret
must hide the fact that he possesses one.
— Johann Wolfgang von Goethe (1749–1832)
Cryptography

- **Alice** (A) wants to send a message to **Bob** (B) over a channel monitored by **Eve** (eavesdropper).

- The protocol should be such that the message is known only to Alice and Bob.

- The art and science of keeping messages secure is **cryptography**.

```
Alice  Eve  Bob
```
Encryption and Decryption

- Alice and Bob agree on two algorithms E and D—the encryption and the decryption algorithms.
- Both E and D are known to the public in the analysis.
- Alice runs E and wants to send a message x to Bob.
- Bob operates D.
Encryption and Decryption (concluded)

• Privacy is assured in terms of two numbers e, d, the encryption and decryption keys.

• Alice sends $y = E(e, x)$ to Bob, who then performs $D(d, y) = x$ to recover x.

• x is called plaintext, and y is called ciphertext.\(^a\)

\(^a\)Both “zero” and “cipher” come from the same Arab word.
Some Requirements

- D should be an inverse of E given e and d.
- D and E must both run in (probabilistic) polynomial time.
- Eve should not be able to recover x from y without knowing d.
 - As D is public, d must be kept secret.
 - e may or may not be a secret.
Degree of Security

- **Perfect secrecy**: After a ciphertext is intercepted by the enemy, the a posteriori probabilities of the plaintext that this ciphertext represents are identical to the a priori probabilities of the same plaintext before the interception.
 - The probability that plaintext P occurs is independent of the ciphertext C being observed.
 - So knowing C yields no advantage in recovering P.
Degree of Security (concluded)

- Such systems are said to be **informationally secure**.

- A system is **computationally secure** if breaking it is theoretically possible but computationally infeasible.
Conditions for Perfect Secrecya

- Consider a cryptosystem where:
 - The space of ciphertext is as large as that of keys.
 - Every plaintext has a nonzero probability of being used.

- It is \textbf{perfectly secure} if and only if the following hold.
 - A key is chosen with uniform distribution.
 - For each plaintext x and ciphertext y, there exists a unique key e such that $E(e, x) = y$.

aShannon (1949).
The One-Time Pada

1: Alice generates a random string r as long as x;
2: Alice sends r to Bob over a secret channel;
3: Alice sends $x \oplus r$ to Bob over a public channel;
4: Bob receives y;
5: Bob recovers $x := y \oplus r$;

aMauborgne & Vernam (1917); Shannon (1949). It was allegedly used for the hotline between Russia and U.S.
Analysis

- The one-time pad uses \(e = d = r \).
- This is said to be a **private-key cryptosystem**.
- Knowing \(x \) and knowing \(r \) are equivalent.
- Because \(r \) is random and private, the one-time pad achieves perfect secrecy.\(^a\)
- The random bit string must be new for each round of communication.
- But the assumption of a private channel is problematic.

\(^a\)See p. 640.
Public-Key Cryptographya

- Suppose only d is private to Bob, whereas e is public knowledge.
- Bob generates the (e, d) pair and publishes e.
- Anybody like Alice can send $E(e, x)$ to Bob.
- Knowing d, Bob can recover x via

$$D(d, E(e, x)) = x.$$

aDiffie & Hellman (1976).
Public-Key Cryptography (concluded)

• The assumptions are complexity-theoretic.
 – It is computationally difficult to compute d from e.
 – It is computationally difficult to compute x from y without knowing d.
Whitfield Diffiea (1944–)

aTuring Award (2016).
Martin Hellmana (1945–)

aTuring Award (2016).
Complexity Issues

- Given y and x, it is easy to verify whether $E(e, x) = y$.
- Hence one can always guess an x and verify.
- Cracking a public-key cryptosystem is thus in NP.
- A necessary condition for the existence of secure public-key cryptosystems is $P \neq NP$.
- But more is needed than $P \neq NP$.
- For instance, it is not sufficient that D is hard to compute in the worst case.
- It should be hard in “most” or “average” cases.
One-Way Functions

A function f is a **one-way function** if the following hold.a

1. f is one-to-one.

2. For all $x \in \Sigma^*$, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some $k > 0$.
 - f is said to be **honest**.

3. f can be computed in polynomial time.

4. f^{-1} cannot be computed in polynomial time.
 - Exhaustive search works, but it must be slow.

aDiffie & Hellman (1976); Boppana & Lagarias (1986); Grollmann & Selman (1988); Ko (1985); Ko, Long, & Du (1986); Watanabe (1985); Young (1983).
Existence of One-Way Functions (OWFs)

• Even if \(P \neq NP \), there is no guarantee that one-way functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?
Candidates of One-Way Functions

- Modular exponentiation $f(x) = g^x \mod p$, where g is a primitive root of p.
 - **Discrete logarithm** is hard.\(^a\)

- The RSA\(^b\) function $f(x) = x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - Breaking the RSA function is hard.

\(^a\)Conjectured to be 2^{n^ϵ} for some $\epsilon > 0$ in both the worst-case sense and average sense. Doable in time $n^{O(\log n)}$ for finite fields of small characteristic (Barbulescu, et al., 2013). It is in NP in some sense (Grollmann & Selman, 1988).

\(^b\)Rivest, Shamir, & Adleman (1978).
Candidates of One-Way Functions (concluded)

- Modular squaring \(f(x) = x^2 \mod pq \).
 - Determining if a number with a Jacobi symbol 1 is a quadratic residue is hard—the **quadratic residuacity assumption (QRA)**.\(^a\)
 - Breaking it is as hard as factorization when \(p \equiv q \equiv 3 \mod 4 \).\(^b\)

\(^a\)Due to Gauss.

\(^b\)Rabin (1979).
The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key cryptosystem requires Alice and Bob have the same key.\(^a\)

 – An example is the \(r\) in the one-time pad.\(^b\)

• How can they agree on the same secret key when the channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using one-way functions.

\(^a\)See p. 642.
\(^b\)See p. 641.
The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive root g of p; \{p and g are public.$\}$
2: Alice chooses a large number a at random;
3: Alice computes $\alpha = g^a \bmod p$;
4: Bob chooses a large number b at random;
5: Bob computes $\beta = g^b \bmod p$;
6: Alice sends α to Bob, and Bob sends β to Alice;
7: Alice computes her key $\beta^a \bmod p$;
8: Bob computes his key $\alpha^b \bmod p$;
Analysis

• The keys computed by Alice and Bob are identical as

\[\beta^a = g^{ba} = g^{ab} = \alpha^b \mod p. \]

• To compute the common key from \(p, g, \alpha, \beta \) is known as the **Diffie-Hellman problem**.

• It is conjectured to be hard.\(^a\)

• If discrete logarithm is easy, then one can solve the Diffie-Hellman problem.
 – Because \(a \) and \(b \) can then be obtained by Eve.

• But the other direction is still open.

\(^a\)This is the **computational Diffie-Hellman assumption** (CDH).
The RSA Function

- Let p, q be two distinct primes.
- The RSA function is $x^e \mod pq$ for an odd e relatively prime to $\phi(pq)$.
 - By Lemma 58 (p. 480),
 \[
 \phi(pq) = pq \left(1 - \frac{1}{p}\right) \left(1 - \frac{1}{q}\right) = pq - p - q + 1. \tag{15}
 \]
- As $\gcd(e, \phi(pq)) = 1$, there is a d such that
 \[
 ed \equiv 1 \mod \phi(pq),
 \]
 which can be found by the Euclidean algorithm.\(^a\)

\(^a\)One can think of d as e^{-1}.
A Public-Key Cryptosystem Based on RSA

- Bob generates \(p \) and \(q \).
- Bob publishes \(pq \) and the encryption key \(e \), a number relatively prime to \(\phi(pq) \).
 - The encryption function is
 \[
 y = x^e \mod pq.
 \]
 - Bob calculates \(\phi(pq) \) by Eq. (15) (p. 655).
 - Bob then calculates \(d \) such that \(ed = 1 + k\phi(pq) \) for some \(k \in \mathbb{Z} \).
A Public-Key Cryptosystem Based on RSA (continued)

- The decryption function is

\[y^d \mod pq. \]

- It works because

\[y^d = x^{ed} = x^{1+k\phi(pq)} = x \mod pq \]

by the Fermat-Euler theorem when \(\gcd(x, pq) = 1 \) (p. 489).
A Public-Key Cryptosystem Based on RSA (continued)

• What if x is not relatively prime to pq?\(^a\)

• As $\phi(pq) = (p - 1)(q - 1)$,

$$ed = 1 + k(p - 1)(q - 1).$$

• Say $x \equiv 0 \mod p$.

• Then

$$y^d \equiv x^{ed} \equiv 0 \equiv x \mod p.$$

\(^a\)Of course, one would be unlucky here.
A Public-Key Cryptosystem Based on RSA
(continued)

• On the other hand, either \(x \not\equiv 0 \mod q \) or \(x \equiv 0 \mod q \).

• If \(x \not\equiv 0 \mod q \), then

\[
\begin{align*}
y^d & \equiv x^{ed} \equiv x^{ed-1}x \equiv x^{k(p-1)(q-1)}x \equiv (x^{q-1})^{k(p-1)}x \\ & \equiv x \mod q.
\end{align*}
\]

by Fermat’s “little” theorem (p. 487).

• If \(x \equiv 0 \mod q \), then

\[
y^d \equiv x^{ed} \equiv 0 \equiv x \mod q.
\]
A Public-Key Cryptosystem Based on RSA (concluded)

• By the Chinese remainder theorem (p. 486),

\[y^d \equiv x^{ed} \equiv 0 \equiv x \mod pq, \]

even when \(x \) is not relatively prime to \(p \).

• When \(x \) is not relatively prime to \(q \), the same conclusion holds.
The “Security” of the RSA Function

- Factoring pq or calculating d from (e, pq) seems hard.\(^a\)

- Breaking the last bit of RSA is as hard as breaking the RSA.\(^b\)

- Recommended RSA key sizes:\(^c\)
 - 1024 bits up to 2010.
 - 2048 bits up to 2030.
 - 3072 bits up to 2031 and beyond.

\(^a\)See also p. 485.
\(^b\)Alexi, Chor, Goldreich, & Schnorr (1988).
\(^c\)RSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US dollars.
The “Security” of the RSA Function (continued)

• Recall that problem A is “harder than” problem B if solving A results in solving B.
 – Factorization is “harder than” breaking the RSA.
 – It is not hard to show that calculating Euler’s phi function\(^a\) is “harder than” breaking the RSA.
 – Factorization is “harder than” calculating Euler’s phi function (see Lemma 58 on p. 480).
 – So factorization is harder than calculating Euler’s phi function, which is harder than breaking the RSA.

\(^a\)When the input is not factorized!
The “Security” of the RSA Function (concluded)

- Factorization cannot be NP-hard unless $NP = coNP$.\(^a\)
- So breaking the RSA is unlikely to imply $P = NP$.
- But numbers can be factorized efficiently by quantum computers.\(^b\)
- RSA was alleged to have received 10 million US dollars from the government to promote unsecure p and q.\(^c\)

\(^a\)Brassard (1979).
\(^b\)Shor (1994).
\(^c\)Menn (2013).
Adi Shamir, Ron Rivest, and Leonard Adleman
Ron Rivesta (1947–)

aTuring Award (2002).
Adi Shamira (1952–)

aTuring Award (2002).
A Parallel History

• Diffie and Hellman’s solution to the secret-key agreement problem led to public-key cryptography.

• In 1973, the RSA public-key cryptosystem was invented in Britain before the Diffie-Hellman secret-key agreement scheme.\(^a\)

\(^a\)Ellis, Cocks, and Williamson of the Communications Electronics Security Group of the British Government Communications Head Quarters (GCHQ).
Is a forged signature the same sort of thing as a genuine signature, or is it a different sort of thing?
— Gilbert Ryle (1900–1976), *The Concept of Mind* (1949)

“Katherine, I gave him the code. He verified the code.”
“But did you verify him?”
— *The Numbers Station* (2013)
Digital Signaturesa

- Alice wants to send Bob a \textit{signed} document x.
- The signature must unmistakably identifies the sender.
- Both Alice and Bob have public and private keys
 \[e_{\text{Alice}}, e_{\text{Bob}}, d_{\text{Alice}}, d_{\text{Bob}}. \]
- Every cryptosystem guarantees $D(d, E(e, x)) = x$.
- Assume the cryptosystem also satisfies the commutative property
 \[E(e, D(d, x)) = D(d, E(e, x)). \] \hfill (16)
 - E.g., the RSA system satisfies it as $(x^d)^e = (x^e)^d$.

aDiffie & Hellman (1976).
Digital Signatures Based on Public-Key Systems

• Alice signs x as
 $$(x, D(d_{\text{Alice}}, x)).$$

• Bob receives (x, y) and verifies the signature by checking
 $$E(e_{\text{Alice}}, y) = E(e_{\text{Alice}}, D(d_{\text{Alice}}, x)) = x$$
 based on Eq. (16).

• The claim of authenticity is founded on the difficulty of inverting E_{Alice} without knowing the key d_{Alice}.
Blind Signaturesa

- There are applications where the document author (Alice) and the signer (Bob) are different parties.

- Sender privacy: We do not want Bob to see the document.
 - Anonymous electronic voting systems, digital cash schemes, anonymous payments, etc.

- Idea: The document is \textit{blinded} by Alice before it is signed by Bob.

- The resulting blind signature can be publicly verified against the original, unblinded document \(x \) as before.

aChaum (1983).
Blind Signatures Based on RSA

Blinding by Alice:

1: Pick $r \in \mathbb{Z}_n^*$ randomly;
2: Send $x' = x^r \mod n$ to Bob; \{x is blinded by r^e.\}

- Note that $r \rightarrow r^e \mod n$ is a one-to-one correspondence.
- Hence $r^e \mod n$ is a random number, too.
- As a result, x' is random and leaks no information.
Blind Signatures Based on RSA (continued)

Signing by Bob with his private decryption key d:
1. Send the blinded signature $s' = (x')^d \mod n$ to Alice;
Blind Signatures Based on RSA (continued)

The RSA signature of Alice:

1. Alice obtains the signature \(s = s'r^{-1} \mod n \);

- This works because

\[
s \equiv s'r^{-1} \equiv (x')^d r^{-1} \equiv (xr^e)^d r^{-1} \equiv x^dr^{ed-1} \equiv x^d \mod n
\]

by the properties of the RSA function.

- Note that only Alice knows \(r \).
Blind Signatures Based on RSA (concluded)

- Anyone can verify the document was signed by Bob by checking with Bob’s encryption key e the following:

 $$s^e \equiv x \mod n.$$

- But Bob does not know s is related to x' (thus Alice).
Probabilistic Encryption

- A deterministic cryptosystem can be broken if the plaintext has a distribution that favors the “easy” cases.
- The ability to forge signatures on even a vanishingly small fraction of strings of some length is a security weakness if those strings were the probable ones!
- A scheme may also “leak” partial information.
 - Parity of the plaintext, e.g.
- The first solution to the problems of skewed distribution and partial information was based on the QRA.

\[^{a}\text{Goldwasser} & \text{Micali (1982). This paper “laid the framework for modern cryptography” (2013).}\]
Shafi Goldwassera (1958–)

aTuring Award (2013).
Silvio Micalia (1954–)

aTuring Award (2013).
A Useful Lemma

Lemma 81 Let $n = pq$ be a product of two distinct primes. Then a number $y \in \mathbb{Z}_n^*$ is a quadratic residue modulo n if and only if $(y | p) = (y | q) = 1$.

- The “only if” part:
 - Let x be a solution to $x^2 = y \mod pq$.
 - Then $x^2 = y \mod p$ and $x^2 = y \mod q$ also hold.
 - Hence y is a quadratic modulo p and a quadratic residue modulo q.
The Proof (concluded)

• The “if” part:
 – Let $a_1^2 = y \mod p$ and $a_2^2 = y \mod q$.
 – Solve
 \[
 x = a_1 \mod p, \\
 x = a_2 \mod q,
 \]
 for x with the Chinese remainder theorem (p. 486).
 – As $x^2 = y \mod p$, $x^2 = y \mod q$, and $\gcd(p, q) = 1$, we must have $x^2 = y \mod pq$.
The Jacobi Symbol and Quadratic Residuacity Test

- The Legendre symbol can be used as a test for quadratic residuacity by Lemma 68 (p. 554).
- Lemma 81 (p. 680) says this is not the case with the Jacobi symbol in general.
- Suppose $n = pq$ is a product of two distinct primes.
- A number $y \in \mathbb{Z}_n^*$ with Jacobi symbol $(y \mid pq) = 1$ is a quadratic nonresidue modulo n when
 $$(y \mid p) = (y \mid q) = -1,$$
 because $(y \mid pq) = (y \mid p)(y \mid q)$.
The Setup

- Bob publishes \(n = pq \), a product of two distinct primes, and a quadratic nonresidue \(y \) with Jacobi symbol 1.
- Bob keeps secret the factorization of \(n \).
- Alice wants to send bit string \(b_1b_2 \cdots b_k \) to Bob.
- Alice encrypts the bits by choosing a random quadratic residue modulo \(n \) if \(b_i \) is 1 and a random quadratic nonresidue (with Jacobi symbol 1) otherwise.
- So a sequence of residues and nonresidues are sent.
- Knowing the factorization of \(n \), Bob can efficiently test quadratic residuacity and thus read the message.
The Protocol for Alice

1: for $i = 1, 2, \ldots, k$ do
2: Pick $r \in \mathbb{Z}_n^*$ randomly;
3: if $b_i = 1$ then
4: Send $r^2 \mod n; \{\text{Jacobi symbol is 1.}\}$
5: else
6: Send $r^2 y \mod n; \{\text{Jacobi symbol is still 1.}\}$
7: end if
8: end for
The Protocol for Bob

1: for \(i = 1, 2, \ldots, k \) do

2: Receive \(r \);

3: if \((r \mid p) = 1 \) and \((r \mid q) = 1 \) then

4: \(b_i := 1; \)

5: else

6: \(b_i := 0; \)

7: end if

8: end for
Semantic Security

- This encryption scheme is probabilistic.
- There are a large number of different encryptions of a given message.
- One is chosen at random by the sender to represent the message.
 - Encryption is a *one-to-many* mapping.
- This scheme is both polynomially secure and semantically secure.