Primality Tests
e PRIMES asks if a number N is a prime.

e The classic algorithm tests if k| N for k =2,3,...

e But it runs in (20082 N)/2) steps.
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Primality Tests (concluded)

e Suppose N = P() is a product of 2 distinct primes.

e The probability of success of the density attack (p. 484)

1S
2

VN

(a4
Y

when P =~ ().

e This probability is exponentially small in terms of the

input length log, V.
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The Fermat Test for Primality

Fermat’s “little” theorem (p. 487) suggests the following
primality test for any given number /V:

. Pick a number a randomly from {1,2,..., N —1};
. if a1 # 1 mod N then

return “/N is composite”;
. else

. return “N is (probably) a prime”;
. end if
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The Fermat Test for Primality (concluded)

Carmichael numbers are composite numbers that will
pass the Fermat test for all a € {1,2,..., N —1}.2

— The Fermat test will return “V is a prime” for all

Carmichael numbers V.

Unfortunately, there are infinitely many Carmichael

numbers.P

In fact, the number of Carmichael numbers less than N
exceeds N2/7 for N large enough.

e So the Fermat test is an incorrect algorithm for PRIMES.

aCarmichael (1910). Lo (1994) mentions an investment strategy based

on such numbers!

bAlford, Granville, & Pomerance (1992).
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Square Roots Modulo a Prime
e Equation 2?2 = a mod p has at most two (distinct) roots

by Lemma 63 (p. 492).
— The roots are called square roots.

— Numbers a with square roots and gcd(a,p) =1 are

called quadratic residues.

x They are

12 mod p,2* mod p, ..., (p — 1)* mod p.

e We shall show that a number either has two roots or has

none, and testing which is the case is trivial.?

@But no efficient deterministic general-purpose square-root-extracting

algorithms are known yet.
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Euler's Test

Lemma 68 (Euler) Let p be an odd prime and
a # 0 mod p.

1. If
a?P~D/2 =1 mod p,

2 _

then x a mod p has two roots.

aP~D/2 =£ 1 mod p,

a?~1/2 = 1 mod p

= a mod p has no roots.
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The Proof (continued)

Let r be a primitive root of p.

Fermat’s “little” theorem says 7?~! = 1 mod p, so

(p=1)/2

is a square root of 1.

In particular,
rP=1/2 =1 or —1 mod p.

But as r is a primitive root, »?=1/2 % 1 mod p.

Hence r?~1/2 = —1 mod p.
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The Proof (continued)

Let a = rk

mod p for some k.
Suppose a?~1/2 =1 mod p.

Then

1 =aP=1/2 = phlp=1)/2 = [7“<p—1>/2r (—1)* mod p.

So k must be even.
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The Proof (continued)

e Suppose a = % mod p for some 1 < j < (p—1)/2.
e Then

aP~D/2 = piP=1) = 1 mod p.
e The two distinct roots of a are
rd, —rd (= ritP=1/2 mod p).

— If 7 = —r7 mod p, then 21/ = 0 mod p, which implies

rJ = 0 mod p, a contradiction as r is a primitive root.
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The Proof (continued)
As 1 <j<(p—1)/2, there are (p — 1)/2 such a’s.
Each such a = 7% mod p has 2 distinct square roots.

The square roots of all these a’s are distinct.

— The square roots of different a’s must be different.
Hence the set of square roots is {1,2,...,p—1}.

As a result,

a=r"modp,1<j<(p—1)/2,

exhaust all the quadratic residues.
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The Proof (concluded)

e Suppose a = r*T! mod p now.

e Then it has no square roots because all the square roots

have been taken.

e Finally,

o (P—1)/2 = {Mp—l)/z

}2j—|—1

(_1>2j—|—1 —
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The Legendre Symbol* and Quadratic Residuacity Test
e By Lemma 68 (p. 554),

aP~1/2 mod p = +1

for a = 0 mod p.

e For odd prime p, define the Legendre symbol (a |p) as

.

= 0 if p|a,

(a|lp)=< 1 if a is a quadratic residue modulo p,

| —1 if a is a quadratic nonresidue modulo p.

e It is sometimes pronounced “a over p.”

2 Andrien-Marie Legendre (1752—-1833).
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The Legendre Symbol and Quadratic Residuacity Test
(concluded)

e Fuler’s test (p. 554) implies

a?~ /2 = (a|p) mod p

for any odd prime p and any integer a.

e Note that (ab|p) = (a|p)(b|p).
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Gauss's Lemma

Lemma 69 (Gauss) Let p and q be two distinct odd
primes. Thend;ﬂp) = (=1)™, where m is the number of
residues in R={igmodp:1<i<(p—1)/2} that are
greater than (p — 1)/2.
e All residues in R are distinct.
— If ig = jg mod p, then p| (j — i) or p|q.

— But neither is possible.

e No two elements of R add up to p.

— If ig+ jqg = 0 mod p, then p| (i + j) or p|q.

— But neither is possible.
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The Proof (continued)

Replace each of the m elements a € R such that
a>(p—1)/2 by p— a.

— This is equivalent to performing —a mod p.
Call the resulting set of residues R’.
All numbers in R’ are at most (p — 1)/2.

In fact, R ={1,2,...,(p—1)/2} (see illustration next
page).
— Otherwise, two elements of R would add up to p,?

which has been shown to be impossible.

4Because then iq = —jq mod p for some 7 # j.
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p="7and g =>5.
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The Proof (concluded)

Alternatively, R = {+igmodp:1<i<(p—1)/2},

where exactly m of the elements have the minus sign.

Take the product of all elements in the two

representations of R.

So
(p—1)/2]' = (=1)"¢®»~V[(p — 1)/2]! mod p.

Because ged([(p — 1)/2]!,p) = 1, the above implies

1= (—1)"¢»"1/2 mod p.
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Legendre's Law of Quadratic Reciprocity®
e Let p and ¢ be two distinct odd primes.

e The next result says (p|q) and (q|p) are distinct if and
only if both p and ¢ are 3 mod 4.

Lemma 70 (Legendre, 1785; Gauss)

(pla)(glp)=(-1)"=

2First stated by Euler in 1751. Legendre (1785) did not give a cor-
rect proof. Gauss proved the theorem when he was 19. He gave at
least 8 different proofs during his life. The 152nd proof appeared in
1963. A computer-generated formal proof was given in Russinoff (1990).
As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law
of Quadratic Reciprocity is the first nontrivial theorem that a student

encounters in the mathematics curriculum.”
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The Proof (continued)

e Sum the elements of R’ in the previous proof in mod?2.
e On one hand, this is just 327"/ mod 2.

e On the other hand, the sum equals

)

(p—1)/2 (p—1)/2 ;
= mp+ |q g T — P g {—QJ mod 2.
, P
=1

1=1

— m of the i¢g mod p are replaced by p — 7q mod p.
— But signs are irrelevant under mod?2.

— m is as in Lemma 69 (p. 562).
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The Proof (continued)

e Ignore odd multipliers to make the sum equal

(p—1)/2 (p—1)/2 ;
m + Z 71— Z {—qJ mod 2.
: : p
1=1 1=1

e Iquate the above with Z(p_ )2 i modulo 2.

e Now simplify to obtain

(p—1)/2

1=1
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The Proof (continued)

9| jis the number of integral points below the

y=(q/p)x
for1<ax<(p—1)/2.

m

Gauss’s lemma (p. 562) says (¢ |p) = (—1)
Repeat the proof with p and ¢ reversed.

Then (p|q) = (—=1)", where m/ is the number of
integral points above the line y = (¢/p) x for

1<y<(¢—1)/2.
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The Proof (concluded)

o As a result,
(plo)(qlp) = (=)™

e But m + m/ is the total number of integral points in the

1, 251 x [1, 5] rectangle, which is

p—1qg—1
2 2
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Eisenstein’s Rectangle

(p-1)/2

Above, p=11,g=7, m =7, m' = 8.
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The Jacobi Symbol®

e The Legendre symbol only works for odd prime moduli.

e The Jacobi symbol (a|m) extends it to cases where m

1s not prime.

— a 1s sometimes called the numerator and m the

denominator.
e Trivially, (1|m) = 1.

e Define (a|1) = 1.

aCarl Jacobi (1804—-1851).
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The Jacobi Symbol (concluded)

e Let m = pips - - pr be the prime factorization of m.
¢ When m > 1is odd and ged(a, m) = 1, then

Bk
(a|m) = [[(alp).

i=1
— Note that the Jacobi symbol equals £1.

— It reduces to the Legendre symbol when m is a prime.
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is
defined.

1. (ab|m) = (a|m)(b|m).
2. (a|mims) = (a|mq)(a|ms).

. If a = b mod m, then (a|m) = (b|m).

3
4. (=1|m) = (=1)m=D/2 (by Lemma 69 on p. 562).

5. (2|m) = (=1)m"—1)/8a

. If a and m are both odd, then
(a|m)(m|a) = (=1)leDim=D/4,

2By Lemma 69 (p. 562) and some parity arguments.
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Properties of the Jacobi Symbol (concluded)

e Properties 3—6 allow us to calculate the Jacobi symbol

without factorization.

— It will also yield the same result as Euler’s test (p.

554) when m is an odd prime.
e This situation is similar to the FEuclidean algorithm.

e Note also that (a|m)=1/(a|m) because (a|m)=+1.2

2Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on
December 6, 2011.
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Calculation of (2200 | 999)

(2200 | 999)

(202]999)

(21999)(101 | 999)
(—1)999°=1)/8 (101 | 999)
(—1)"*7°%(101999) = (101 | 999)
(—

(

(—

1)(100)(998)/4 999 | 101) = (—1)***%°(999 | 101)
999 [101) = (90]101) = (—1)1"~D/8(45101)

1)"?™(45]101) = — (45| 101)
—(—1)#HE00/4 (9011 45) = —(101 | 45) = —(11]45
— (=) (45111) = — (45| 11)
—(1]11) = —1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 71 The group of set ®(n) under multiplication

mod n has a primitive root if and only if n is either 1, 2, 4,

pk, or Zpk for some nonnegative integer k and an odd prime

P.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Test?®

Lemma 72 If (M |N)= MWN=/2mod N for all
M € ®(N), then N is a prime. (Assume N is odd.)

e Assume N = mp, where p is an odd prime, ged(m,p) = 1,

and m > 1 (not necessarily prime).
o Let r € ®(p) such that (r|p) = —1.

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M = rmodp,
M = 1 modm.

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the text-
book’s proof for Lemma 11.8 is incorrect in January 1999 while he was

a senior.
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The Proof (continued)

e By the hypothesis,
MW=D/2 — (M| N) = (M|p)(M|m)=—1mod N.

e Hence
MN-1/2 — _1 mod m.

e But because M = 1 mod m,
MWN=D/2 =1 mod m,

a contradiction.
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The Proof (continued)

e Second, assume that N = p®, where p is an odd prime
and a > 2.

e By Theorem 71 (p. 577), there exists a primitive root r

modulo p®.

e From the assumption,

2
MV = [M(N_”/Q} — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e Asr € ®(N) (prove it), we have

r =1 — 1 mod N.

e As r’s exponent modulo N = p® is ¢(N) = p*~1(p — 1),

p*Hp—1) (N —1),

which implies that p| (N — 1).

e But this is impossible given that p | N.
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The Proof (continued)

Third, assume that N = mp®, where p is an odd prime,
ged(m,p) =1, m > 1 (not necessarily prime), and a is

even.
The proof mimics that of the second case.

By Theorem 71 (p. 577), there exists a primitive root r

modulo p®.

From the assumption,

2
MV = [M(N_”/Q} — (M|N)2 =1 mod N

for all M € ®(N).
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The Proof (continued)

e In particular,
MN~1 =1 mod p* (14)

for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that

M r mod p°,
M 1 mod m.

e Because M = r mod p® and Eq. (14),

rV 71 =1 mod p®.
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The Proof (concluded)

e As r’s exponent modulo N = p® is ¢(N) = p*~1(p — 1),
p*Hp—1) (N —1),
which implies that p| (N — 1).

e But this is impossible given that p | N.
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The Number of Witnesses to Compositeness

Theorem 73 (Solovay & Strassen, 1977) If N is an
odd composite, then (M | N) = MWN=D/2 mod N for at most
half of M € ®(N).

e By Lemma 72 (p. 578) there is at least one a € ®(IV)

such that (a|N) # a™¥~1/2 mod N.

S
o Let B=1{b1,ba,...,bi } C ®(N) be the set of all

distinct &sidues such that (b; | N) = bEN_D/Q mod V.

e LetaB={abmod N :i=1,2,...,k}.
e Clearly, aB C ®(N), too.
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The Proof (concluded)

e |aB|=k.
— ab; = ab; mod N implies N | a(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b, |.

e aBN B = () because

(aby) N ~D/2 = (N=D/2pN=DI2 o (0| NY (b | N) = (abs | N).

e Combining the above two results, we know

Bl 1Bl _ 5
s < [Buap| ~ %
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if N is even but N # 2 then
return “N is composite”;
else if N =2 then
return “/NV is a prime”;
end if
Pick M € {2,3,..., N — 1} randomly;
if gcd(M,N) > 1 then

return “/N is composite”;

1:
2:
3:
4:
5:
6:
7
8:
9:

else
if (M|N)=MPY"Y/2mod N then
return “N is (probably) a prime”;

—_ =
= O

else

—_ =

return “/N is composite”;
end if
: end if

—_ =
vk
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Analysis

e The algorithm certainly runs in polynomial time.

e There are no false positives (for COMPOSITENESS).

— When the algorithm says the number is composite, it

is always correct.
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Analysis (concluded)

e The probability of a false negative (again, for
COMPOSITENESS) is at most one half.

— Suppose the input is composite.

— By Theorem 73 (p. 585),

prob[ algorithm answers “no” | N is composite | < 0.5.

— Note that we are not referring to the probability that

N is composite when the algorithm says “no.”

e So it is a Monte Carlo algorithm for COMPOSITENESS.?

2Not PRIMES.
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The Improved Density Attack for COMPOSITENESS

Witnhesses to

compositeness of Witnesses to
N via common compositeness of

factor N via Jacobi
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Randomized Complexity Classes; RP

e Let N be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.
e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If x € L, then at least half of the 2P(") computation
paths of N on z halt with “yes” where n = |x|.

— If x € L, then all computation paths halt with “no.”

e The class of all languages with polynomial Monte Carlo
TMs is denoted RP (randomized polynomial time).?

2Adleman & Manders (1977).
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Comments on RP

e In analogy to Proposition 40 (p. 328), a “yes” instance

of an RP problem has many certificates (witnesses).

e There are no false positives.

e If we associate nondeterministic steps with flipping fair
coins, then we can phrase RP in the language of

probability.

— If z € L, then N(x) halts with “yes” with probability
at least 0.5 .

— If ¢ L, then N(x) halts with “no.”
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Comments on RP (concluded)

e The probability of false negatives is € < 0.5.

e But any constant between (=nd 1 can replace 0.5.

— Repeat the algorithm k£ = [— 1052 -| times and answer

“no” only if all the runs answer “no.”

— The probability of false negatives becomes €* < 0.5.
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Where RP Fits

e P C RP C NP.

— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

— A Monte Carlo TM is an NTM with more demands
on the number of accepting paths.

e COMPOSITENESS € RP:;* PRIMES € coRP;
PRIMES € RP.P

— In fact, PRIMES € P.€

RP U coRP is an alternative “plausible” notion of

efficient computation.

2Rabin (1976); Solovay & Strassen (1977).

b Adleman & Huang (1987).
©Agrawal, Kayal, & Saxena (2002).
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/PP? (Zero Probabilistic Polynomial)
e The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one
with no false positives (RP) and the other with no false
negatives (coRP).

e If we repeatedly run both Monte Carlo algorithms,

eventually one definite answer will come (unlike RP).

— A positive answer from the one without false

positives.

— A negative answer from the one without false

negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L € ZPP.}
2: {IN7 has no false positives, and N, has no false
negatives. }
3: while true do
if Ni(x) = “yes” then

44 7.
return “yes”;

if No(z) = “no” then

4
5
6: end if
7
8 return “no”;

9: end if
10: end while
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/PP (concluded)

e The expected running time for the correct answer to

emerge is polynomial.

— The probability that a run of the 2 algorithms does

not generate a definite answer is 0.5 (why?).

— Let p(n) be the running time of each run of the

while-loop.

— The expected running time for a definite answer is

ZO.?@p(n) = 2p(n).

e Essentially, ZPP is the class of problems that can be

solved, without errors, in expected polynomial time.
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Large Deviations

Suppose you have a biased coin.

One side has probability 0.5 + € to appear and the other
0.5 — ¢, for some 0 < € < 0.5.

But you do not know which is which.

How to decide which side is the more likely side—with

high confidence?

Answer: Flip the coin many times and pick the side that

appeared the most times.

Question: Can you quantify your confidence?
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The Chernoff Bound®
Theorem 74 (Chernoff, 1952) Suppose x1,x2,...,x, are

independent random variables taking the values 1 and 0 with
probabilities p and 1 — p, respectively. Let X = Z?’Zl X;.
Then for all0 <0 <1,

prob| X > (1+6)pn] < g0 rn/3,

e The probability that the deviate of a binomial

random variable from its expected value

EX|=FE ZxZ] — pn

decreases exponentially with the deviation.

2Herman Chernoff (1923—). The bound is asymptotically optimal.
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The Proof

Let ¢t be any positive real number.

Then
prob[ X > (1 + 0) pn] = prob[e!* > !+ rn ],

Markov’s inequality (p. 535) generalized to real-valued
random variables says that

prob [e'* > kE[e'* ]] < 1/k.

With k = et r /B[ etX ] we have®

prob[ X > (14 0)pn] < et ptX ],

aNote that X does not appear in k. Contributed by Mr. Ao Sun
(R05922147) on December 20, 2016.
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The Proof (continued)

e Because X = > " | x; and x;’s are independent,
E[e™ ] = (E[e™])" =[14p(e' —1)]™
e Substituting, we obtain

prob[ X > (1L +0)pn] < e "I [14ple’ —1)]"

t
e—t(l—i—@) pnepn(e —1)

as (1 +a)™ < e for all a > 0.

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 601



The Proof (concluded)

e With the choice of t = In(1 + 0), the above becomes

prob[ X > (1 +6)pn] < ePn[0—(1+60) In(1+6) |

e The exponent expands to

for 0 <60 <1.

e But it is less than
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Other Variations of the Chernoff Bound
The following can be proved similarly (prove it).

Theorem 75 Given the same terms as Theorem 7

(p. 599),
prob[ X < (1 — ) pn] < e ¥ Pn/2,

The following slightly looser inequalities achieve symmetry.

Theorem 76 (Karp, Luby, & Madras, 1989) Given the
same terms as Theorem 74 (p. 599) except with 0 < 6 < 2,

prob[ X > (1+60) pn] g0 /4,
prob[ X < (1 —0)pn] et pn/4
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Power of the Majority Rule

The next result follows from Theorem 75 (p. 603).

Corollary 77 If p=(1/2) + € for some 0 < e < 1/2, then

prob [Zazz < n/2] < g€ n/2

i=1
e The textbook’s corollary to Lemma 11.9 seems too

2
loose, at e—€ /6 a

e Our original problem (p. 598) hence demands, e.g.,
n ~ 1.4k/e* independent coin flips to guarantee making

an error with probability < 2% with the majority rule.

aSee Dubhashi & Panconesi (2012) for many Chernoff-type bounds.
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BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages L for which there
is a precise polynomial-time NTM N such that:

— If x € L, then at least 3/4 of the computation paths

of N on x lead to “yes.”

— If x € L, then at least 3/4 of the computation paths

of N on x lead to “no.”

e So N accepts or rejects by a clear majority.

aGill (1977).
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