Primality Tests

• PRIMES asks if a number N is a prime.
• The classic algorithm tests if $k | N$ for $k = 2, 3, \ldots, \sqrt{N}$.
• But it runs in $\Omega(2^{(\log_2 N)/2})$ steps.
Primality Tests (concluded)

- Suppose $N = PQ$ is a product of 2 distinct primes.
- The probability of success of the density attack (p. 484) is
 \[\approx \frac{2}{\sqrt{N}} \]
 when $P \approx Q$.
- This probability is exponentially small in terms of the input length $\log_2 N$.
The Fermat Test for Primality

Fermat’s “little” theorem (p. 487) suggests the following primality test for any given number N:

1: Pick a number a randomly from $\{1, 2, \ldots, N - 1\}$;
2: if $a^{N-1} \not\equiv 1 \mod N$ then
3: \hspace{1em} return “N is composite”;
4: else
5: \hspace{1em} return “N is (probably) a prime”;
6: end if
The Fermat Test for Primality (concluded)

- **Carmichael numbers** are composite numbers that will pass the Fermat test for all \(a \in \{1, 2, \ldots, N - 1\}\).\(^a\)
 - The Fermat test will return “\(N\) is a prime” for all Carmichael numbers \(N\).

- Unfortunately, there are infinitely many Carmichael numbers.\(^b\)

- In fact, the number of Carmichael numbers less than \(N\) exceeds \(N^{2/7}\) for \(N\) large enough.

- So the Fermat test is an incorrect algorithm for PRIMES.

\(^a\)Carmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!

\(^b\)Alford, Granville, & Pomerance (1992).
Square Roots Modulo a Prime

• Equation $x^2 \equiv a \mod p$ has at most two (distinct) roots by Lemma 63 (p. 492).
 - The roots are called square roots.
 - Numbers a with square roots and $\gcd(a, p) = 1$ are called quadratic residues.
 * They are

 \[
 1^2 \mod p, 2^2 \mod p, \ldots, (p - 1)^2 \mod p.
 \]

• We shall show that a number either has two roots or has none, and testing which is the case is trivial.\(^a\)

\(^a\)But no efficient deterministic general-purpose square-root-extracting algorithms are known yet.
Euler’s Test

Lemma 68 (Euler) Let p be an odd prime and $a \not\equiv 0 \mod p$.

1. If

$$a^{(p-1)/2} \equiv 1 \mod p,$$

then $x^2 \equiv a \mod p$ has two roots.

2. If

$$a^{(p-1)/2} \not\equiv 1 \mod p,$$

then

$$a^{(p-1)/2} \equiv -1 \mod p$$

and $x^2 \equiv a \mod p$ has no roots.
The Proof (continued)

- Let \(r \) be a primitive root of \(p \).
- Fermat’s “little” theorem says \(r^{p-1} \equiv 1 \mod p \), so
 \[r^{(p-1)/2} \]
 is a square root of 1.
- In particular,
 \[r^{(p-1)/2} \equiv 1 \text{ or } -1 \mod p. \]
- But as \(r \) is a primitive root, \(r^{(p-1)/2} \not\equiv 1 \mod p. \)
- Hence \(r^{(p-1)/2} \equiv -1 \mod p. \)
The Proof (continued)

• Let \(a = r^k \mod p \) for some \(k \).

• Suppose \(a^{(p-1)/2} \equiv 1 \mod p \).

• Then

\[
1 \equiv a^{(p-1)/2} \equiv r^{k(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^k \equiv (-1)^k \mod p.
\]

• So \(k \) must be even.
The Proof (continued)

- Suppose $a = r^{2j} \mod p$ for some $1 \leq j \leq (p - 1)/2$.
- Then
 \[
 a^{(p-1)/2} \equiv r^{j(p-1)} \equiv 1 \mod p.
 \]
- The two distinct roots of a are
 \[
 r^j, -r^j \equiv r^j + (p-1)/2 \mod p).
 \]
 - If $r^j \equiv -r^j \mod p$, then $2r^j \equiv 0 \mod p$, which implies $r^j \equiv 0 \mod p$, a contradiction as r is a primitive root.
The Proof (continued)

- As $1 \leq j \leq (p - 1)/2$, there are $(p - 1)/2$ such a’s.
- Each such $a \equiv r^{2j} \mod p$ has 2 distinct square roots.
- The square roots of all these a’s are distinct.
 - The square roots of different a’s must be different.
- Hence the set of square roots is $\{1, 2, \ldots, p - 1\}$.
- As a result,
 \[
a = r^{2j} \mod p, 1 \leq j \leq (p - 1)/2,
\]
 exhaust all the quadratic residues.
The Proof (concluded)

• Suppose \(a = r^{2j+1} \mod p \) now.

• Then it has no square roots because all the square roots have been taken.

• Finally,

\[
a^{(p-1)/2} \equiv \left[r^{(p-1)/2} \right]^{2j+1} \equiv (-1)^{2j+1} \equiv -1 \mod p.
\]
The Legendre Symbol\(^a\) and Quadratic Residuacity Test

- By Lemma 68 (p. 554),

\[a^{(p-1)/2} \mod p = \pm 1 \]

for \(a \not\equiv 0 \mod p \).

- For odd prime \(p \), define the **Legendre symbol** \((a \mid p) \) as

\[
(a \mid p) = \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic nonresidue modulo } p.
\end{cases}
\]

- It is sometimes pronounced “a over p.”

\(^a\)Andrien-Marie Legendre (1752–1833).
The Legendre Symbol and Quadratic Residuacity Test
(concluded)

- Euler’s test (p. 554) implies

\[a^{(p-1)/2} \equiv (a \mid p) \mod p \]

for any odd prime \(p \) and any integer \(a \).

- Note that \((ab \mid p) = (a \mid p)(b \mid p)\).
Gauss’s Lemma

Lemma 69 (Gauss) Let \(p \) and \(q \) be two distinct odd primes. Then \((q | p) = (-1)^m \), where \(m \) is the number of residues in \(R = \{ iq \mod p : 1 \leq i \leq (p - 1)/2 \} \) that are greater than \((p - 1)/2 \).

- All residues in \(R \) are distinct.
 - If \(iq = jq \mod p \), then \(p | (j - i) \) or \(p | q \).
 - But neither is possible.

- No two elements of \(R \) add up to \(p \).
 - If \(iq + jq \equiv 0 \mod p \), then \(p | (i + j) \) or \(p | q \).
 - But neither is possible.
The Proof (continued)

- Replace each of the m elements $a \in R$ such that $a > (p - 1)/2$ by $p - a$.
 - This is equivalent to performing $-a \mod p$.

- Call the resulting set of residues R'.

- All numbers in R' are at most $(p - 1)/2$.

- In fact, $R' = \{ 1, 2, \ldots, (p - 1)/2 \}$ (see illustration next page).
 - Otherwise, two elements of R would add up to p,\(^a\) which has been shown to be impossible.

\(^a\)Because then $iq \equiv -jq \mod p$ for some $i \neq j$.
$p = 7$ and $q = 5$.
The Proof (concluded)

- Alternatively, \(R' = \{ \pm iq \mod p : 1 \leq i \leq (p - 1)/2 \} \), where exactly \(m \) of the elements have the minus sign.

- Take the product of all elements in the two representations of \(R' \).

- So

\[[(p - 1)/2]! = (-1)^m q^{(p-1)/2} [(p - 1)/2]! \mod p. \]

- Because \(\gcd([(p - 1)/2]!, p) = 1 \), the above implies

\[1 = (-1)^m q^{(p-1)/2} \mod p. \]
Legendre’s Law of Quadratic Reciprocity

- Let \(p \) and \(q \) be two distinct odd primes.
- The next result says \((p \mid q)\) and \((q \mid p)\) are distinct if and only if both \(p \) and \(q \) are 3 mod 4.

Lemma 70 (Legendre, 1785; Gauss)

\[
(p \mid q)(q \mid p) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.
\]

\(^a\)First stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990). As of 2008, there had been 4 such proofs. Wiedijk (2008), “the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum.”
The Proof (continued)

- Sum the elements of R' in the previous proof in mod2.
- On one hand, this is just $\sum_{i=1}^{(p-1)/2} i \mod 2$.
- On the other hand, the sum equals

\[
mp + \sum_{i=1}^{(p-1)/2} \left(iq - p \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2
\]

\[
= mp + \left(q \sum_{i=1}^{(p-1)/2} i - p \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2.
\]

- m of the $iq \mod p$ are replaced by $p - iq \mod p$.
- But signs are irrelevant under mod2.
- m is as in Lemma 69 (p. 562).
The Proof (continued)

- Ignore odd multipliers to make the sum equal

\[m + \left(\sum_{i=1}^{(p-1)/2} i - \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \right) \mod 2. \]

- Equate the above with \(\sum_{i=1}^{(p-1)/2} i \) modulo 2.

- Now simplify to obtain

\[m \equiv \sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \mod 2. \]
The Proof (continued)

- \[\sum_{i=1}^{(p-1)/2} \left\lfloor \frac{iq}{p} \right\rfloor \] is the number of integral points below the line
 \[y = \left(\frac{q}{p}\right)x \]
 for \(1 \leq x \leq (p-1)/2\).

- Gauss’s lemma (p. 562) says \((q \mid p) = (-1)^m\).

- Repeat the proof with \(p\) and \(q\) reversed.

- Then \((p \mid q) = (-1)^{m'}\), where \(m'\) is the number of integral points above the line \(y = \left(\frac{q}{p}\right)x\) for
 \(1 \leq y \leq (q-1)/2\).
The Proof (concluded)

• As a result,

\[(p \mid q)(q \mid p) = (-1)^{m+m'}\].

• But \(m + m'\) is the total number of integral points in the \([1, \frac{p-1}{2}] \times [1, \frac{q-1}{2}]\) rectangle, which is

\[
\frac{p - 1}{2} \frac{q - 1}{2}.
\]
Eisenstein’s Rectangle

Above, $p = 11$, $q = 7$, $m = 7$, $m' = 8$.
The Jacobi Symbola

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol \((a | m)\) extends it to cases where \(m\) is not prime.
 - \(a\) is sometimes called the numerator and \(m\) the denominator.
- Trivially, \((1 | m) = 1\).
- Define \((a | 1) = 1\).

aCarl Jacobi (1804–1851).
The Jacobi Symbol (concluded)

• Let \(m = p_1 p_2 \cdots p_k \) be the prime factorization of \(m \).

• When \(m > 1 \) is odd and \(\gcd(a, m) = 1 \), then

\[
(a \mid m) = \prod_{i=1}^{k} (a \mid p_i).
\]

- Note that the Jacobi symbol equals ±1.
- It reduces to the Legendre symbol when \(m \) is a prime.
Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1. \((ab \mid m) = (a \mid m)(b \mid m)\).

2. \((a \mid m_1m_2) = (a \mid m_1)(a \mid m_2)\).

3. If \(a \equiv b \text{ mod } m\), then \((a \mid m) = (b \mid m)\).

4. \((−1 \mid m) = (−1)^{(m−1)/2}\) (by Lemma 69 on p. 562).

5. \((2 \mid m) = (−1)^{(m^2−1)/8}\).

6. If \(a\) and \(m\) are both odd, then
\[
(a \mid m)(m \mid a) = (−1)^{(a−1)(m−1)/4}.
\]

\[a\]By Lemma 69 (p. 562) and some parity arguments.
Properties of the Jacobi Symbol (concluded)

• Properties 3–6 allow us to calculate the Jacobi symbol without factorization.
 – It will also yield the same result as Euler’s test (p. 554) when m is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that $(a|m) = 1/(a|m)$ because $(a|m) = \pm 1$.\(^\text{a}\)

\(^\text{a}\)Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.
Calculation of \((2200 \mid 999)\)

\[
(2200 \mid 999) = (202 \mid 999)
\]

\[
= (2 \mid 999)(101 \mid 999)
\]

\[
= (-1)^{(999^2 - 1)/8}(101 \mid 999)
\]

\[
= (-1)^{124750}(101 \mid 999) = (101 \mid 999)
\]

\[
= (-1)^{(100)(998)/4}(999 \mid 101) = (-1)^{24950}(999 \mid 101)
\]

\[
= (999 \mid 101) = (90 \mid 101) = (-1)^{(101^2 - 1)/8}(45 \mid 101)
\]

\[
= (-1)^{1275}(45 \mid 101) = -(45 \mid 101)
\]

\[
= -(-1)^{(44)(100)/4}(101 \mid 45) = -(101 \mid 45) = -(11 \mid 45)
\]

\[
= -(-1)^{(10)(44)/4}(45 \mid 11) = -(45 \mid 11)
\]

\[
= -(1 \mid 11) = -1.
\]
A Result Generalizing Proposition 10.3 in the Textbook

Theorem 71 The group of set $\Phi(n)$ under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, p^k, or $2p^k$ for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.
The Jacobi Symbol and Primality Testa

Lemma 72 If \((M \mid N) \equiv M^{(N-1)/2} \mod N\) for all \(M \in \Phi(N)\), then \(N\) is a prime. (Assume \(N\) is odd.)

- Assume \(N = mp\), where \(p\) is an odd prime, \(\gcd(m, p) = 1\), and \(m > 1\) (not necessarily prime).
- Let \(r \in \Phi(p)\) such that \((r \mid p) = -1\).
- The Chinese remainder theorem says that there is an \(M \in \Phi(N)\) such that

\[
M = r \mod p, \\
M = 1 \mod m.
\]

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the textbook’s proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.
The Proof (continued)

- By the hypothesis,
 \[M^{(N-1)/2} = (M \mid N) = (M \mid p)(M \mid m) = -1 \mod N. \]

- Hence
 \[M^{(N-1)/2} = -1 \mod m. \]

- But because \(M = 1 \mod m \),
 \[M^{(N-1)/2} = 1 \mod m, \]
 a contradiction.
The Proof (continued)

• Second, assume that \(N = p^a \), where \(p \) is an odd prime and \(a \geq 2 \).

• By Theorem 71 (p. 577), there exists a primitive root \(r \) modulo \(p^a \).

• From the assumption,

\[
M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N
\]

for all \(M \in \Phi(N) \).
The Proof (continued)

• As \(r \in \Phi(N) \) (prove it), we have

\[r^{N-1} = 1 \mod N. \]

• As \(r \)'s exponent modulo \(N = p^a \) is \(\phi(N) = p^{a-1}(p - 1) \),

\[p^{a-1}(p - 1) \mid (N - 1), \]

which implies that \(p \mid (N - 1). \)

• But this is impossible given that \(p \mid N. \)
The Proof (continued)

- Third, assume that \(N = mp^a \), where \(p \) is an odd prime, \(\gcd(m, p) = 1 \), \(m > 1 \) (not necessarily prime), and \(a \) is even.
- The proof mimics that of the second case.
- By Theorem 71 (p. 577), there exists a primitive root \(r \) modulo \(p^a \).
- From the assumption,

\[
M^{N-1} = \left[M^{(N-1)/2} \right]^2 = (M|N)^2 = 1 \mod N
\]

for all \(M \in \Phi(N) \).
The Proof (continued)

• In particular,

\[M^{N-1} = 1 \mod p^a \] \hspace{1cm} (14)

for all \(M \in \Phi(N) \).

• The Chinese remainder theorem says that there is an \(M \in \Phi(N) \) such that

\[
\begin{align*}
M &= r \mod p^a, \\
M &= 1 \mod m.
\end{align*}
\]

• Because \(M = r \mod p^a \) and Eq. (14),

\[r^{N-1} = 1 \mod p^a. \]
The Proof (concluded)

• As \(r \)'s exponent modulo \(N = p^a \) is \(\phi(N) = p^{a-1}(p - 1) \),

\[
p^{a-1}(p - 1) \mid (N - 1),
\]

which implies that \(p \mid (N - 1) \).

• But this is impossible given that \(p \mid N \).
The Number of Witnesses to Compositeness

Theorem 73 (Solovay & Strassen, 1977) If N is an odd composite, then
\[(M \mid N) \equiv M^{(N-1)/2} \mod N\]
for at most half of $M \in \Phi(N)$.

- By Lemma 72 (p. 578) there is at least one $a \in \Phi(N)$ such that
\[(a \mid N) \not\equiv a^{(N-1)/2} \mod N.\]

- Let $B = \{b_1, b_2, \ldots, b_k\} \subseteq \Phi(N)$ be the set of all distinct residues such that
\[(b_i \mid N) \equiv b_i^{(N-1)/2} \mod N.\]

- Let $aB = \{ab_i \mod N : i = 1, 2, \ldots, k\}$.

- Clearly, $aB \subseteq \Phi(N)$, too.
The Proof (concluded)

- \(|aB| = k.\)

 \(-\ ab_i \equiv ab_j \mod N\) implies \(N \mid a(b_i - b_j),\) which is impossible because \(\gcd(a, N) = 1\) and \(N > |b_i - b_j|\).

- \(aB \cap B = \emptyset\) because

 \[(ab_i)^{(N-1)/2} \equiv a^{(N-1)/2}b_i^{(N-1)/2} \not\equiv (a \mid N)(b_i \mid N) \equiv (ab_i \mid N). \]

- Combining the above two results, we know

 \[\frac{|B|}{\phi(N)} \leq \frac{|B|}{|B \cup aB|} = 0.5. \]
1: if N is even but $N \neq 2$ then
2: return "N is composite";
3: else if $N = 2$ then
4: return "N is a prime";
5: end if
6: Pick $M \in \{2, 3, \ldots, N - 1\}$ randomly;
7: if $\gcd(M, N) > 1$ then
8: return "N is composite";
9: else
10: if $(M \mid N) \equiv M^{(N-1)/2} \pmod{N}$ then
11: return "N is (probably) a prime";
12: else
13: return "N is composite";
14: end if
15: end if
Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for COMPOSITENESS).
 – When the algorithm says the number is composite, it is always correct.
Analysis (concluded)

• The probability of a false negative (again, for COMPOSITENESS) is at most one half.
 – Suppose the input is composite.
 – By Theorem 73 (p. 585),
 \[
 \text{prob[algorithm answers “no” | } N \text{ is composite}] \leq 0.5.
 \]
 – Note that we are not referring to the probability that \(N \) is composite when the algorithm says “no.”

• So it is a Monte Carlo algorithm for COMPOSITENESS.\(^a\)

\(^a\)Not PRIMES.
The Improved Density Attack for COMPOSITENESS

- All numbers < \(N \)
- Witnesses to compositeness of \(N \) via common factor
- Witnesses to compositeness of \(N \) via Jacobi
Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.

• N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
 – If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with “yes” where $n = |x|$.
 – If $x \notin L$, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo TMs is denoted \textbf{RP} (randomized polynomial time).

aAdleman & Manders (1977).
Comments on RP

- In analogy to Proposition 40 (p. 328), a “yes” instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of probability.
 - If \(x \in L \), then \(N(x) \) halts with “yes” with probability at least 0.5.
 - If \(x \not\in L \), then \(N(x) \) halts with “no.”
Comments on RP (concluded)

- The probability of false negatives is $\epsilon \leq 0.5$.
- But *any* constant between 0 and 1 can replace 0.5.
 - Repeat the algorithm $k = \lceil -\frac{1}{\log_2 \epsilon} \rceil$ times and answer “no” only if all the runs answer “no.”
 - The probability of false negatives becomes $\epsilon^k \leq 0.5$.
Where RP Fits

• $P \subseteq RP \subseteq NP$.
 – A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 – A Monte Carlo TM is an NTM with more demands on the number of accepting paths.

• COMPOSITENESS \in RP;a PRIMES $\in \text{coRP}$; PRIMES \in RP.b
 – In fact, PRIMES $\in P$.c

• $RP \cup \text{coRP}$ is an alternative “plausible” notion of efficient computation.

aRabin (1976); Solovay & Strassen (1977).
bAdleman & Huang (1987).
cAgrawal, Kayal, & Saxena (2002).
ZPPa (Zero Probabilistic Polynomial)

- The class ZPP is defined as RP \cap coRP.

- A language in ZPP has \textit{two} Monte Carlo algorithms, one with no false positives (RP) and the other with no false negatives (coRP).

- If we repeatedly run both Monte Carlo algorithms, \textit{eventually} one definite answer will come (unlike RP).
 - A \textit{positive} answer from the one without false positives.
 - A \textit{negative} answer from the one without false negatives.

aGill (1977).
The ZPP Algorithm (Las Vegas)

1: {Suppose $L \in \text{ZPP}.}$
2: {N_1 has no false positives, and N_2 has no false negatives.}
3: while true do
4: if $N_1(x) =$ “yes” then
5: return “yes”;
6: end if
7: if $N_2(x) =$ “no” then
8: return “no”;
9: end if
10: end while
ZPP (concluded)

- The *expected* running time for the correct answer to emerge is polynomial.
 - The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
 - Let $p(n)$ be the running time of each run of the while-loop.
 - The expected running time for a definite answer is
 \[
 \sum_{i=1}^{\infty} 0.5^i p(n) = 2p(n).
 \]

- Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.
Large Deviations

• Suppose you have a biased coin.
• One side has probability $0.5 + \epsilon$ to appear and the other $0.5 - \epsilon$, for some $0 < \epsilon < 0.5$.
• But you do not know which is which.
• How to decide which side is the more likely side—with high confidence?
• Answer: Flip the coin many times and pick the side that appeared the most times.
• Question: Can you quantify your confidence?
The Chernoff Bounda

Theorem 74 (Chernoff, 1952) Suppose x_1, x_2, \ldots, x_n are independent random variables taking the values 1 and 0 with probabilities p and $1 - p$, respectively. Let $X = \sum_{i=1}^{n} x_i$. Then for all $0 \leq \theta \leq 1$,

$$\text{prob}[X \geq (1 + \theta) pn] \leq e^{-\theta^2 pn/3}.$$

- The probability that the deviate of a \textbf{binomial random variable} from its expected value

$$E[X] = E\left[\sum_{i=1}^{n} x_i\right] = pn$$

decreases exponentially with the deviation.

aHerman Chernoff (1923–). The bound is asymptotically optimal.
The Proof

• Let t be any positive real number.

• Then

$$\text{prob}[X \geq (1 + \theta)pn] = \text{prob}[e^{tX} \geq e^{t(1+\theta)pn}].$$

• Markov’s inequality (p. 535) generalized to real-valued random variables says that

$$\text{prob} \left[e^{tX} \geq kE[e^{tX}] \right] \leq 1/k.$$

• With $k = e^{t(1+\theta)pn}/E[e^{tX}]$, we have\(^a\)

$$\text{prob}[X \geq (1 + \theta)pn] \leq e^{-t(1+\theta)pn}E[e^{tX}].$$

\(^a\)Note that X does not appear in k. Contributed by Mr. Ao Sun (R05922147) on December 20, 2016.
The Proof (continued)

- Because $X = \sum_{i=1}^{n} x_i$ and x_i’s are independent,

 $$E[e^{tX}] = (E[e^{tx_1}])^n = [1 + p(e^t - 1)]^n.$$

- Substituting, we obtain

 $$\text{prob}[X \geq (1 + \theta)pn] \leq e^{-t(1+\theta)pn}[1 + p(e^t - 1)]^n \leq e^{-t(1+\theta)pn}e^{pn(e^t-1)}$$

 as $(1 + a)^n \leq e^{an}$ for all $a > 0$.
The Proof (concluded)

- With the choice of $t = \ln(1 + \theta)$, the above becomes

$$\text{prob}[X \geq (1 + \theta)pn] \leq e^{pn[\theta-(1+\theta)\ln(1+\theta)]}.$$

- The exponent expands to

$$-\frac{\theta^2}{2} + \frac{\theta^3}{6} - \frac{\theta^4}{12} + \cdots$$

for $0 \leq \theta \leq 1$.

- But it is less than

$$-\frac{\theta^2}{2} + \frac{\theta^3}{6} \leq \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6}\right) \leq \theta^2 \left(-\frac{1}{2} + \frac{1}{6}\right) = -\frac{\theta^2}{3}.$$
Other Variations of the Chernoff Bound

The following can be proved similarly (prove it).

Theorem 75 *Given the same terms as Theorem 74 (p. 599),*

\[
\operatorname{prob}[X \leq (1 - \theta) pn] \leq e^{-\theta^2 pn/2}.
\]

The following slightly looser inequalities achieve symmetry.

Theorem 76 (Karp, Luby, & Madras, 1989) *Given the same terms as Theorem 74 (p. 599) except with 0 \leq \theta \leq 2,*

\[
\operatorname{prob}[X \geq (1 + \theta) pn] \leq e^{-\theta^2 pn/4},
\]
\[
\operatorname{prob}[X \leq (1 - \theta) pn] \leq e^{-\theta^2 pn/4}.
\]
Power of the Majority Rule

The next result follows from Theorem 75 (p. 603).

Corollary 77 If \(p = (1/2) + \epsilon \) for some \(0 \leq \epsilon \leq 1/2 \), then

\[
\text{prob} \left[\sum_{i=1}^{n} x_i \leq n/2 \right] \leq e^{-\epsilon^2 n/2}.
\]

- The textbook’s corollary to Lemma 11.9 seems too loose, at \(e^{-\epsilon^2 n/6} \).

- Our original problem (p. 598) hence demands, e.g., \(n \approx 1.4k/\epsilon^2 \) independent coin flips to guarantee making an error with probability \(\leq 2^{-k} \) with the majority rule.

\(^a\)See Dubhashi & Panconesi (2012) for many Chernoff-type bounds.
BPPa (Bounded Probabilistic Polynomial)

- The class \textbf{BPP} contains all languages \(L \) for which there is a precise polynomial-time NTM \(N \) such that:

 - If \(x \in L \), then at least \(3/4 \) of the computation paths of \(N \) on \(x \) lead to “yes.”

 - If \(x \notin L \), then at least \(3/4 \) of the computation paths of \(N \) on \(x \) lead to “no.”

- So \(N \) accepts or rejects by a \textit{clear} majority.

aGill (1977).