Generalized 2SAT: MAX2SAT

- Consider a 2SAT formula.
- Let $K \in \mathbb{N}$.
- MAX2SAT asks whether there is a truth assignment that satisfies at least K of the clauses.
 - MAX2SAT becomes 2SAT when K equals the number of clauses.
Generalized 2SAT: MAX2SAT (concluded)

- **MAX2SAT** is an optimization problem.
 - With binary search, one can nail the maximum number of satisfiable clauses of 2SAT formulas.

- **MAX2SAT ∈ NP**: Guess a truth assignment and verify the count.

- We now reduce 3SAT to MAX2SAT.
MAX2SAT Is NP-Completea

- Consider the following 10 clauses:

\[
(x) \land (y) \land (z) \land (w) \\
(\neg x \lor \neg y) \land (\neg y \lor \neg z) \land (\neg z \lor \neg x) \\
(x \lor \neg w) \land (y \lor \neg w) \land (z \lor \neg w)
\]

- Let the 2SAT formula \(r(x, y, z, w) \) represent the conjunction of these clauses.

- The clauses are symmetric with respect to \(x, y, \) and \(z \).

- How many clauses can we satisfy?

aGarey, Johnson, & Stockmeyer (1976).
The Proof (continued)

All of x, y, z are true: By setting w to true, we satisfy $4 + 0 + 3 = 7$ clauses, whereas by setting w to false, we satisfy only $3 + 0 + 3 = 6$ clauses.

Two of x, y, z are true: By setting w to true, we satisfy $3 + 2 + 2 = 7$ clauses, whereas by setting w to false, we satisfy $2 + 2 + 3 = 7$ clauses.
The Proof (continued)

One of x, y, z is true: By setting w to false, we satisfy $1 + 3 + 3 = 7$ clauses, whereas by setting w to true, we satisfy only $2 + 3 + 1 = 6$ clauses.

None of x, y, z is true: By setting w to false, we satisfy $0 + 3 + 3 = 6$ clauses, whereas by setting w to true, we satisfy only $1 + 3 + 0 = 4$ clauses.
The Proof (continued)

- A truth assignment that satisfies $x \lor y \lor z$ can be extended to satisfy 7 of the 10 clauses of $r(x, y, z, w)$, and no more.

- A truth assignment that does not satisfy $x \lor y \lor z$ can be extended to satisfy only 6 of them, and no more.

- The reduction from 3SAT ϕ to MAX2SAT $R(\phi)$:
 - For each clause $C_i = (\alpha \lor \beta \lor \gamma)$ of ϕ, add group $r(\alpha, \beta, \gamma, w_i)$ to $R(\phi)$.

- If ϕ has m clauses, then $R(\phi)$ has $10m$ clauses.
The Proof (continued)

- Finally, set $K = 7m$.

- We now show that K clauses of $R(\phi)$ can be satisfied if and only if ϕ is satisfiable.
The Proof (continued)

• Suppose $K = 7m$ clauses of $R(\phi)$ can be satisfied.

 – 7 clauses of each group $r(\alpha, \beta, \gamma, w_i)$ must be satisfied because each group can have at most 7 clauses satisfied.\(^a\)

 – Hence each clause $C_i = (\alpha \lor \beta \lor \gamma)$ of ϕ is satisfied by the same truth assignment.

 – So ϕ is satisfied.

\(^a\)If 70% of the world population are male and if at most 70% of each country’s population are male, then each country must have exactly 70% male population.
The Proof (concluded)

- Suppose \(\phi \) is satisfiable.
 - Let \(T \) satisfy all clauses of \(\phi \).
 - Each group \(r(\alpha, \beta, \gamma, w_i) \) can set its \(w_i \) appropriately to have 7 clauses satisfied.
 - So \(K = 7m \) clauses are satisfied.
NAESAT

• The NAESAT (for “not-all-equal” SAT) is like 3SAT.

• But there must be a satisfying truth assignment under which no clauses have all three literals equal in truth value.

• Equivalently, there is a truth assignment such that each clause has a literal assigned true and a literal assigned false.

• Equivalently, there is a satisfying truth assignment under which each clause has a literal assigned false.
NAESAT (concluded)

• Take

\[\phi = (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \]
\[\land (x_1 \lor x_2 \lor x_3) \]

as an example.

• Then \(\{ x_1 = \text{true}, x_2 = \text{false}, x_3 = \text{false} \} \) NAE-satisfies \(\phi \) because

\[(\text{false} \lor \text{true} \lor \text{true}) \land (\text{false} \lor \text{false} \lor \text{true}) \]
\[\land (\text{true} \lor \text{false} \lor \text{false}).\]
NAESAT Is NP-Completea

- Recall the reduction of CIRCUIT SAT to SAT on p. 279ff.
- It produced a CNF ϕ in which each clause has 1, 2, or 3 literals.
- Add the same variable z to all clauses with fewer than 3 literals to make it a 3SAT formula.
- Goal: The new formula $\phi(z)$ is NAE-satisfiable if and only if the original circuit is satisfiable.

aSchaefer (1978).
The Proof (continued)

- The following simple observation will be useful.
- Suppose T NAE-satisfies a boolean formula ϕ.
- Let \overline{T} take the opposite truth value of T on every variable.
- Then \overline{T} also NAE-satisfies ϕ.\(^\text{a}\)

\(^{\text{a}}\)Hesse’s *Siddhartha* (1922), “The opposite of every truth is just as true!”
The Proof (continued)

• Suppose \(T \) NAE-satisfies \(\phi(z) \).

 – \(\overline{T} \) also NAE-satisfies \(\phi(z) \).

 – Under \(T \) or \(\overline{T} \), variable \(z \) takes the value false.

 – \textit{This} truth assignment \(T \) must satisfy all the clauses of \(\phi \).

 * Because \(z \) is not the reason that makes \(\phi(z) \) true under \(T \) anyway.

 – So \(T \models \phi \).

 – And the original circuit is satisfiable.
The Proof (concluded)

• Suppose there is a truth assignment that satisfies the circuit.
 – Then there is a truth assignment T that satisfies every clause of ϕ.
 – Extend T by adding $T(z) = \text{false}$ to obtain T'.
 – T' satisfies $\phi(z)$.
 – So in no clauses are all three literals false under T'.
 – In no clauses are all three literals true under T'.
 * Need to go over the detailed construction on pp. 280–282.
Undirected Graphs

- An undirected graph $G = (V, E)$ has a finite set of nodes, V, and a set of undirected edges, E.
- It is like a directed graph except that the edges have no directions and there are no self-loops.
- Use $[i, j]$ to mean there is an undirected edge between node i and node j.
Independent Sets

- Let $G = (V, E)$ be an undirected graph.
- $I \subseteq V$.
- I is independent if there is no edge between any two nodes $i, j \in I$.
- INDEPENDENT SET: Given an undirected graph and a goal K, is there an independent set of size K?
- Many applications.
INDEPENDENT SET Is NP-Complete

- This problem is in NP: Guess a set of nodes and verify that it is independent and meets the count.

- We will reduce 3SAT to INDEPENDENT SET.

- If a graph contains a triangle, any independent set can contain at most one node of the triangle.

- The results of the reduction will be graphs whose nodes can be partitioned into disjoint triangles, one for each clause.\(^a\)

\(^a\)Recall that a reduction does not have to be an onto function.
The Proof (continued)

- Let ϕ be a 3SAT formula with m clauses.
- We will construct graph G with $K = m$.
- Furthermore, ϕ is satisfiable if and only if G has an independent set of size K.
- Here is the reduction:
 - There is a triangle for each clause with the literals as the nodes.
 - Add edges between x and $\neg x$ for every variable x.
\[(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)\]

Same literal labels that appear in the same clause or different clauses yield *distinct* nodes.
The Proof (continued)

• Suppose G has an independent set I of size $K = m$.
 – An independent set can contain at most m nodes, one from each triangle.
 – So I contains exactly one node from each triangle.
 – Truth assignment T assigns true to those literals in I.
 – T is consistent because contradictory literals are connected by an edge; hence both cannot be in I.
 – T satisfies ϕ because it has a node from every triangle, thus satisfying every clause.\(^a\)

\(^a\)The variables without a truth value can be assigned arbitrarily. Contributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.
The Proof (concluded)

• Suppose ϕ is satisfiable.

 – Let truth assignment T satisfy ϕ.

 – Collect one node from each triangle whose literal is true under T.

 – The choice is arbitrary if there is more than one true literal.

 – This set of m nodes must be independent by construction.

 * Because both literals x and $\neg x$ cannot be assigned true.
Other INDEPENDENT SET-Related NP-Complete Problems

Corollary 42 INDEPENDENT SET is NP-complete for 4-degree graphs.

Theorem 43 INDEPENDENT SET is NP-complete for planar graphs.

Theorem 44 (Garey & Johnson, 1977)) INDEPENDENT SET is NP-complete for 3-degree planar graphs.
Is INDEPENDENT EDGE SET Also NP-Complete?

- INDEPENDENT EDGE SET: Given an undirected graph and a goal K, is there an independent edge set of size K?
- This problem is equivalent to maximum matching!
- Maximum matching can be solved in polynomial time.\(^a\)

\(^a\)Edmonds (1965); Micali & V. Vazirani (1980).
A Maximum Matching
NODE COVER

- We are given an undirected graph G and a goal K.
- NODE COVER: Is there a set C with K or fewer nodes such that each edge of G has at least one of its endpoints (i.e., incident nodes) in C?
- Many applications.
NODE COVER (concluded)
Corollary 45 (Karp, 1972) NODE COVER is NP-complete.

- \(I \) is an independent set of \(G = (V, E) \) if and only if \(V - I \) is a node cover of \(G \).
Richard Karpa (1935–)

aTuring Award (1985).
Remarksa

- Are INDEPENDENT SET and NODE COVER in P if K is a constant?
 - Yes, because one can do an exhaustive search on all the possible node covers or independent sets (both $\binom{n}{K}$ of them, a polynomial).b

- Are INDEPENDENT SET and NODE COVER NP-complete if K is a linear function of n?
 - INDEPENDENT SET with $K = n/3$ and NODE COVER with $K = 2n/3$ remain NP-complete by our reductions.

aContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.

bn = $|V|$.
CLIQUE

- We are given an undirected graph G and a goal K.
- CLIQUE asks if there is a set C with K nodes such that there is an edge between any two nodes $i, j \in C$.
- Many applications.
CLIQUE (concluded)
Corollary 46
CLIQUE is NP-Complete

CLIQUE is NP-complete.

- Let \bar{G} be the complement of G, where $[x, y] \in \bar{G}$ if and only if $[x, y] \notin G$.

- I is a clique in G \iff I is an independent set in \bar{G}.

\[\text{\footnotesize{aKarp (1972).}}\]
MIN CUT and MAX CUT

• A cut in an undirected graph $G = (V, E)$ is a partition of the nodes into two nonempty sets S and $V - S$.

• The size of a cut $(S, V - S)$ is the number of edges between S and $V - S$.

• MIN CUT asks for the minimum cut size.

• MIN CUT \in P by the maxflow algorithm.a

• MAX CUT asks if there is a cut of size at least K.
 – K is part of the input.

aFord & Fulkerson (1962); Orlin (2012) improves the running time to $O(|V| \cdot |E|)$.
A Cut of Size 4
MIN CUT and MAX CUT (concluded)

- MAX CUT has applications in circuit layout.
 - The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size.\(^a\)

\(^a\)Raspaud, Sýkora, & Vrťo (1995); Mak & Wong (2000).
MAX CUT Is NP-Complete\(^a\)

- We will reduce NAESAT to MAX CUT.
- Given a 3SAT formula \(\phi\) with \(m\) clauses, we shall construct a graph \(G = (V, E)\) and a goal \(K\).
- Furthermore, there is a cut of size at least \(K\) if and only if \(\phi\) is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
 - Each such edge contributes one to the cut if its nodes are separated.

\(^a\)Karp (1972); Garey, Johnson, & Stockmeyer (1976). MAX CUT remains NP-complete even for graphs with maximum degree 3 (Makedon, Papadimitriou, & Sudborough, 1985).
The Proof

• Suppose ϕ’s m clauses are C_1, C_2, \ldots, C_m.

• The boolean variables are x_1, x_2, \ldots, x_n.

• G has $2n$ nodes: $x_1, x_2, \ldots, x_n, \neg x_1, \neg x_2, \ldots, \neg x_n$.

• Each clause with 3 distinct literals makes a triangle in G.

• For each clause with two identical literals, there are two parallel edges between the two distinct literals.
The Proof (continued)

- No need to consider clauses with one literal (why?).
- No need to consider clauses containing two opposite literals x_i and $\neg x_i$ (why?).
- For each variable x_i, add n_i copies of edge $[x_i, \neg x_i]$, where n_i is the number of occurrences of x_i and $\neg x_i$ in ϕ.
- Note that
 \[
 \sum_{i=1}^{n} n_i = 3m.
 \]
 - The summation is simply the total number of literals.
\[x_i \quad \sim x_j \quad \sim x_k \]
\[x_i \quad \sim \sim x_j \]
\[x_i \quad \sim \sim \sim \sim x_i \quad n_i \text{ copies} \]
The Proof (continued)

• Set $K = 5m$.

• Suppose there is a cut $(S, V - S)$ of size $5m$ or more.

• A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.

• Suppose some x_i and $\neg x_i$ are on the same side of the cut.

• They together contribute at most $2n_i$ edges to the cut.
 – They appear in at most n_i different clauses.
 – A clause contributes at most 2 to a cut.
The Proof (continued)

- Either x_i or $\neg x_i$ contributes at most n_i to the cut by the pigeonhole principle.

- Changing the side of that literal does *not decrease* the size of the cut.

- Hence we assume variables are separated from their negations.

- The total number of edges in the cut that join opposite literals x_i and $\neg x_i$ is $\sum_{i=1}^{n} n_i$.

- But we knew $\sum_{i=1}^{n} n_i = 3m$.
The Proof (concluded)

- The remaining $K - 3m \geq 2m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.

- Each can contribute at most 2 to the cut.

- So all are split.

- A split clause means at least one of its literals is true and at least one false.

- The other direction is left as an exercise.
This Cut Does Not Meet the Goal $K = 5 \times 3 = 15$

- $(x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$.
- The cut size is $13 < 15$.
This Cut Meets the Goal $K = 5 \times 3 = 15$

- $(x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$.
- The cut size is now 15.
Remarks

• We had proved that MAX CUT is NP-complete for multigraphs.

• How about proving the same thing for simple graphs?\(^a\)

• How to modify the proof to reduce 4SAT to MAX CUT?\(^b\)

• All NP-complete problems are mutually reducible by definition.\(^c\)
 – So they are equally hard in this sense.\(^d\)

\(^a\) Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.

\(^b\) Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.

\(^c\) Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

\(^d\) Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
MAX BISECTION

- MAX CUT becomes MAX BISECTION if we require that $|S| = |V - S|$.
- It has many applications, especially in VLSI layout.
MAX BISECTION Is NP-Complete

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add $|V| = n$ isolated nodes to G to yield G'.
- G' has $2n$ nodes.
- G''’s goal K is identical to G’s
 - As the new nodes have no edges, they contribute 0 to the cut.
- This completes the reduction.
The Proof (concluded)

- Every cut \((S, V - S)\) of \(G = (V, E)\) can be made into a bisection by appropriately allocating the new nodes between \(S\) and \(V - S\).

- Hence each cut of \(G\) can be made a cut of \(G'\) of the same size, and vice versa.
BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).

- Unlike MIN CUT, BISECTION WIDTH is NP-complete.

- We reduce MAX BISECTION to BISECTION WIDTH.

- Given a graph $G = (V, E)$, where $|V|$ is even, we generate the complement\(^a\) of G.

- Given a goal of K, we generate a goal of $n^2 - K$.\(^b\)

\(^a\)Recall p. 379.

\(^b\)|V| = $2n$.
The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
 - A graph $G = (V, E)$, where $|V| = 2n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 - K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 - K$.
HAMILTONIAN PATH Is NP-Completea

Theorem 47 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

aKarp (1972).
A Hamiltonian Path at IKEA, Covina, California?
TSP (D) Is NP-Complete

Corollary 48 TSP (D) is NP-complete.

• Consider a graph G with n nodes.

• Create a weighted complete graph G' with the same nodes as G.

• Set $d_{ij} = 1$ on G' if $[i, j] \in G$ and $d_{ij} = 2$ on G' if $[i, j] \notin G$.

 – Note that G' is a complete graph.

• Set the budget $B = n + 1$.

• This completes the reduction.
TSP (D) Is NP-Complete (continued)

- Suppose G' has a tour of distance at most $n + 1$.\(^a\)
- Then that tour on G' must contain at most one edge with weight 2.
- If a tour on G' contains one edge with weight 2, remove that edge to arrive at a Hamiltonian path for G.
- Suppose a tour on G' contains no edge with weight 2.
- Remove any edge to arrive at a Hamiltonian path for G.

\(^a\)A tour is a cycle, not a path.
TSP (D) Is NP-Complete (concluded)

- On the other hand, suppose G has a Hamiltonian path.
- There is a tour on G' containing at most one edge with weight 2.
 - Start with a Hamiltonian path and then close the loop.
- The total cost is then at most $(n - 1) + 2 = n + 1 = B$.
- We conclude that there is a tour of length B or less on G' if and only if G has a Hamiltonian path.
Random TSP

- Suppose each distance d_{ij} is picked uniformly and independently from the interval $[0, 1]$.
- It is known that the total distance of the shortest tour has a mean value of $\beta \sqrt{n}$ for some positive β.a
- In fact, the total distance of the shortest tour deviates from the mean by more than t with probability at most $e^{-t^2/(4n)!}$b

aBeardwood, Halton, & Hammersley (1959).
bDubhashi & Panconesi (2012).
Graph Coloring

• k-COLORING: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color?\(^a\)

• 2-COLORING is in P (why?).

• But 3-COLORING is NP-complete (see next page).

• k-COLORING is NP-complete for $k \geq 3$ (why?).

• EXACT-k-COLORING asks if the nodes of a graph can be colored using *exactly* k colors.

• It remains NP-complete for $k \geq 3$ (why?).

\(^a\) is *not* part of the input; k is part of the problem statement.
3-COLORING is NP-Completea

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n.
- We shall construct a graph G that can be colored with colors $\{0, 1, 2\}$ if and only if all the clauses can be NAE-satisfied.

aKarp (1972).
The Proof (continued)

• Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.

• Each clause $C_i = (c_{i1} \lor c_{i2} \lor c_{i3})$ is also represented by a triangle

 $[c_{i1}, c_{i2}, c_{i3}]$.

 – Node c_{ij} and a node in an a-triangle $[a, x_k, \neg x_k]$ with the same label represent distinct nodes.

• There is an edge between c_{ij} and the node that represents the jth literal of C_i.

aAlternative proof: There is an edge between $\neg c_{ij}$ and the node that represents the jth literal of C_i. Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
Construction for $\cdots \land (x_1 \lor \neg x_2 \lor \neg x_3) \land \cdots$

![Diagram](image)
The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.
The Proof (continued)

• Treat 1 as \texttt{true} and 0 as \texttt{false}.a

 – We are dealing with the \texttt{a}-triangles here, not the clause triangles yet.

• The resulting truth assignment is clearly contradiction free.

• As each clause triangle contains one color 1 and one color 0, the clauses are \texttt{NAE}-satisfied.

aThe opposite also works.
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
 - We are dealing with the a-triangles here, not the clause triangles.
The Proof (continued)

• For each clause triangle:
 – Pick any two literals with opposite truth values.\(^a\)
 – Color the corresponding nodes with 0 if the literal is \textit{true} and 1 if it is \textit{false}.
 – Color the remaining node with color 2.

\(^a\)Break ties arbitrarily.
The Proof (concluded)

- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.
More on 3-COLORING and the Chromatic Number

- 3-COLORING remains NP-complete for planar graphs.\(^a\)

- Assume \(G\) is 3-colorable.

- There is a classic algorithm that finds a 3-coloring in time \(O(3^{n/3}) = 1.4422^n\).\(^b\)

- It can be improved to \(O(1.3289^n)\).\(^c\)

\(^a\)Garey, Johnson, & Stockmeyer (1976); Dailey (1980).
\(^b\)Lawler (1976).
\(^c\)Beigel & Eppstein (2000).
More on 3-COLORING and the Chromatic Number (concluded)

- The **chromatic number** $\chi(G)$ is the smallest number of colors needed to color a graph G.

- There is an algorithm to find $\chi(G)$ in time $O((4/3)^{n/3}) = 2.4422^n$.

- It can be improved to $O((4/3 + 3^{4/3}/4)^n) = O(2.4150^n)$ and $2^n n^{O(1)}$.

- Computing $\chi(G)$ cannot be easier than 3-COLORING.

\(^a\) Lawler (1976).
\(^b\) Eppstein (2003).
\(^c\) Koivisto (2006).
\(^d\) Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.