
The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf
Δ
= {M ;x : M accepts input x

after at most f(|x |) steps },
where M is deterministic.

• Assume the input is binary.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 225

Hf ∈ TIME(f(n)3)

• For each input M ;x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 82), the universal

TM (p. 133), and the linear speedup theorem (p. 92).

– Our simulator accepts M ;x if and only if M accepts

x before the alarm clock runs out.

• From p. 89, the total running time is O(�Mk2Mf(n)2),

where �M is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As �Mk2M = O(n), the running time is O(f(n)3), where

the constant is independent of M .

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 226

Hf �∈ TIME(f(�n/2�))
• Suppose TM MHf

decides Hf in time f(�n/2�).
• Consider machine:

Df (M) {
if MHf

(M ;M) = “yes”

then “no”;

else “yes”;

}
• Df on input M runs in the same time as MHf

on input

M ;M , i.e., in time f(� 2n+1
2 �) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation for-

gets to include the time to write down M ;M .

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 227

The Proof (concluded)

• First,

Df (Df) = “yes”

⇒ Df ;Df �∈ Hf

⇒ Df does not accept Df within time f(|Df |)
⇒ Df (Df) �= “yes” as Df (Df) runs in time f(|Df |),

a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 228

The Time Hierarchy Theorem

Theorem 18 If f(n) ≥ n is proper, then

TIME(f(n)) � TIME(f(2n+ 1)3).

• The quantified halting problem makes it so.

Corollary 19 P � E.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 18,

TIME (2n) � TIME
(
(22n+1)3

) ⊆ E.

• So P � E.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 229

The Space Hierarchy Theorem

Theorem 20 (Hennie & Stearns, 1966) If f(n) is

proper, then

SPACE(f(n)) � SPACE(f(n) log f(n)).

Corollary 21 L � PSPACE.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 230

Nondeterministic Time Hierarchy Theorems

Theorem 22 (Cook, 1973) NTIME(nr) � NTIME(ns)

whenever 1 ≤ r < s.

Theorem 23 (Seiferas, Fischer, & Meyer, 1978) If

T1(n), T2(n) are proper, then

NTIME(T1(n)) � NTIME(T2(n))

whenever T1(n+ 1) = o(T2(n)).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 231

The Reachability Method

• The computation of a time-bounded TM can be

represented by a directed graph.

• The TM’s configurations constitute the nodes.

• There is a directed edge from node x to node y if x

yields y in one step.

• The start node representing the initial configuration has

zero in-degree.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 232

The Reachability Method (concluded)

• When the TM is nondeterministic, a node may have an

out-degree greater than one.

– The graph is the same as the computation tree

earlier.

– But identical configurations are merged into one

node.

• So M accepts the input if and only if there is a path

from the start node to a node with a “yes” state.

• It is the reachability problem.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 233

Illustration of the Reachability Method

yes

yes
Initial

configuration

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 234

Relations between Complexity Classes

Theorem 24 Suppose f(n) is proper. Then

1. SPACE(f(n)) ⊆ NSPACE(f(n)),

TIME(f(n)) ⊆ NTIME(f(n)).

2. NTIME(f(n)) ⊆ SPACE(f(n)).

3. NSPACE(f(n)) ⊆ TIME(klogn+f(n)).

• Proof of 2:

– Explore the computation tree of the NTM for “yes.”

– Specifically, generate an f(n)-bit sequence denoting

the nondeterministic choices over f(n) steps.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 235

Proof of Theorem 24(2)

• (continued)

– Simulate the NTM based on the choices.

– Recycle the space and repeat the above steps.

– Halt with “yes” when a “yes” is encountered or “no”

if the tree is exhausted.

– Each path simulation consumes at most O(f(n))

space because it takes O(f(n)) time.

– The total space is O(f(n)) because space is recycled.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 236

Proof of Theorem 24(3)

• Let k-string NTM

M = (K,Σ,Δ, s)

with input and output decide L ∈ NSPACE(f(n)).

• Use the reachability method on the configuration graph

of M on input x of length n.

• A configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 237

Proof of Theorem 24(3) (continued)

• We only care about

(q, i, w2, u2, . . . , wk−1, uk−1),

where i is an integer between 0 and n for the position of

the first cursor.

• The number of configurations is therefore at most

|K | × (n+ 1)× |Σ |2(k−2)f(n) = O(c
logn+f(n)
1) (2)

for some c1 > 1, which depends on M .

• Add edges to the configuration graph based on M ’s

transition function.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 238

Proof of Theorem 24(3) (concluded)

• x ∈ L ⇔ there is a path in the configuration graph from

the initial configuration to a configuration of the form

(“yes”, i, . . .).a

• This is reachability on a graph with O(c
logn+f(n)
1)

nodes.

• It is in TIME(clogn+f(n)) for some c > 1 because

reachability ∈ TIME(nj) for some j and

[
c
logn+f(n)
1

]j
= (cj1)

logn+f(n).

aThere may be many of them.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 239

Space-Bounded Computation and Proper Functions

• In the definition of space-bounded computations earlier

(p. 108), the TMs are not required to halt at all.

• When the space is bounded by a proper function f ,

computations can be assumed to halt:

– Run the TM associated with f to produce a

quasi-blank output of length f(n) first.

– The space-bounded computation must repeat a

configuration if it runs for more than clogn+f(n) steps

for some c > 1.a

aSee Eq. (2) on p. 238.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 240

Space-Bounded Computation and Proper Functions
(concluded)

• (continued)

– So an infinite loop occurs during simulation for a

computation path longer than clogn+f(n) steps.

– Hence we only simulate up to clogn+f(n) time steps

per computation path.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 241

A Grand Chain of Inclusionsa

• It is an easy application of Theorem 24 (p. 235) that

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

• By Corollary 21 (p. 230), we know L � PSPACE.

• So the chain must break somewhere between L and EXP.

• It is suspected that all four inclusions are proper.

• But there are no proofs yet.

aWith input from Mr. Chin-Luei Chang (R93922004, D95922007) on

October 22, 2004.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 242

What Is Wrong with the Proof?a

• By Theorem 24(2) (p. 235),

NL ⊆ TIME
(
kO(logn)

)
⊆ TIME (nc1)

for some c1 > 0.

• By Theorem 18 (p. 229),

TIME (nc1) � TIME (nc2) ⊆ P

for some c2 > c1.

• So

NL �= P.

aContributed by Mr. Yuan-Fu Shao (R02922083) on November 11,

2014.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 243

What Is Wrong with the Proof? (concluded)

• Recall from p. 220 that TIME(kO(logn)) is a shorthand

for ⋃
j>0

TIME
(
jO(logn)

)
.

• So the correct proof runs more like

NL ⊆
⋃
j>0

TIME
(
jO(logn)

)
⊆

⋃
c>0

TIME (nc) = P.

• And

NL �= P

no longer follows.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 244

Nondeterministic and Deterministic Space

• By Theorem 6 (p. 114),

NTIME(f(n)) ⊆ TIME(cf(n)),

an exponential gap.

• There is no proof yet that the exponential gap is

inherent.

• How about NSPACE vs. SPACE?

• Surprisingly, the relation is only quadratic—a

polynomial—by Savitch’s theorem.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 245

Savitch’s Theorem

Theorem 25 (Savitch, 1970)

reachability ∈ SPACE(log2 n).

• Let G(V,E) be a graph with n nodes.

• For i ≥ 0, let

PATH(x, y, i)

mean there is a path from node x to node y of length at

most 2i.

• There is a path from x to y if and only if

PATH(x, y, �logn�)
holds.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 246

The Proof (continued)

• For i > 0, PATH(x, y, i) if and only if there exists a z

such that PATH(x, z, i− 1) and PATH(z, y, i− 1).

• For PATH(x, y, 0), check the input graph or if x = y.

• Compute PATH(x, y, �logn�) with a depth-first search

on a graph with nodes (x, y, z, i)s (see next page).a

• Like stacks in recursive calls, we keep only the current

path of (x, y, i)s.

• The space requirement is proportional to the depth of

the tree (�logn�) times the size of the items stored at

each node.
aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 247

The Proof (continued): Algorithm for PATH(x, y, i)
1: if i = 0 then

2: if x = y or (x, y) ∈ E then

3: return true;

4: else

5: return false;

6: end if

7: else

8: for z = 1, 2, . . . , n do

9: if PATH(x, z, i− 1) and PATH(z, y, i− 1) then

10: return true;

11: end if

12: end for

13: return false;

14: end if

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 248

The Proof (continued)

�����������	 ��

�����������	 ��
� �����������	 ��
�

�����

����

����

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 249

The Proof (concluded)

• Depth is �logn�, and each node (x, y, z, i) needs space

O(log n).

• The total space is O(log2 n).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 250

The Relation between Nondeterministic and
Deterministic Space Is Only Quadratic

Corollary 26 Let f(n) ≥ logn be proper. Then

NSPACE(f(n)) ⊆ SPACE(f2(n)).

• Apply Savitch’s proof to the configuration graph of the

NTM on its input.

• From p. 238, the configuration graph has O(cf(n))

nodes; hence each node takes space O(f(n)).

• But if we construct explicitly the whole graph before

applying Savitch’s theorem, we get O(cf(n)) space!

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 251

The Proof (continued)

• The way out is not to generate the graph at all.

• Instead, keep the graph implicit.

• We checked node connectedness only when i = 0 on

p. 248, by examining the input graph G.

• Suppose we are given configurations x and y.

• Then we go over the Turing machine’s program to

determine if there is an instruction that can turn x into

y in one step.a

• So connectivity is checked locally and on demand.

aThanks to a lively class discussion on October 15, 2003.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 252

The Proof (continued)

• The z variable in the algorithm on p. 248 simply runs

through all possible valid configurations.

– Let z = 0, 1, . . . , O(cf(n)).

– Make sure z is a valid configuration before

proceeding with it.a

∗ Adopt a fixed width for each symbol and state of

the NTM and for the cursor position on the input

string.b

– If it is not, advance to the next z.

aThanks to a lively class discussion on October 13, 2004.
bContributed by Mr. Jia-Ming Zheng (R04922024) on October 17,

2017.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 253

The Proof (concluded)

• Each z has length O(f(n)).

• So each node needs space O(f(n)).

• The depth of the recursive call on p. 248 is O(log cf(n)),

which is O(f(n)).

• The total space is therefore O(f2(n)).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 254

Implications of Savitch’s Theorem

Corollary 27 PSPACE = NPSPACE.

• Nondeterminism is less powerful with respect to space.

• Nondeterminism may be very powerful with respect to

time as it is not known if P = NP.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 255

Nondeterministic Space Is Closed under Complement

• Closure under complement is trivially true for

deterministic complexity classes (p. 223).

• It is known thata

coNSPACE(f(n)) = NSPACE(f(n)). (3)

• So

coNL = NL.

• But it is not known whether coNP = NP.

aSzelepscényi (1987); Immerman (1988).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 256

Reductions and Completeness

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 257

It is unworthy of excellent men

to lose hours like slaves

in the labor of computation.

— Gottfried Wilhelm von Leibniz (1646–1716)

I thought perhaps you might be members of

that lowly section of the university

known as the Sheffield Scientific School.

F. Scott Fitzgerald (1920), “May Day”

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 258

Degrees of Difficulty

• When is a problem more difficult than another?

• B reduces to A if:

– There is a transformation R which for every problem

instance x of B yields a problem instance R(x) of A.a

– The answer to “R(x) ∈ A?” is the same as the

answer to “x ∈ B?”

– R is easy to compute.

• We say problem A is at least as hard asb problem B if B

reduces to A.

aSee also p. 145.
bOr simply “harder than” for brevity.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 259

Reduction

x yes/noR(x)
R

algorithm
for A

Solving problem B by calling the algorithm for problem A

once and without further processing its answer.a

aMore general reductions are possible, such as the Turing (1939) re-

duction and the Cook (1971) reduction.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 260

Degrees of Difficulty (concluded)

• This makes intuitive sense: If A is able to solve your

problem B after only a little bit of work of R, then A

must be at least as hard.

– If A is easy to solve, it combined with R (which is

also easy) would make B easy to solve, too.a

– So if B is hard to solve, A must be hard (if not

harder), too!

aThanks to a lively class discussion on October 13, 2009.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 261

Commentsa

• Suppose B reduces to A via a transformation R.b

• The input x is an instance of B.

• The output R(x) is an instance of A.

• R(x) may not span all possible instances of A.c

– Some instances of A may never appear in R’s range.

• But x must be a general instance for B.

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29,

2003.
bSometimes, we say “B can be reduced to A.”
cR(x) may not be onto; Mr. Alexandr Simak (D98922040) on October

13, 2009.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 262

Is “Reduction” a Confusing Choice of Word?a

• If B reduces to A, doesn’t that intuitively make A

smaller and simpler?

• But our definition means just the opposite.

• Our definition says in this case B is a special case of A.b

• Hence A is harder.

aMoore & Mertens (2011).
bSee also p. 148.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 263

Reduction between Languages

• Language L1 is reducible to L2 if there is a function R

computable by a deterministic TM in space O(log n).

• Furthermore, for all inputs x, x ∈ L1 if and only if

R(x) ∈ L2.

• R is said to be a (Karp) reduction from L1 to L2.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 264

Reduction between Languages (concluded)

• Note that by Theorem 24 (p. 235), R runs in polynomial

time.

– In most cases, a polynomial-time R suffices for

proofs.a

• Suppose R is a reduction from L1 to L2.

• Then solving “R(x) ∈ L2?” is an algorithm for solving

“x ∈ L1?”
b

aIn fact, unless stated otherwise, we will only require that the reduc-

tion R run in polynomial time.
bOf course, it may not be the best.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 265

A Paradox?

• Degree of difficulty is not defined in terms of absolute

complexity.

• So a language B ∈ TIME(n99) may be “easier” than a

language A ∈ TIME(n3) if B reduces to A.

• But isn’t this a contradiction if the best algorithm for B

requires n99 steps?

• That is, how can a problem requiring n99 steps be

reducible to a problem solvable in n3 steps?

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 266

Paradox Resolved

• The so-called contradiction is the result of flawed logic.

• Suppose we solve the problem “x ∈ B?” via “R(x) ∈ A?”

• We must consider the time spent by R(x) and its length

|R(x) |:
– Because R(x) (not x) is solved by A.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 267

hamiltonian path

• A Hamiltonian path of a graph is a path that visits

every node of the graph exactly once.

• Suppose graph G has n nodes: 1, 2, . . . , n.

• A Hamiltonian path can be expressed as a permutation

π of { 1, 2, . . . , n } such that

– π(i) = j means the ith position is occupied by node j.

– (π(i), π(i+ 1)) ∈ G for i = 1, 2, . . . , n− 1.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 268

hamiltonian path (concluded)

• So ⎛
⎝ 1 2 · · · n

π(1) π(2) · · · π(n)

⎞
⎠ .

• hamiltonian path asks if a graph has a Hamiltonian

path.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 269

Reduction of hamiltonian path to sat

• Given a graph G, we shall construct a CNFa R(G) such

that R(G) is satisfiable if and only if G has a

Hamiltonian path.

• R(G) has n2 boolean variables xij , 1 ≤ i, j ≤ n.

• xij means

the ith position in the Hamiltonian path is

occupied by node j.

• Our reduction will produce clauses.

aRemember that R does not have to be onto.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 270

A Hamiltonian Path

1

2
3

4

5
6

78
9

x12 = x21 = x34 = x45 = x53 = x69 = x76 = x88 = x97 = 1;

π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 5, π(5) = 3, π(6) =

9, π(7) = 6, π(8) = 8, π(9) = 7.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 271

The Clauses of R(G) and Their Intended Meanings

1. Each node j must appear in the path.

• x1j ∨ x2j ∨ · · · ∨ xnj for each j.

2. No node j appears twice in the path.

• ¬xij ∨ ¬xkj(≡ ¬(xij ∧ xkj)) for all i, j, k with i �= k.

3. Every position i on the path must be occupied.

• xi1 ∨ xi2 ∨ · · · ∨ xin for each i.

4. No two nodes j and k occupy the same position in the path.

• ¬xij ∨ ¬xik(≡ ¬(xij ∧ xik)) for all i, j, k with j �= k.

5. Nonadjacent nodes i and j cannot be adjacent in the path.

• ¬xki ∨ ¬xk+1,j(≡ ¬(xk,i ∧ xk+1,j)) for all (i, j) �∈ E and

k = 1, 2, . . . , n− 1.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 272

The Proof

• R(G) contains O(n3) clauses.

• R(G) can be computed efficiently (simple exercise).

• Suppose T |= R(G).

• From the 1st and 2nd types of clauses, for each node j

there is a unique position i such that T |= xij .

• From the 3rd and 4th types of clauses, for each position

i there is a unique node j such that T |= xij .

• So there is a permutation π of the nodes such that

π(i) = j if and only if T |= xij .

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 273

The Proof (concluded)

• The 5th type of clauses furthermore guarantee that

(π(1), π(2), . . . , π(n)) is a Hamiltonian path.

• Conversely, suppose G has a Hamiltonian path

(π(1), π(2), . . . , π(n)),

where π is a permutation.

• Clearly, the truth assignment

T (xij) = true if and only if π(i) = j

satisfies all clauses of R(G).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 274

A Commenta

• An answer to “Is R(G) satisfiable?” answers the

question “Is G Hamiltonian?”

• But a “yes” does not give a Hamiltonian path for G.

– Providing a witness is not a requirement of reduction.

• A “yes” to “Is R(G) satisfiable?” plus a satisfying truth

assignment does provide us with a Hamiltonian path for

G.

aContributed by Ms. Amy Liu (J94922016) on May 29, 2006.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 275

Reduction of reachability to circuit value

• Note that both problems are in P.

• Given a graph G = (V,E), we shall construct a

variable-free circuit R(G).

• The output of R(G) is true if and only if there is a path

from node 1 to node n in G.

• Idea: the Floyd-Warshall algorithm.a

aFloyd (1962); Marshall (1962).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 276

The Gates

• The gates are

– gijk with 1 ≤ i, j ≤ n and 0 ≤ k ≤ n.

– hijk with 1 ≤ i, j, k ≤ n.

• gijk: There is a path from node i to node j without

passing through a node bigger than k.

• hijk: There is a path from node i to node j passing

through k but not any node bigger than k.

• Input gate gij0 = true if and only if i = j or (i, j) ∈ E.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 277

The Construction

• hijk is an and gate with predecessors gi,k,k−1 and

gk,j,k−1, where k = 1, 2, . . . , n.

• gijk is an or gate with predecessors gi,j,k−1 and hi,j,k,

where k = 1, 2, . . . , n.

• g1nn is the output gate.

• Interestingly, R(G) uses no ¬ gates.

– It is a monotone circuit.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278

Reduction of circuit sat to sat

• Given a circuit C, we will construct a boolean expression

R(C) such that R(C) is satisfiable if and only if C is.

– R(C) will turn out to be a CNF.

– R(C) is basically a depth-2 circuit; furthermore, each

gate has out-degree 1.

• The variables of R(C) are those of C plus g for each

gate g of C.

– The g’s propagate the truth values for the CNF.

• Each gate of C will be turned into equivalent clauses.

• Recall that clauses are ∧ed together by definition.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 279

The Clauses of R(C)

g is a variable gate x: Add clauses (¬g ∨ x) and (g ∨ ¬x).
• Meaning: g ⇔ x.

g is a true gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (¬g).
• Meaning: g must be false to make R(C) true.

g is a ¬ gate with predecessor gate h: Add clauses

(¬g ∨ ¬h) and (g ∨ h).

• Meaning: g ⇔ ¬h.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 280

The Clauses of R(C) (continued)

g is a ∨ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h ∨ h′), (g ∨ ¬h), and (g ∨ ¬h′).

• The conjunction of the above clauses is equivalent to

[g ⇒ (h ∨ h′)] ∧ [(h ∨ h′) ⇒ g]

≡ g ⇔ (h ∨ h′).

g is a ∧ gate with predecessor gates h and h′: Add

clauses (¬g ∨ h), (¬g ∨ h′), and (g ∨ ¬h ∨ ¬h′).

• It is equivalent to

g ⇔ (h ∧ h′).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 281

The Clauses of R(C) (concluded)

g is the output gate: Add clause (g).

• Meaning: g must be true to make R(C) true.

• Note: If gate g feeds gates h1, h2, . . ., then variable g

appears in the clauses for h1, h2, . . . in R(C).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 282

An Example

∧

�
�

�
�
�
�

∨

�
�

¬∧

∨

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

(h1 ⇔ x1) ∧ (h2 ⇔ x2) ∧ (h3 ⇔ x3) ∧ (h4 ⇔ x4)

∧ [g1 ⇔ (h1 ∧ h2)] ∧ [g2 ⇔ (h3 ∨ h4)]

∧ [g3 ⇔ (g1 ∧ g2)] ∧ (g4 ⇔ ¬g2)
∧ [g5 ⇔ (g3 ∨ g4)] ∧ g5.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 283

An Example (concluded)

• The result is a CNF.

• The CNF has size proportional to the circuit’s number

of gates.

• The CNF adds new variables to the circuit’s original

input variables.

• Had we used the idea on p. 205 for the reduction, the

resulting formula may have an exponential length

because of the copying.a

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 284

Composition of Reductions

Proposition 28 If R12 is a reduction from L1 to L2 and

R23 is a reduction from L2 to L3, then the composition

R12 ◦R23 is a reduction from L1 to L3.

• So reducibility is transitive.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 285

Completenessa

• As reducibility is transitive, problems can be ordered

with respect to their difficulty.

• Is there a maximal element (the so-called hardest

problem)?

• It is not obvious that there should be a maximal

element.

– Many infinite structures (such as integers and real

numbers) do not have maximal elements.

• Surprisingly, most of the complexity classes that we have

seen so far have maximal elements!

aPost (1944); Cook (1971); Levin (1973).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 286

Completeness (concluded)

• Let C be a complexity class and L ∈ C.
• L is C-complete if every L′ ∈ C can be reduced to L.

– Most of the complexity classes we have seen so far

have complete problems!

• Complete problems capture the difficulty of a class

because they are the hardest problems in the class.a

aSee also p. 159.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 287

Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.
• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 288

Illustration of Completeness and Hardness

A1

A2

A3

A4

L

A1

A2

A3

A4

L

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 289

Closedness under Reductions

• A class C is closed under reductions if whenever L is

reducible to L′ and L′ ∈ C, then L ∈ C.
• It is easy to show that P, NP, coNP, L, NL, PSPACE,

and EXP are all closed under reductions.

• E is not closed under reductions.a

aBalcázar, Dı́az, & Gabarró (1988).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 290

